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ABSTRAK

Sebuah tutorial farmakokinetika dua kompartemen ekstravaskuler berbasis populasi dilakukan
dengan pendekatan persamaan diferensial dan model efek campuran non linear. Pertama, disusun

persamaan diferensial tiga tingkat dari

model

dua kompartemen ekstravaskuler.Kemudian,

dikembangkan model kovariat dan non-kovariat dengan paket nlmeODE dan nlme yang terpasang
dalam perangkat lunak R. Model terbaik dipilih berdasarkan nilai AIC, BIC, dan LogLik. Sebuah
model tanpa kovariat dipilih sebagai model terbaik. Model yang terpilih menunjukkan kesesuaian
fungsi yang baik dengan data eksperimental dan plot residual model menunjukkan bahwa tidak

terdapat satu pun asumsi yang dilanggar. Dengan demikian, dapat disimpulkan bahwa nlme dan

nlmeODE mampu menghasilkan model prediktif farmakokinetika dua kompartemen berbasis populasi

yang memadai untuk rute ekstravaskuler.

Kata Kunci :
dan nlmeODE.

PENDAHULUAN

Farmakokinetika  adalah  ilmu  yang
mempelajari secara khusus perubahan jumlah obat
dalam tubuh sebagai fungsi waktu (Jambhekar &
Breen, 2012; Shargel et al, 2012). Dengan kata lain,
dalam pokok bahasan farmakokinetika dilakukan
kajian-kajian terhadap fenomena absorbsi, distribusi,
dan eliminasi obat secara kuantitatif. Oleh karena itu,
dalam penelitian-penelitian farmakokinetika
dikembangkan berbagai macam model-model
matematika untuk menjelaskan proses perjalanan
obat di dalam tubuh.

Salah satu pemodelan matematika yang
paling umum digunakan untuk mengkaji profil
farmakokinetika adalah model kompartementeral.
Beberapa model farmakokinetika kompartementeral
antara lain model kompartemen tunggal dan multi
kompartemen telah dikenal secara luas. Diantara
ketiga model kompartemen tersebut, model dua
kompartemen mengalami perkembangan yang paling
pesat yang ditunjukkan dengan peningkatan jumlah
publikasi yang paling tinggi sejak tahun 1970 sampai
2017 (Kovalchik, 2017; R Core Team, 2015). Oleh
karena itu, pengetahuan yang lebih dalam mengenai
model dua kompartemen diperlukan bagi seorang
farmasis antara lain untuk melakukan pemodelan
farmakokinetika maupun pengaturan dosis obat di
bidang farmasi klinis.

Beberapa model matematik untuk melakukan
pemodelan farmakokinetika dua kompartemen telah
dipublikasikan antara lain oleh Boxenbaum et al,
(1974) dan Wagner (1975). Beberapa perangkat
lunak juga telah dikembangkan untuk mempermudah

Farmakokinetika berbasis populasi, Dua Kompartemen, Persamaan differensial, nlme

proses kalkulasi parameter farmakokinetika antara
lain dengan WinSAAM, R, dan PKSolver (Lee &
Lee, 2017; Stefanovski et al, 2003; Tornge et al,
2004; Zhang et al, 2010).

Meskipun  demikian, dari paket-paket
perangkat lunak yang telah dikembangkan, terutama
perangkat lunak sumber terbuka, belum pernah
dilakukan = pembahasan  secara  komprehensif
mengenai proses kalkulasi parameter
farmakokinetika populasi untuk model dua
kompartemen ekstravaskuler dengan persamaan
diferensial. =~ Padahal = dengan  memanfaatkan
persamaan diferensial, dapat dikembangkan berbagai
model farmakokinetika secara lebih leluasa, tanpa
melakukan penyelesaian dengan teknik kalkulus
integral. Di lain pihak, tren farmakokinetika saat ini
telah  mengalami  pergeseran  dari  teknik
farmakokinetika konvensional menuju ke
farmakokinetika berbasis populasi, bahkan FDA
(Food and Drug Administration) mewajibkan
penggunaan farmakokinetika berbasis populasi dalam
uji klinik fase 1 dan akhir fase 2b (FDA, 1999). Oleh
karena itu, di dalam tulisan ini, dilakukan kajian yang
berpusat pada penyelesaian persamaan diferensial
untuk pemodelan farmakokinetika dua kompartemen
berbasis populasi dengan perangkat lunak sumber
terbuka yaitu R dengan paket nlme dan nlmeODE
(Pinheiro & Bates, 2000; Tornge et al., 2004).

