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ABSTRACT  

 

A Tutorial of two-compartment extravascular population-based 

pharmacokinetics modeling was performed by differential equations and 

non-linear mixed effect model approach. First, three-level differential 

equations of two-compartment pharmacokinetics were generated. Then, 

covariate and non-covariate models were developed by nlmeODE and nlme 

packages installed in R. The best model was selected according to AIC, BIC, 

and LogLik value. A model without covariates model was selected as the 

best model. The selected model showed a goodness of fit with experimental 

dataset and residual plot of the model revealed that no violations of model 

assumtions.  In conclusion, nlme and nlmeODE is capable to generate an 

adequate predictive model of two-compartment population-based 

pharmacokinetics for extravascular route. 
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ABSTRAK 

 

 Sebuah tutorial farmakokinetika dua kompartemen ekstravaskuler berbasis populasi dilakukan 

dengan pendekatan persamaan diferensial dan model efek campuran non linear. Pertama, disusun 

persamaan diferensial tiga tingkat dari model dua kompartemen ekstravaskuler.Kemudian, 

dikembangkan model kovariat dan non-kovariat dengan paket nlmeODE dan nlme yang terpasang 

dalam perangkat lunak R. Model terbaik dipilih berdasarkan nilai AIC, BIC, dan LogLik. Sebuah 

model tanpa kovariat dipilih sebagai model terbaik. Model yang terpilih menunjukkan kesesuaian 

fungsi yang baik dengan data eksperimental dan plot residual model menunjukkan bahwa tidak 

terdapat satu pun asumsi yang dilanggar. Dengan demikian, dapat disimpulkan bahwa nlme dan 

nlmeODE mampu menghasilkan model prediktif farmakokinetika dua kompartemen berbasis populasi 

yang memadai untuk rute ekstravaskuler. 

 

Kata Kunci : Farmakokinetika berbasis populasi, Dua Kompartemen,  Persamaan differensial, nlme 

dan nlmeODE. 
 

 

PENDAHULUAN 

Farmakokinetika adalah ilmu yang 

mempelajari secara khusus perubahan jumlah obat 

dalam tubuh sebagai fungsi waktu (Jambhekar & 

Breen, 2012; Shargel et al, 2012). Dengan kata lain, 

dalam pokok bahasan farmakokinetika dilakukan 

kajian-kajian terhadap fenomena absorbsi, distribusi, 

dan eliminasi obat secara kuantitatif. Oleh karena itu, 

dalam penelitian-penelitian farmakokinetika 

dikembangkan berbagai macam model-model 

matematika untuk menjelaskan proses perjalanan 

obat di dalam tubuh. 

Salah satu pemodelan matematika yang 

paling umum digunakan untuk mengkaji profil 

farmakokinetika adalah model kompartementeral. 

Beberapa model farmakokinetika kompartementeral 

antara lain model kompartemen tunggal dan multi 

kompartemen telah dikenal secara luas. Diantara 

ketiga model kompartemen tersebut, model dua 

kompartemen mengalami perkembangan yang paling 

pesat yang ditunjukkan dengan peningkatan jumlah 

publikasi yang paling tinggi sejak tahun 1970 sampai 

2017 (Kovalchik, 2017; R Core Team, 2015). Oleh 

karena itu, pengetahuan yang lebih dalam mengenai 

model dua kompartemen diperlukan bagi seorang 

farmasis antara lain untuk melakukan pemodelan 

farmakokinetika maupun pengaturan dosis obat di 

bidang farmasi klinis. 

Beberapa model matematik untuk melakukan 

pemodelan farmakokinetika dua kompartemen telah 

dipublikasikan antara lain oleh Boxenbaum et al, 

(1974) dan Wagner (1975). Beberapa perangkat 

lunak juga telah dikembangkan untuk mempermudah 

proses kalkulasi parameter farmakokinetika antara 

lain dengan WinSAAM, R, dan PKSolver (Lee & 

Lee, 2017; Stefanovski et al, 2003; Tornøe et al, 

2004; Zhang et al, 2010).  

