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AbstractSafe drinking water is more than a convenience; public health officials often call it a cornerstone of survival. United NationsInternational Children’s Emergency Fund (UNICEF) reported that, shockingly, roughly two billion people still drink water that is neitherclean nor tested. Pathogenic bacteria from human feces and livestock waste taint roughly 70% of available sources, creating a silentepidemic. Scientists express water quality into five levels: poor, marginal, fair, good, and excellent – named as the Water QualityIndex (WQI) designed by the Canadian Council of Ministers of the Environment (CCME). This research measured the performance ofthree decision-tree classifiers, including Random Forest, XGBoost, and C5.0 to predict water quality. The preprocessing pipeline wasthorough, involving label encoding, use of synthetic minor over-sampling technique (SMOTE) for balancing imbalanced classes, andan exploratory phase to examine outliers and irregularities within the dataset. According to the findings, Random Forest finished atan impressive test result with 98% of accuracy. XGBoost and C5.0 follows close behind at about 96%, but the latter turned out to bethe fastest, edging out both XGBoost and Random Forest, making C5.0 a preferable when a time-sensitive or emergency decision isneeded. In short, this research highlights the importance of modern preprocessing tools combined with machine learning algorithmsin monitoring water quality.
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1. INTRODUCTION

Access to clean water and reliable sewage disposal ranks among
the oldest yet most urgent of human rights, especially in densely
populated settings (Filho et al., 2022) . The sixth Sustainable
Development Goal (SDGs) codifies that expectation by requir-
ing that both services be available and managed in an environ-
mentally sustainable manner (Pradhan et al., 2017) . In practice,
however, the availability of such services falls far short. United
Nations Children’s Fund (UNICEF) data lays bare the shortfall:
roughly 2.2 billion people still drink unprocessed water, 4.2
billion rely on sanitation facilities that fail basic safety tests, and
3 billion households lack a simple place to wash their hands
with soap. The sheer numbers spell out an urgent maintenance
and upgrade task for pipes, latrines, and hygiene stations across
continents (UNICEF, 2019) . Experts warn that a 70 percent
decline in water quality worldwide has been driven chiefly by
fecal contamination, with pathogens such as E. coli, Shigella
sp., Vibrio cholerae, and Salmonella in the mix. Most observers
agree that rising population density puts the heaviest strain

on these fragile systems, with automatic knock-on effects for
public health. Outbreaks and chronic illness are not accidental-
they follow directly from this mismatch between growth and
infrastructure (Holcomb and Stewart, 2020) .

Over the past decade, researchers have increasingly turned
to machine-learning to tackle environmental challenges such as
water management-issues once thought impossible because of
data scarcity and analytical limitations. A machine-learning sys-
tem can be understood as a type of computer program that ex-
ecutes tasks autonomously after ingesting and processing large
amounts of historical data via statistical models. Typically, the
accuracy of its forecasts improves with continued access to new
information. At the core of the process, data mining extracts
relevant information from a multitude of databases, providing
the critical insights for the next actions to be undertaken (Shen,
2018; Yuan et al., 2020) .

Machine learning is appearing in environmental manage-
ment at almost every stage of fieldwork today. Recent studies
show the method being used for climate modelling (Eyring
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et al., 2024) , for real-time checks of water quality (Zhu et al.,
2022) , even for the early spotting of urban pollution (Xu et al.,
2022) . By integrating machine learning, organizations can im-
prove their proactive responses to environmental challenges,
leading to the development of sustainable solutions and data-
driven decision-making practices. In practice the result usually
firms up analytical workflows while steering policy toward more
robust and sustainable outcomes (Rolnick et al., 2022; Pansara
et al., 2024) .