PEMODELAN DUA KOMPARTEMEN

DENGAN PERSAMAAN DIFERENSIAL
Obat-obat yang diberikan melalui rute injeksi

intravena bolus dan mengikuti model dua
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kompartemen tidak mengalami proses absorpsi
melainkan masuk secara langsung ke dalam sirkulasi
sistemik. Selanjutnya, obat akan mengalami proses
eliminasi dan distribusi secara bersamaan. Pada fase
distribusi, terjadi proses perpindahan obat dari
kompartemen pertama yaitu sirkulasi sistemik
menuju ke kompartemen kedua atau jaringan. Pada
tahap ini proses distribusi lebih dominan
dibandingkan dengan eliminasi yang mengakibatkan
terjadinya pembelokan kurva profil farmakokinetika
pada fase distribusi (Gambar 1 intravena A). Ketika
obat memasuki fase eliminasi (Gambar 1 intravena
B), obat telah mencapai kesetimbangan dengan
kompartemen kedua (jaringan) sehingga proses
eliminasi menjadi lebih dominan dibandingkan
distribusi, bahkan kecepatan distribusi sudah dapat
diabaikan. Oleh karena itu, pada fase eliminasi
nampak bahwa titik-titik data membentuk suatu garis
lurus menurun pada kertas semilog yang menandakan
bahwa proses tersebut hanya dipengaruhi oleh proses
eliminasi obat yang mengikuti kinetika orde pertama.

Kinetika perjalanan obat dalam tubuh pada
obat-obat yang diberikan secara intravena bolus
dengan model dua kompartemen dapat disusun
berdasarkan ilustrasi pada Gambar 2A. Apabila
perpindahan antar kompartemen dianggap mengikuti
kinetika orde pertama dan tanda positif atau negatif
secara berurutan menggambarkan perjalanan obat
masuk dan keluar dari masing-masing kompartemen,
maka  dapat dituliskan seperangkat persamaan
diferensial untuk menggambarkan farmakokinetika
dua kompartemen pada pemberian obat secara
intravena bolus seperti yang dituliskan pada
persamaan (1) dan (2).
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Gambar 1. Ilustrasi profil farmakokinetika dua
kompartemen pada rute intravena dan ekstravaskuler pada
kertas semilog. A = fase eliminasi, B = fase distribusi, C =

fase absorpsi

sirkulasi
sistemik

Tempat
absorpsi

sirkulasi
sistemik

Gambar 2. Ilustrasi model dua kompartemen intravena
bolus (A) dan ekstravaskuler (B).
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— k12C1 — k19 Cq

—— = k12C1 — k21 C;

. dc . .
Di mana d—tl adalah laju perubahan konsentrasi obat

dalam sirkulasi sistemik tiap satuan waktu
(mg/L'jam), k,; adalah konstanta kecepatan
perpindahan obat dari kompartemen pertama

(sirkulasi sistemik) menuju ke kompartemen kedua
atau jaringan (1/jam) atau setara dengan jumlah obat
dibagi dengan volume distribusi pada kompartemen
sentral (D /V;), C, konsentrasi obat dalam
kompartemen kedua (mg/L), k;; adalah konstanta
kecepatan perpindahan obat dari kompartemen kedua
menuju ke kompartemen pertama, C; adalah
konsentrasi obat dalam kompartemen pertama
(mg/L), kqy adalah konstanta kecepatan eliminasi
obat (1/jam) atau sama dengan hasil kali antara
bersihan ginjal dengan volume distribusi pada
kompartemen sentral (CL X V;).