Meskipun demikian, dari paket-paket 

perangkat lunak yang telah dikembangkan, terutama 

perangkat lunak sumber terbuka, belum pernah 

dilakukan pembahasan secara komprehensif 

mengenai proses kalkulasi parameter 

farmakokinetika populasi untuk model dua 

kompartemen ekstravaskuler dengan persamaan 

diferensial. Padahal dengan memanfaatkan 

persamaan diferensial, dapat dikembangkan berbagai 

model farmakokinetika secara lebih leluasa, tanpa 

melakukan penyelesaian dengan teknik kalkulus 

integral. Di lain pihak, tren farmakokinetika saat ini 

telah mengalami pergeseran dari teknik 

farmakokinetika konvensional menuju ke 

farmakokinetika berbasis populasi, bahkan FDA 

(Food and Drug Administration) mewajibkan 

penggunaan farmakokinetika berbasis populasi dalam 

uji klinik fase 1 dan akhir fase 2b (FDA, 1999). Oleh 

karena itu, di dalam tulisan ini, dilakukan kajian yang 

berpusat pada penyelesaian persamaan diferensial 

untuk pemodelan farmakokinetika dua kompartemen 

berbasis populasi dengan perangkat lunak sumber 

terbuka yaitu R dengan paket nlme dan nlmeODE 

(Pinheiro & Bates, 2000; Tornøe et al., 2004). 

 

PEMODELAN DUA KOMPARTEMEN 

DENGAN PERSAMAAN DIFERENSIAL 

Obat-obat yang diberikan melalui rute injeksi 

intravena bolus dan mengikuti model dua 
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kompartemen tidak mengalami proses absorpsi 

melainkan masuk secara langsung ke dalam sirkulasi 

sistemik. Selanjutnya, obat akan mengalami proses 

eliminasi dan distribusi secara bersamaan. Pada fase 

distribusi, terjadi proses perpindahan obat dari 

kompartemen pertama yaitu sirkulasi sistemik 

menuju ke kompartemen kedua atau jaringan. Pada 

tahap ini proses distribusi lebih dominan 

dibandingkan dengan eliminasi yang mengakibatkan 

terjadinya pembelokan kurva profil farmakokinetika 

pada fase distribusi (Gambar 1 intravena A). Ketika 

obat memasuki fase eliminasi (Gambar 1 intravena 

B), obat telah mencapai kesetimbangan dengan 

kompartemen kedua (jaringan) sehingga proses 

eliminasi menjadi lebih dominan dibandingkan 

distribusi, bahkan kecepatan distribusi sudah dapat 

diabaikan. Oleh karena itu, pada fase eliminasi 

nampak bahwa titik-titik data membentuk suatu garis 

lurus menurun pada kertas semilog yang menandakan 

bahwa proses tersebut hanya dipengaruhi oleh proses 

eliminasi obat yang mengikuti kinetika orde pertama. 

Kinetika perjalanan obat dalam tubuh pada 

obat-obat yang diberikan secara intravena bolus 

dengan model dua kompartemen dapat disusun 

berdasarkan ilustrasi pada Gambar 2A. Apabila 

perpindahan antar kompartemen dianggap mengikuti 

kinetika orde pertama dan tanda positif atau negatif 

secara berurutan menggambarkan perjalanan obat 

masuk dan keluar dari masing-masing kompartemen, 

maka  dapat dituliskan seperangkat persamaan 

diferensial untuk menggambarkan farmakokinetika 

dua kompartemen pada pemberian obat secara 

intravena bolus seperti yang dituliskan pada 

persamaan (1) dan (2). 

 

 

 
Gambar 1. Ilustrasi profil farmakokinetika dua 

kompartemen pada rute intravena dan ekstravaskuler pada 

kertas semilog. A = fase eliminasi, B = fase distribusi, C = 

fase absorpsi 
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Gambar 2. Ilustrasi model dua kompartemen intravena 

bolus (A) dan ekstravaskuler (B). 

 
 𝑑1ܥ𝑑ݐ = 2ܥ21݇ − 1ܥ12݇ −  (1) 1ܥ10݇

 𝑑2ܥ𝑑ݐ = 1ܥ12݇ −  (2) 2ܥ21݇

 

Di mana 
𝑑1ܥ𝑑ݐ  adalah laju perubahan konsentrasi obat 

dalam sirkulasi sistemik tiap satuan waktu 

(mg/L
/
jam), ݇21  adalah konstanta kecepatan 

perpindahan obat dari kompartemen pertama 

(sirkulasi sistemik) menuju ke kompartemen kedua 

atau jaringan (1/jam) atau setara dengan jumlah obat 

dibagi dengan volume distribusi pada kompartemen 

sentral (ܦ  konsentrasi obat dalam 2ܥ  ,( 1ܸ

kompartemen kedua (mg/L), ݇12  adalah konstanta 

kecepatan perpindahan obat dari kompartemen kedua 

menuju ke kompartemen pertama, 1ܥ adalah 

konsentrasi obat dalam kompartemen pertama 

(mg/L), ݇10  adalah konstanta kecepatan eliminasi 

obat (1/jam) atau sama dengan hasil kali antara 

bersihan ginjal dengan volume distribusi pada 

kompartemen sentral (ܮܥ × 1ܸ).  

Dengan cara yang sama, dapat diturunkan 

persamaan diferensial untuk model farmakokinetika 

dua kompartemen ekstravaskular. Perbedaannya yaitu 

di dalam model ekstravaskular, perlu ditambahkan 



Notario/Jurnal Farmasi Galenika (Galenica Journal of Pharmacy) 2018; 4 (1): 26-35 

 
29 

parameter-parameter dalam proses absorpsi dari 

tempat pemberian menuju ke sirkulasi sistemik. Oleh 

karena itu, persamaan diferensial yang disusun 

menjadi sedikit berbeda yaitu: 

 

 𝑑ܣܶܦ𝑑ݐ =  (3) ܣܶܦܽ݇− 

 𝑑1ܥ𝑑ݐ  = 1ܥ10݇−   − 1ܥ12݇  + 2ܥ21݇ 

+ 
ݎܨ ܣܶܦܽ݇ 

1ܸ

 

(4) 

 𝑑2ܥ𝑑ݐ  = 2ܥ21݇−   +  (5) 1ܥ12݇ 

 

Di mana 
𝑑ܣܶܦ𝑑ݐ  adalah laju perubahan konsentrasi obat 

di dalam tempat absorpsi (mg/jam), ݇ܽ  adalah 

konstanta kecepatan absorpsi (1/jam), ܣܶܦ  adalah 

jumlah obat yang tersedia dalam tempat absorpsi 

pada waktu ݐ (mg), ݎܨ  adalah fraksi obat yang 

terabsorpsi ke dalam sirkulasi sistemik yang dapat 

diperoleh dari perbandingan antara luas daerah di 

bawah kurva profil farmakokinetika ekstravaskular 

dan intravena (tidak berdimensi atau dinyatakan 

dalam %), 1ܸ adalah volume distribusi pada 

kompartemen pertama atau sirkulasi sistemik (L). 

Konstanta-konstanta yang menggambarkan kecepatan 

perpindahan obat dari satu kompartemen dari 

kompartemen yang lain ini disebut dengan konstanta 

mikroskopik.  

Persamaan diferensial (1)  ̶   (5) sangat 

penting untuk memahami simulasi dan pemodelan 

farmakokinetika. Dengan menggunakan persamaan 

diferensial yang diprogram dalam perangkat lunak 

dapat dilakukan simulasi profil farmakokinetika 

sehingga peneliti maupun praktisi klinis dapat 

merancang percobaan untuk subjek uji atau 

pengaturan dosis terapetik kepada pasien dengan 

paket deSolve (Soetaert et al, 2010). Namun 

pembahasan terkait simulasi farmakokinetik berada 

di luar ruang lingkup tulisan ini. Selain itu, tersedia 

pula paket-paket program yang mampu digunakan 

untuk melakukan pencocokan kurva (curve fitting) 

hasil simulasi dengan data percobaan untuk 

menentukan parameter-parameter farmakokinetika 

konvensional berdasarkan persamaan diferensial 

seperti WinSAAM atau Pkfit (Lee & Lee, 2017; 

Stefanovski et al, 2003).  