Dengan cara yang sama, dapat diturunkan
persamaan diferensial untuk model farmakokinetika
dua kompartemen ekstravaskular. Perbedaannya yaitu
di dalam model ekstravaskular, perlu ditambahkan
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parameter-parameter dalam proses absorpsi dari
tempat pemberian menuju ke sirkulasi sistemik. Oleh
karena itu, persamaan diferensial yang disusun
menjadi sedikit berbeda yaitu:

dDry
Frake —k,Dry 3)
dc,
ar —k10C1 — k12C1 + k210G
+ F. ko Dry “)
Vi
dc
d_tz = —k21C2 + k12C1 (5)

. dD . .
Di mana d—tTA adalah laju perubahan konsentrasi obat

di dalam tempat absorpsi (mg/jam), k, adalah
konstanta kecepatan absorpsi (1/jam), Dy, adalah
jumlah obat yang tersedia dalam tempat absorpsi
pada waktu t (mg), F. adalah fraksi obat yang
terabsorpsi ke dalam sirkulasi sistemik yang dapat
diperoleh dari perbandingan antara luas daerah di
bawah kurva profil farmakokinetika ekstravaskular
dan intravena (tidak berdimensi atau dinyatakan
dalam %), V; adalah volume distribusi pada
kompartemen pertama atau sirkulasi sistemik (L).
Konstanta-konstanta yang menggambarkan kecepatan
perpindahan obat dari satu kompartemen dari
kompartemen yang lain ini disebut dengan konstanta
mikroskopik.

Persamaan diferensial (1) — (5) sangat
penting untuk memahami simulasi dan pemodelan
farmakokinetika. Dengan menggunakan persamaan
diferensial yang diprogram dalam perangkat lunak
dapat dilakukan simulasi profil farmakokinetika
sehingga peneliti maupun praktisi klinis dapat
merancang percobaan untuk subjek uji atau
pengaturan dosis terapetik kepada pasien dengan
paket deSolve (Soetaert et al, 2010). Namun
pembahasan terkait simulasi farmakokinetik berada
di luar ruang lingkup tulisan ini. Selain itu, tersedia
pula paket-paket program yang mampu digunakan
untuk melakukan pencocokan kurva (curve fitting)
hasil simulasi dengan data percobaan untuk
menentukan parameter-parameter farmakokinetika
konvensional berdasarkan persamaan diferensial
seperti WinSAAM atau Pkfit (Lee & Lee, 2017;
Stefanovski et al, 2003).

PEMODELAN FARMAKOKINETIKA
BERBASIS POPULASI

Farmakokinetika populasi adalah studi
farmakokinetika pada tingkatan populasi. Pemodelan
farmakokinetik berbasis populasi dapat dilakukan
dengan dua cara yaitu melakukan kalkulasi parameter
farmakokinetik dengan menggunakan data kombinasi
dari semua individu, menghilangkan perbedaan
individual (pendekatan naif terkelompok) atau
dengan melakukan kalkulasi parameter-parameter
farmakokinetika individual secara terpisah kemudian

mengkombinasikan parameter-parameter
farmakokinetika dari masing-masing individu
sehingga diperoleh parameter-parameter

farmakokinetika rata-rata yang dijadikan sebagai
parameter-parameter farmakokinetika populasi atau
disebut pendekatan dua tahap (Mould & Upton,
2012).