 

 

 

PEMODELAN FARMAKOKINETIKA 

BERBASIS POPULASI 

Farmakokinetika populasi adalah studi 

farmakokinetika pada tingkatan populasi. Pemodelan 

farmakokinetik berbasis populasi dapat dilakukan 

dengan dua cara yaitu melakukan kalkulasi parameter 

farmakokinetik dengan menggunakan data kombinasi 

dari semua individu, menghilangkan perbedaan 

individual (pendekatan naif terkelompok) atau 

dengan melakukan kalkulasi parameter-parameter 

farmakokinetika individual secara terpisah kemudian 

mengkombinasikan parameter-parameter 

farmakokinetika dari masing-masing individu 

sehingga diperoleh parameter-parameter 

farmakokinetika rata-rata yang dijadikan sebagai 

parameter-parameter farmakokinetika populasi atau 

disebut pendekatan dua tahap (Mould & Upton, 

2012). 

Dalam proses analisis data pada studi 

farmakokinetika berbasis populasi, digunakan 

analisis pemodelan efek campuran. Pemodelan efek 

campuran pada dasarnya adalah analisis regresi baik 

linier atau non-linier yang melibatkan efek tetap dan 

acak. Baik efek tetap maupun acak adalah koefisien 

atau parameter regresi yang menggambarkan 

hubungan antara variabel bebas dan tergantung, 

hanya saja efek tetap memodelkan data dalam satu 

populasi dan bernilai tetap atau berubah sebagai 

fungsi kovariat, sedangkan efek acak 

merepresentasikan data dalam sub-kelompok 

sehingga mempunyai nilai yang bervariasi (Comets et 

al, 2017; Hamilton, 2013). Dalam konteks 

farmakokinetika, digunakan regresi non-linier untuk 

menggambarkan hubungan antara konsentrasi obat 

dalam plasma (variabel tergantung) dengan waktu 

setelah pemberian obat (variabel bebas) sedangkan 

yang dimaksud dengan efek tetap dan acak adalah 

parameter-parameter farmakokinetika itu sendiri 

yang meliputi namun tidak terbatas pada salah satu 

atau lebih dari: ݇10 , ݇ܽ , ݇12 , ݇21  dan 1ܸ ,ܮܥ ,

tergantung pada model kompartemen yang sesuai dan 

rute pemberian obat, sedangkan kovariat adalah 

variabel-variabel lain di luar model yang dapat 

berpengaruh terhadap koefisien regresi seperti umur, 

berat badan, atau gena(de Alwis et al, 1998; 

Drikvandi, 2017). 

Model efek campuran non-linier dalam studi 

farmakokinetika melibatkan efek tetap yang terkait 

dengan parameter-parameter populasi serta efek acak 

yang berasal dari variabilitas individu yang tidak 

dapat dijelaskan (Tornøe et al, 2004). Variabilitas 

intra-individual yang menggambarkan perbedaan 
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antara nilai terprediksi dan teramati (residual) pada 

suatu individu dapat dikalkulasi menggunakan 

persamaan (6) sebagai berikut: 

 

݆݅ݕ  = ݂ ∅݅ ݆݅ݔ,  + ݆߳݅  (6) 

 

Di mana i = 1, … , N;  j = 1, … , ni ; yij adalah respon 

ke-j untuk individu ke-i; ݂ ∙  adalah fungsi non-linier 

dari sebuah vektor parameter ∅ yang spesifik untuk 

masing-masing individu dan vektor prediktor xij ; N 

adalah jumlahindividu, dan niadalah jumlah 

pengukuran untuk individu ke-i; ݆߳݅  adalah kesalahan 

residual yang diasumsikan bersifat independen dan 

berupa variabel acak yang terdistribusi normal 

dengan rata-rata nol dan varian konstan sebesar σ2
. 

Selanjutnya, model yang dihasilkan 

menghubungkan parameter-parameter dari individu-

individu yang berbeda sebagai berikut: 

 

 ∅݅ = ߚ݆݅ܣ + ܾ݆݅݅ܤ  (7) 

 

Di mana ݆݅ܣ  dan ݆݅ܤ  adalah desain matriks untuk 

efek tetap vektor ߚ dan efek acak vektor ܾ݅  secara 

berurutan. Variasi inter-individu dimodelkan dengan 

efek acak vektor ܾ݅  yang terdiri dari sejumlah k 

variabel dengan rata-rata nol yang diasumsikan bebas 

dan memiliki sebaran yang dianggap sebagai 

distribusi normal multivariat dengan matriks varian-

kovarian ߰. Kesalahan residual ݆߳݅  dan ܾ݅  
diasumsikan bebas untuk semua i dan j. Parameter 

dalam model efek campuran seperti yang tertulis 

dalam persamaan (6) dan (7) dihitung dengan 

menggunakan metode maximum likelihood (ML) atau 

dengan metode restricted maximum likelihood 

(REML) berdasarkan densitas marjinal dari y. 