Dalam proses analisis data pada studi
farmakokinetika  berbasis  populasi, digunakan
analisis pemodelan efek campuran. Pemodelan efek
campuran pada dasarnya adalah analisis regresi baik
linier atau non-linier yang melibatkan efek tetap dan
acak. Baik efek tetap maupun acak adalah koefisien
atau parameter regresi yang menggambarkan
hubungan antara variabel bebas dan tergantung,
hanya saja efek tetap memodelkan data dalam satu
populasi dan bernilai tetap atau berubah sebagai
fungsi kovariat, sedangkan efek acak
merepresentasikan  data  dalam  sub-kelompok
sehingga mempunyai nilai yang bervariasi (Comets et
al, 2017; Hamilton, 2013). Dalam konteks
farmakokinetika, digunakan regresi non-linier untuk
menggambarkan hubungan antara konsentrasi obat
dalam plasma (variabel tergantung) dengan waktu
setelah pemberian obat (variabel bebas) sedangkan
yang dimaksud dengan efek tetap dan acak adalah
parameter-parameter farmakokinetika itu sendiri
yang meliputi namun tidak terbatas pada salah satu
atau lebih dari: kqg, k., k12, k1, CL, dan V;
tergantung pada model kompartemen yang sesuai dan
rute pemberian obat, sedangkan kovariat adalah
variabel-variabel lain di luar model yang dapat
berpengaruh terhadap koefisien regresi seperti umur,
berat badan, atau gena(de Alwis et al, 1998;
Drikvandi, 2017).

Model efek campuran non-linier dalam studi
farmakokinetika melibatkan efek tetap yang terkait
dengan parameter-parameter populasi serta efek acak
yang berasal dari variabilitas individu yang tidak
dapat dijelaskan (Tornge et al, 2004). Variabilitas
intra-individual yang menggambarkan perbedaan
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antara nilai terprediksi dan teramati (residual) pada

suatu individu dapat dikalkulasi menggunakan
persamaan (6) sebagai berikut:

vij = f(@ixij) + €5 (6)
Dimanai=1,...,N; j=1, ..., n;;y; adalah respon

ke-j untuk individu ke-i; f(-) adalah fungsi non-linier
dari sebuah vektor parameter @ yang spesifik untuk
masing-masing individu dan vektor prediktor x; ; N
adalah  jumlahindividu, dan n;adalah jumlah
pengukuran untuk individu ke-i; €;; adalah kesalahan
residual yang diasumsikan bersifat independen dan
berupa variabel acak yang terdistribusi normal
dengan rata-rata nol dan varian konstan sebesar o°.

Selanjutnya, model yang  dihasilkan
menghubungkan parameter-parameter dari individu-
individu yang berbeda sebagai berikut:

@; = Ay B + Byjb; @)

Di mana A;; dan B;; adalah desain matriks untuk

efek tetap vektor 8 dan efek acak vektor b; secara
berurutan. Variasi inter-individu dimodelkan dengan
efek acak vektor b; yang terdiri dari sejumlah k
variabel dengan rata-rata nol yang diasumsikan bebas
dan memiliki sebaran yang dianggap sebagai
distribusi normal multivariat dengan matriks varian-
kovarian 1. Kesalahan residual €;; dan b;
diasumsikan bebas untuk semua i dan j. Parameter
dalam model efek campuran seperti yang tertulis
dalam persamaan (6) dan (7) dihitung dengan
menggunakan metode maximum likelihood (ML) atau
dengan metode restricted maximum likelihood
(REML) berdasarkan densitas marjinal dari y.

KALKULASI PARAMETER
FARMAKOKINETIKA  POPULASI PADA
MODEL DUA KOMPARTEMEN
EKSTRAVASKULAR

Guna memberikan pemahaman yang lebih
dalam tentang proses pemodelan farmakokinetika
berbasis populasi dengan persamaan diferensial,
berikut ini disajikan contoh kalkulasi parameter
farmakokinetika efavirenz dengan menggunakan data
sediaan referensi pada wuji bioekivalensi yang
dipublikasikan oleh (Ibarra et al, 2016). Parameter
farmakokinetika dikalkulasi menggunakan
pendekatan dua kompartemen dengan persamaan
diferensial seperti pada persamaan (3), (4), dan (5)

dan dikalkulasi menggunakan paket nlmeODE dan
nlme (Tornge et al, 2004). Sistematika proses
kalkulasi parameter farmakokinetika efavirenz
dengan model dua kompartemen pada tulisan ini
dimulai dari penyiapan data, penulisan fungsi
diferensial, pemodelan, pengembangan model,
pemilihan model terbaik, dan validasi model terpilih.

Sebelum diolah dengan paket nlmeODE dan
nlme, data harus ditabulasikan dengan sistematika
tertentu agar dapat diproses (lihat contoh pada
Gambar 3). Selanjutnya, data yang telah disiapkan
dalam program spreadsheet dapat disimpan dalam
bentuk csv, txt, atau xIsx kemudian di-import ke
dalam R. Data yang masuk selanjutnya diubah
menjadi data kelompok dengan perintah sebagai
berikut:

> Tibrary(nime)

> Tibrary(nlmeODE)

> data.a <- groupedbata(conc ~ Time |
Subject,+ data = as.data.frame(efavirenz))
> data.a$pose[data.a$Time!=0] <- 0

> data.a$cmt <- rep(l,dim(data.a)[1])

> par(mar=c(4,4,1,1))

>plot(data.a, ylab="Konsentras-i daTam
plasma (mg/L)', xlab = '"waktu setelah
pemberian obat (jam)'")
A B ( L £

bject Wt Dose Time canc Age Smoker,Status

2 1 66 600 ( 0 29 0

3 1 66 600 0.4 0.001372 49 ]

4 1 o0 00 1.89 0.,003256 49 0

1 66 600 2.56 0.002085 43 0

Gambar 3. Contoh format pemasukan data dengan MS

Excel

Dengan demikian, diperoleh data terkelompok yang
sudah siap dianalisis seperti yang terlihat pada

Gambar 4.
02 00 020 0 100
N R TR
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? i‘ | |
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Gambar 4. Plot data farmakokinetika efavirenz
terkelompok
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Setelah data siap untuk diproses, dilakukan
pemodelan awal menggunakan fungsi diferensial
yang diturunkan dari persamaan (3) — (5). Hanya
saja, F. tidak diikutsertakan dalam
perhitungan karena membutuhkan data intravena.

parameter

Dalam pemodelan ini digunakan teknik pencocokan
kurva, sehingga diperlukan parameter awal untuk
melakukan perhitungan yang dituliskan dengan
perintah start=c() seperti tertulis di bawah.
Parameter awal ini sangat menentukan kebaikan hasil
prediksi, semakin dekat parameter awal dengan
parameter yang sesungguhnya maka proses kalkulasi
akan semakin baik. Untuk mendapatkan parameter
awal yang tepat seringkali perlu dilakukan beberapa
kali trial and error.

> twoComp <- Tist(DiffEq=Tist(

+ dTAadt = ~ -ka*TA,

+ dbpldt = ~ ka*TA-k10*D1-k12*D1+k21*D2,
+ dp2dt = ~ k12*D1-k21*D2),

+ ObsEqg=T1ist(

+ TA = ~ 0,

+ cl = ~ D1/V1,

+ c2 =~0),

+ Parms=c("ka","k10", "k12", "k21", "v1i™),
+ States=c("TA","D1","D2"),

+ Init=1ist(0,0,0))

a.model nlmeODE (twoComp, data.a,
LogParms = T)

> a.nlme <- nlme(conc ~ a.model(ka, k10,
k12, k21, v1, Time, Subject),

+ data = data.a, fixed=ka+k10+k12+k21+Vv1~1,
random = pdbiag(ka+k10+k12+k21+v1~1),

+ start=c(ka = -0.8, k10 = -3.0, k12 = -
0.5, k21 = -2.5, v1=3.5),

\%

<-

+
control=list(returnobject=TRUE,msVerbose=TR
UE) ,+ verbose=TRUE)