 

KALKULASI PARAMETER 

FARMAKOKINETIKA POPULASI PADA 

MODEL DUA KOMPARTEMEN 

EKSTRAVASKULAR 

 

Guna memberikan pemahaman yang lebih 

dalam tentang proses pemodelan farmakokinetika 

berbasis populasi dengan persamaan diferensial, 

berikut ini disajikan contoh kalkulasi parameter 

farmakokinetika efavirenz dengan menggunakan data 

sediaan referensi pada uji bioekivalensi yang 

dipublikasikan oleh (Ibarra et al, 2016). Parameter 

farmakokinetika dikalkulasi menggunakan 

pendekatan dua kompartemen dengan persamaan 

diferensial seperti pada persamaan (3), (4), dan (5) 

dan dikalkulasi menggunakan paket nlmeODE dan 

nlme (Tornøe et al, 2004). Sistematika proses 

kalkulasi parameter farmakokinetika efavirenz 

dengan model dua kompartemen pada tulisan ini 

dimulai dari penyiapan data, penulisan fungsi 

diferensial, pemodelan, pengembangan model, 

pemilihan model terbaik, dan validasi model terpilih. 

Sebelum diolah dengan paket nlmeODE dan 

nlme, data harus ditabulasikan dengan sistematika 

tertentu agar dapat diproses (lihat contoh pada 

Gambar 3). Selanjutnya, data yang telah disiapkan 

dalam program spreadsheet dapat disimpan dalam 

bentuk csv, txt, atau xlsx kemudian di-import ke 

dalam R. Data yang masuk selanjutnya diubah 

menjadi data kelompok dengan perintah sebagai 

berikut: 

 
> library(nlme) 
> library(nlmeODE) 
> data.a <- groupedData(conc ~ Time | 
Subject,+ data = as.data.frame(efavirenz)) 
> data.a$Dose[data.a$Time!=0] <- 0 
> data.a$Cmt <- rep(1,dim(data.a)[1]) 
> par(mar=c(4,4,1,1)) 
>plot(data.a, ylab='Konsentrasi dalam 
plasma (mg/L)', xlab = "Waktu setelah 
pemberian obat (jam)") 

 

 
Gambar 3. Contoh format pemasukan data dengan MS 

Excel 

 

Dengan demikian, diperoleh data terkelompok yang 

sudah siap dianalisis seperti yang terlihat pada 

Gambar 4. 

 

Gambar 4. Plot data farmakokinetika efavirenz 

terkelompok 
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 Setelah data siap untuk diproses, dilakukan 

pemodelan awal menggunakan fungsi diferensial 

yang diturunkan dari persamaan (3) – (5). Hanya 

saja, parameter ݎܨ  tidak diikutsertakan dalam 

perhitungan karena membutuhkan data intravena. 

Dalam pemodelan ini digunakan teknik pencocokan 

kurva,  sehingga diperlukan parameter awal untuk 

melakukan perhitungan yang dituliskan dengan 

perintah start=c() seperti tertulis di bawah. 

Parameter awal ini sangat menentukan kebaikan hasil 

prediksi, semakin dekat parameter awal dengan 

parameter yang sesungguhnya maka proses kalkulasi 

akan semakin baik. Untuk mendapatkan parameter 

awal yang tepat seringkali perlu dilakukan beberapa 

kali trial and error. 