Setelah pemodelan awal berhasil, dilakukan
pemilihan model terbaik yang dilakukan dengan
mengembangkan beberapa model yang mungkin
yaitu mengurangi jumlah efek acak serta
menambahkan kovariat seperti umur, berat badan,
dan status merokok satu per satu secara bertahap
(stepwise). Dari beberapa kemungkinan tersebut,
dikembangkan beberapa model baik dengan kovariat
maupun tanpa kovariat kemudian dilakukan analisis
varian untuk mengetahui model yang terbaik. Model
yang baik memiliki nilai Akaike Information
Criterion (AIC) dan Bayesian Information Criterion
(BIC) terendah serta log-likelihood (LogLik) yang
paling tinggi. Selain itu, model yang sederhana (tidak
terlalu banyak mengandung efek acak atau kovariat)

lebih disukai. Beberapa model
dikembangkan sebagai berikut:

alternatf dapat

#Mengurangi jumlah efek acak

>al.nTme <- update(a.nlme, random =
pdDiag(ka+k12~1))

>a2.nlme <- update(al.nTme, random =
pdbiag(ka~1))

#Apabila kovariat berat badan dicurigai

berpengaruh terhadap v1

> a3.nlme <- update(al.nlme, fixed =
Tist(ka+k12+k21+k10~1, Vvl~wt), start =

c(ka = -0.5, k10 =0.2, k12 = 1.5, k21 = -
2.5, vl=5, wt = -0.1))

#Apabila kovariat umur dicurigai
berpengaruh terhadap k10

a4.nlme <- update(al.nIme, fixed =
Tist(ka+k12+k21+v1~1, klO~Age), start =

c(ka =
2.5, vl1=10, Age =

1.0, k10 =-3.0, k12 = -1.5, k21 = -
-0.01D))

Untuk menguji kebaikan fungsi dari model-model
yang telah dikembangkan, dilakukan analisis varian
sebagai berikut :

> anova(a.nlme, al.nlme, a2.nlme, a3.nlme,

a4.nlme)

Berdasarkan hasil analisis varian dari model-model
yang telah dikembangkan (data tidak ditampilkan),
dapat diketahui bahwa model a.nlme dan al.nlme
tidak berbeda signifikan. Kedua model ini
menghasilkan nilai LogLik paling tinggi serta AIC
dan BIC paling rendah, namun model al.nlme lebih
sederhana dengan jumlah efek acak lebih kecil.
Dengan demikian, model al.nlme dipilih sebagai
model terbaik untuk menggambarkan
farmakokinetika efavirenz pada 14 subjek uji.
Selanjutnya, dilakukan validasi terhadap model
terpilih yang meliputi uji kesesuaian fungsi dan uji
asumsi residual.

Kesesuaian fungsi suatu model
farmakokinetika berbasis populasi dapat dinilai
berdasarkan analisis hubungan antara kedekatan
nilai-nilai terprediksi dengan data eksperimental yang
dapat diamati dengan grafik prediksi yang diperluas
dan plot hasil prediksi vs observasi. Semakin dekat
nilai terprediksi dengan data eksperimental, semakin
baik  kekuatan prediksi dari model yang
dikembangkan. Selain itu, ada beberapa asumsi yang
harus terpenuhi, antara lain residual yang
ternormalisasi bersifat independen dan terdistribusi
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normal dengan rata-rata nol dan varian sebesar o7.
Selain itu, efek acak harus terdistribsusi normal
dengan rata-rata nol dan matriks kovarian sebesar y
serta tidak tergantung pada kesalahan residual
(Tornge et al, 2004).

Grafik prediksi yang diperluas, dapat
diperoleh dengan perintah plot(augPred())yang
akan menampilkan plot antara data eksperimental
dengan nilai prediksi individu (subject) dan populasi
(fixed). Di lain pihak, untuk memperoleh plot
konsentrasi hasil prediksi dan yang teramati dapat
digunakan perintah plot(). Dalam model
farmakokinetika efavirenz yang telah dikalkulasi,
nampak bahwa terdapat kesesuaian fungsi yang baik
antara model dengan data eksperimental yang
ditunjukkan dengan kedekatan antara data-data
ekperimental dengan nilai-nilai terprediksi (Gambar 5
dan Gambar 6).