> twoComp <- list(DiffEq=list(                
+   dTAdt = ~ -ka*TA,      
+   dD1dt = ~ ka*TA-k10*D1-k12*D1+k21*D2, 
+   dD2dt = ~ k12*D1-k21*D2), 
+   ObsEq=list(                 
+     TA = ~ 0, 
+     C1 = ~ D1/V1, 
+     C2 = ~ 0), 
+  Parms=c("ka","k10", "k12", "k21", "V1"),    
+   States=c("TA","D1","D2"),        
+   Init=list(0,0,0)) 

> a.model <- nlmeODE(twoComp, data.a, 
LogParms = T) 
> a.nlme <- nlme(conc ~ a.model(ka, k10, 
k12, k21, V1, Time, Subject), 
+ data = data.a, fixed=ka+k10+k12+k21+V1~1, 
random = pdDiag(ka+k10+k12+k21+V1~1),  
+ start=c(ka = -0.8, k10 = -3.0, k12 = -
0.5, k21 = -2.5, V1=3.5), 
+             
control=list(returnObject=TRUE,msVerbose=TR
UE),+ verbose=TRUE) 

 

Setelah pemodelan awal berhasil, dilakukan 

pemilihan model terbaik yang dilakukan dengan 

mengembangkan beberapa model yang mungkin 

yaitu mengurangi jumlah efek acak serta 

menambahkan kovariat seperti umur, berat badan, 

dan status merokok satu per satu secara bertahap 

(stepwise). Dari beberapa kemungkinan tersebut, 

dikembangkan beberapa model baik dengan kovariat 

maupun tanpa kovariat kemudian dilakukan analisis 

varian untuk mengetahui model yang terbaik. Model 

yang baik memiliki nilai Akaike Information 

Criterion (AIC) dan Bayesian Information Criterion 

(BIC) terendah serta log-likelihood  (LogLik) yang 

paling tinggi. Selain itu, model yang sederhana (tidak 

terlalu banyak mengandung efek acak atau kovariat) 

lebih disukai. Beberapa model alternatf dapat 

dikembangkan sebagai berikut: 

 
 
#Mengurangi jumlah efek acak 
 
>a1.nlme <- update(a.nlme, random = 
pdDiag(ka+k12~1)) 
>a2.nlme <- update(a1.nlme, random = 
pdDiag(ka~1)) 
 
#Apabila kovariat berat badan dicurigai 
berpengaruh terhadap V1 
 

> a3.nlme <- update(a1.nlme, fixed = 

list(ka+k12+k21+k10~1, V1~Wt),  start = 

c(ka = -0.5, k10 =0.2,  k12 = 1.5, k21 = -

2.5, v1=5, Wt = -0.1)) 
 
#Apabila kovariat umur dicurigai 
berpengaruh terhadap k10 
 

a4.nlme <- update(a1.nlme, fixed = 

list(ka+k12+k21+V1~1, k10~Age),  start = 

c(ka = 1.0, k10 =-3.0,  k12 = -1.5, k21 = -

2.5, v1=10, Age = -0.01)) 
 

Untuk menguji kebaikan fungsi dari model-model 

yang telah dikembangkan, dilakukan analisis varian 

sebagai berikut : 

 
> anova(a.nlme, a1.nlme, a2.nlme, a3.nlme, 
a4.nlme) 

 

Berdasarkan hasil analisis varian dari model-model 

yang telah dikembangkan (data tidak ditampilkan), 

dapat diketahui bahwa model a.nlme dan a1.nlme 

tidak berbeda signifikan. Kedua model ini 

menghasilkan nilai LogLik paling tinggi serta AIC 

dan BIC paling rendah, namun model a1.nlme lebih 

sederhana dengan jumlah efek acak lebih kecil. 

Dengan demikian, model a1.nlme dipilih sebagai 

model terbaik untuk menggambarkan 

farmakokinetika efavirenz pada 14 subjek uji. 

Selanjutnya, dilakukan validasi terhadap model 

terpilih yang meliputi uji kesesuaian fungsi dan uji 

asumsi residual. 

Kesesuaian fungsi suatu model 

farmakokinetika berbasis populasi dapat dinilai 

berdasarkan analisis hubungan antara kedekatan 

nilai-nilai terprediksi dengan data eksperimental yang 

dapat diamati dengan grafik prediksi yang diperluas 

dan plot hasil prediksi vs observasi. Semakin dekat 

nilai terprediksi dengan data eksperimental, semakin 

baik kekuatan prediksi dari model yang 

dikembangkan. Selain itu, ada beberapa asumsi yang 

harus terpenuhi, antara lain residual yang 

ternormalisasi bersifat independen dan terdistribusi 
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normal dengan rata-rata nol dan varian sebesar σ2
. 