>plot(augPred(al.nTme,Tevel=0:1),
x lab="waktu setelah pemberian (jam)",
ylab="Konsentrasi dalam plasma (mg/L)")

> plot(al.nlme, conc~fitted(.,0), abline =
c(0,D, xlab="'Konsentrasi terprediksi',
ylab="'Konsentrasii teramati',
main="'Populasi')

> plot(al.nlme, conc~fitted(.,1), abline =
c(0,D), xlab="Konsentrasi terprediksi',
ylab="'Konsentrasi teramati', main =

"individu")

Selanjutnya, dalam uji diagnostik residual
dapat diketahui bahwa residual yang ternormalisasi
bersifat independen yang ditunjukkan dengan pola
sebaran yang tidak membentuk suatu pola tertentu
(Gambar 7) yang dikuatkan dengan plot ACF pada
Gambar 8 C yang menunjukkan bahwa tidak terdapat
autokorelasi yang signifikan pada taraf kepercayaan
95% (setelah lag 2, semua nilai autokorelasi berada di
bawah taraf kepercayaan yang digambarkan dengan
garis putus-putus). Selain itu, residual yang
terstandardisasi mengikuti pola distribusi normal dan
memiliki varian tetap yang ditunjukkan dengan plot
kuantil normal terstandard vs residual terstandard
berbentuk “S” (Gambar 8 A) dan terdistribusi secara
simetris di sekitar nol serta mempunyai varian tetap
(Gambar 8C). Di lain pihak, plot kuantil normal
terstandard vs efek acak menunjukkan pola yang
menyerupai normal (Gambar 9). Dengan demikian,
dapat disimpulkan bahwa tidak ditemukan
pelanggaran asumsi yang cukup berarti pada model
yang dipilih.

Nilai parameter efek tetap dan efek acak
dapat diperoleh dengan perintah
summary(al.nlme)dancoef(al.nlme,augFram

e=T) secara berurutan. Meskipun demikian, perlu
diperhatikan bahwa koefisien yang diperoleh berada
dalam skala logarima natural. Untuk mengubah skala
logaritma natural menjadi bilangan numerus, dapat
dilakukan transformasi eksponensial dengan perintah
exp(). Secara ringkas, parameter farmakokinetika
efavirenz hasil kalkulasi dapat ditabulasikan pada
Tabel 1.

— fixed ——  Subject
0 4080 0 4080
Lttt irrtl
_ 4 |14 | 7 5
5 B
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c 3 _
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0 4080 0 4080 0 4080

Waktu setelah pemberian (jam)

Gambar 5. Plot kesesuaian fungsi antara parameter
populasi dan individu dengan data eksperimental

Tabel 1. Hasil Perhitungan Parameter
Farmakokinetika Efavirenz dengan paket nlme dan
nlmeODE

Subjek kg, k1o k1y ka1 Vi (L)
1 0,169 0,034 0,592 0,051 56027,7
2 0,386 0,034 0,642 0,051 56027,7
3 0,231 0,034 0,596 0,051 56027,7
4 0,524 0,034 0,647 0,051 56027,7
5 0,436 0,034 0,677 0,051 56027,7
6 0,793 0,034 0,547 0,051 56027,7
7 0,665 0,034 0,649 0,051 56027,7
8 0,756 0,034 0,767 0,051 56027,7
9 0,247 0,034 0,510 0,051 56027,7
10 0,442 0,034 0,466 0,051 56027,7
11 0,899 0,034 0,536 0,051 56027,7
12 0,312 0,034 0,318 0,051 56027,7
13 1,021 0,034 0,608 0,051 56027,7
14 0,343 0,034 0,384 0,051 56027,7