Selain itu, efek acak harus terdistribsusi normal 

dengan rata-rata nol dan matriks kovarian sebesar ψ 
serta tidak tergantung pada kesalahan residual 

(Tornøe et al, 2004). 

Grafik prediksi yang diperluas, dapat 

diperoleh dengan perintah plot(augPred())yang 

akan menampilkan plot antara data eksperimental 

dengan nilai prediksi individu (subject) dan populasi 

(fixed). Di lain pihak, untuk memperoleh plot 

konsentrasi hasil prediksi dan yang teramati dapat 

digunakan perintah plot(). Dalam model 

farmakokinetika efavirenz yang telah dikalkulasi, 

nampak bahwa terdapat kesesuaian fungsi yang baik 

antara model dengan data eksperimental yang 

ditunjukkan dengan kedekatan antara data-data 

ekperimental dengan nilai-nilai terprediksi (Gambar 5 

dan Gambar 6). 
 
>plot(augPred(a1.nlme,level=0:1), 
xlab="Waktu setelah pemberian (jam)", 
ylab="Konsentrasi dalam plasma (mg/L)") 
> plot(a1.nlme, conc~fitted(.,0), abline = 
c(0,1), xlab='Konsentrasi terprediksi', 
ylab='Konsentrasi teramati', 
main='Populasi') 
> plot(a1.nlme, conc~fitted(.,1), abline = 
c(0,1), xlab='Konsentrasi terprediksi', 
ylab='Konsentrasi teramati', main = 
"individu") 
 

Selanjutnya, dalam uji diagnostik residual 

dapat diketahui bahwa residual yang ternormalisasi 

bersifat independen yang ditunjukkan dengan pola 

sebaran yang tidak membentuk suatu pola tertentu 

(Gambar 7) yang dikuatkan dengan plot ACF pada 

Gambar 8 C yang menunjukkan bahwa tidak terdapat 

autokorelasi yang signifikan pada taraf kepercayaan 

95% (setelah lag 2, semua nilai autokorelasi berada di 

bawah taraf kepercayaan yang digambarkan dengan 

garis putus-putus). Selain itu, residual yang 

terstandardisasi mengikuti pola distribusi normal dan 

memiliki varian tetap yang ditunjukkan dengan plot 

kuantil normal terstandard vs residual terstandard 

berbentuk “S” (Gambar 8 A) dan terdistribusi secara 

simetris di sekitar nol serta mempunyai varian tetap 

(Gambar 8C). Di lain pihak, plot kuantil normal 

terstandard vs efek acak menunjukkan pola yang 

menyerupai normal (Gambar 9). Dengan demikian, 

dapat disimpulkan bahwa tidak ditemukan 

pelanggaran asumsi yang cukup berarti pada model 

yang dipilih.   

Nilai parameter efek tetap dan efek acak 

dapat diperoleh dengan perintah 

summary(a1.nlme)dancoef(a1.nlme,augFram

e=T) secara berurutan. Meskipun demikian, perlu 

diperhatikan bahwa koefisien yang diperoleh berada 

dalam skala logarima natural. Untuk mengubah skala 

logaritma natural menjadi bilangan numerus, dapat 

dilakukan transformasi eksponensial dengan perintah 

exp(). Secara ringkas, parameter farmakokinetika 

efavirenz hasil kalkulasi dapat ditabulasikan pada 

Tabel 1. 

 
Gambar 5. Plot kesesuaian fungsi antara parameter 

populasi dan individu dengan data eksperimental 

Tabel 1. Hasil Perhitungan Parameter 

Farmakokinetika Efavirenz dengan paket nlme dan 

nlmeODE 

Subjek ݇ܽ  ݇10  ݇12  ݇21  1ܸ (L) 