Keterangan: ki, (1/jam), k,; (1/jam), V;(L) merupakan
efek tetap sehingga bernilai konstan untuk seluruh individu
sedangkan k,(1/jam) dan kq,(1/jam) merupakan efek acak
yang bervariasi antar individu.
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Apabila  dibandingkan  dengan  paket
saemix(Comets et al, 2017) yang menggunakan
algoritma  SAEM  (Stochastic ~ Approximation
Expectation Maximization) seperti yang digunakan
dalam Monolix (Chan et al, 2011), teknik pemodelan
dengan persamaan diferensial pada paket nlme dan
nlmeODE mempunyai keunggulan karena tidak
diperlukan penyelesaian persamaan diferensial
dengan kalkulus integral oleh pengguna. Hal ini
membuat  pengguna mampu mengembangkan
pemodelan-pemodelan yang cukup rumit dengan cara
yang lebih mudah. Keunggulan lain adalah, nlme dan
nlmeODE mampu mengkalkulasi semua konstanta
mikroskopik secara langsung sedangkan dalam
saemix beberapa konstanta mikroskopik seperti kq
dan kq, tidak dapat dikalkulasi secara langsung,
tetapi diturunkan dari konstanta makrod; dan
A1(Wijnand, 1988). Meskipun demikian, salah satu
kelemahan nlme dan nlmeODE dibanding saemix
yaitu semakin banyak parameter yang dikalkulasi,
semakin  banyak pula jumlah data yang
dipersyaratkan. Selain itu, paket nlme dan nlmeODE
ini tidak mampu melakukan analisis multi-kovariat
sebaik saemix dan tidak dapat menampilkan grafik
visual predictive check.

Populasi
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Gambar 6. Diagram pencar antara konsentrasi hasil
prediksi dan konsentrasi yang teramati (mg/L) pada
parameter farmakokinetika populasi dan individu

>

plot(al.nlme,
'n")~fitted(.,1),id
xlab="Konsentrasi
ylab="Residual

main="'Populasi')

>

plot(al.nlme,
'n")~fitted(.,1),id
xTab="Konsentrasi
ylab="Residual

"Individu")

Residual terstandard

Residual terstandard

terstandard",

Populasi

0.000 0.001 0.002 0.003 0.004 0.005

Konsentras: terprediksi

Individu

4 2 -
0.000 0.001 0.002 0.003 0.004 0.005

Konsentrasi terprediksi

main

resid(.,0,type =

= 0.05, abline = 0,
terprediksi",
terstandard",
resid(.,1,type =

= 0.05, abline = 0,

terprediksi"”,

Gambar 7. Diagram pencar antara konsentrasi terprediksi
(mg/L) dengan residual terstandardisasi pada pemodelan
farmakokinetika populasi dan individu

> qgnorm(al.nlme,
0.05,

id =

xTab="Residual

ylab="Kuantil normal standard')

> plot(al.nTme,
abTi
terstandard', ylab='Subjek')

'n'),

ine = 0,

> plot(ACF(al.nlme), alpha =

ylab="Autokorelasi')

~resid(.,1,type =

0.05,
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Gambar 8. Uji asumsi normalitas dan autokorelasi residual

> qgnorm(al.nlme,
acak'", ylab='Kuantil normal standard')

Kuantil normal standard

Gambar 9. Uji asumsi normalitas efek acak
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KESIMPULAN

Pemodelan farmakokinetika berbasis
populasi untuk rute ekstravaskuler dengan model dua
kompartemen dapat dilakukan dengan baik
menggunakan paket nlme dan nlmeODE yang dibuat
berdasarkan pada persamaan diferensial. Dengan
demikian, paket nlme dan nlmeODE dapat dijadikan
sebagai salah satu alternatif perangkat lunak sumber
terbuka dalam pengembangan model farmakokinetika
dua kompartemen berbasis populasi.
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