1 0,169 0,034 0,592 0,051 56027,7 

2 0,386 0,034 0,642 0,051 56027,7 

3 0,231 0,034 0,596 0,051 56027,7 

4 0,524 0,034 0,647 0,051 56027,7 

5 0,436 0,034 0,677 0,051 56027,7 

6 0,793 0,034 0,547 0,051 56027,7 

7 0,665 0,034 0,649 0,051 56027,7 

8 0,756 0,034 0,767 0,051 56027,7 

9 0,247 0,034 0,510 0,051 56027,7 

10 0,442 0,034 0,466 0,051 56027,7 

11 0,899 0,034 0,536 0,051 56027,7 

12 0,312 0,034 0,318 0,051 56027,7 

13 1,021 0,034 0,608 0,051 56027,7 

14 0,343 0,034 0,384 0,051 56027,7 

Keterangan: ݇10 (1/jam), ݇21 (1/jam), 1ܸ(L) merupakan 

efek tetap sehingga bernilai konstan untuk seluruh individu 

sedangkan ݇ܽ(1/jam) dan ݇12(1/jam) merupakan efek acak 

yang bervariasi antar individu. 
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Apabila dibandingkan dengan paket 

saemix(Comets et al, 2017) yang menggunakan 

algoritma SAEM (Stochastic Approximation 

Expectation Maximization) seperti yang digunakan 

dalam Monolix (Chan et al, 2011), teknik pemodelan 

dengan persamaan diferensial pada paket nlme dan 

nlmeODE mempunyai keunggulan karena tidak 

diperlukan penyelesaian persamaan diferensial 

dengan kalkulus integral oleh pengguna. Hal ini 

membuat pengguna mampu mengembangkan 

pemodelan-pemodelan yang cukup rumit dengan cara 

yang lebih mudah. Keunggulan lain adalah, nlme dan 

nlmeODE mampu mengkalkulasi semua konstanta 

mikroskopik secara langsung sedangkan dalam 

saemix beberapa konstanta mikroskopik seperti ݇10  

dan ݇12  tidak dapat dikalkulasi secara langsung, 

tetapi diturunkan dari konstanta makro1ߣ dan 1ߣ(Wijnand, 1988). Meskipun demikian, salah satu 

kelemahan nlme dan nlmeODE dibanding saemix 

yaitu semakin banyak parameter yang dikalkulasi, 

semakin banyak pula jumlah data yang 

dipersyaratkan. Selain itu, paket nlme dan nlmeODE 

ini tidak mampu melakukan analisis multi-kovariat 

sebaik saemix dan  tidak dapat menampilkan grafik 

visual predictive check. 

 

 
Gambar 6. Diagram pencar antara konsentrasi hasil 

prediksi dan konsentrasi yang teramati (mg/L) pada 

parameter farmakokinetika populasi dan individu 
 

> plot(a1.nlme, resid(.,0,type = 
'n')~fitted(.,1),id = 0.05, abline = 0, 
xlab="Konsentrasi terprediksi", 
ylab="Residual terstandard", 
main='Populasi') 
> plot(a1.nlme, resid(.,1,type = 
'n')~fitted(.,1),id = 0.05, abline = 0, 
xlab="Konsentrasi terprediksi", 
ylab="Residual terstandard", main = 
"Individu") 

 

 

 
Gambar 7. Diagram pencar antara konsentrasi terprediksi 

(mg/L) dengan residual terstandardisasi pada pemodelan 

farmakokinetika populasi dan individu 
 

> qqnorm(a1.nlme, ~resid(.,1,type = 'n'), 
id = 0.05, xlab='Residual terstandard', 
ylab='Kuantil normal standard') 
> plot(a1.nlme, Subject~resid(.,1,type = 
'n'), abline = 0, xlab='Residual 
terstandard', ylab='Subjek') 

> plot(ACF(a1.nlme), alpha = 0.05, 
ylab='Autokorelasi') 
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Gambar 8. Uji asumsi normalitas dan autokorelasi residual 

> qqnorm(a1.nlme, ~ranef(.), xlab= "Efek 
acak", ylab='Kuantil normal standard') 
 

 
Gambar 9. Uji asumsi normalitas efek acak 

KESIMPULAN 

Pemodelan farmakokinetika berbasis 

populasi untuk rute ekstravaskuler dengan model dua 

kompartemen dapat dilakukan dengan baik 

menggunakan paket nlme dan nlmeODE yang dibuat 

berdasarkan pada persamaan diferensial. Dengan 

demikian, paket nlme dan nlmeODE dapat dijadikan 

sebagai salah satu alternatif perangkat lunak sumber 

terbuka dalam pengembangan model farmakokinetika 

dua kompartemen berbasis populasi. 
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