There has been a number of works in this sphere of research.
In the year 2022, Nasir et al. (2022) managed to classify the wa-
ter quality by employing multiple algorithms, where CATBoost
performed the best with an accuracy of above 94.5%. Other
studies more recently tried to model water quality parameters
prediction through the use of KNN, Naive Bayes, CatBoost,
ID3 and Random Forest. Unfortunately, their accuracies are
still around 90% as well (Ilić et al., 2022; Yogeshwari et al.,
2023; Mutoffar et al., 2022) .

The current investigation analyzes water quality data using
three decision tree algorithms, Random Forest Classifiers, Ex-
treme Gradient Boosting (XGBoost), and C5.0. Unlike most
previous studies, this research tries to incorporate several pre-
processing techniques at the dataset’s initial stage. Some pre-
processing steps include the removal of some non-useful data
attributes and creating a new attribute called Quality, which
is a subset of the overall water quality index value. Besides,
EDA is conducted with the help of descriptive statistics and
visual tools, enabling the examination of data structure and
patterns to measure maximum insights and identify outliers
and anomalies. The study also applies SMOTE because of the
class imbalance in the dataset. The differences in data splitting
and classification have been achieved through two techniques;
hold-out method and stratified k-fold cross-validation with the
aim of determining the performance of the algorithms under
each technique. This method ensures that sufficient analysis
is conducted and enhances the reliability of the classification
results.

2. EXPERIMENTAL SECTION

The research proceeds through a sequenced series of stages,
each designed to scrutinize how decision-tree algorithms per-
form under various conditions. A preliminary literature survey
offers a doctrinal grounding and identifies gaps that the present
work intends to fill. Once the theoretical framework is in place,
a dataset is gathered from publicly accessible repositories.

Data cleaning and feature engineering then take center
stage, as missing values are imputed, outliers trimmed, and
categorical variables are encoded in order to produce a tidy and
coherent dataset. After preprocessing, the data are partitioned
in two distinct ways: a simple hold-out split for baseline checks
and a stratified k-fold arrangement that ensures balanced class
representation in every fold. Building the models follows the
splits; with three decision-tree variants including Random For-
est, XGBoost, and C5.0 are fitted and tuned on the training
subsets.

Model performance is gauged using the classical confusion-
matrix and further distilled into singular numbers such as ac-
curacy, precision, and recall. Side-by-side comparisons reveal
where each variant excels or falters. Figure 1 diagrams the en-
tire pipeline from acquisition through evaluation and visually
reinforces the step-wise logic of this study.

Figure 1. Research Workflow

2.1 Data Collection
This research utilized a dataset acquired from Kaggle
(https://www.kaggle.com/datasets/hailla/wqi-paramet\
er-scores-1994-2013) provided in CSV format, consisting
of 13 attributes and a total of 971 instances. The data was
collected by the Washington State Department of Ecology’s
River and Stream Monitoring Program, covering 62 rivers and
streams in the United States from 1995 to 2014.

2.2 Data Preprocessing
Before diving into data mining, it is paramount that data un-
dergoes precursory processing, where information is extracted
and transformed into a comprehensible format suitable for
analysis (Garcia et al., 2015) . By addressing missing values and
discrepancies, this process improves data quality and sets the
stage for more precise and thorough data analysis (García et al.,
2016) .
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2.2.1 Drop Unnecessary Attributes
Successful data mining tasks are fundamentally determined by
careful attribute selection. Removing those that do not con-
tribute improves quality by trimming away noise and clutter.
This helps maximize model performance by reducing noise,
prevention of overfitting and increasing accuracy. In compari-
son with attributes selection, these actions add structural sinew
to each attribute so that the data sanity (quality, reliability, and
consistency) is improved. During this phase, the following 6
attributes were dropped: station, station name, year, address,
plus code, and location1. The remaining features are carried
forward to the next phase, as Table 1 shows the information of
each attribute.

2.2.2 Rename Attributes
Certain features have been adjusted to enhance clarity and
eliminate any potential ambiguity. Renaming the columns
improve their interpretability allowing them to be used directly
in subsequent stages of the analysis without needing further
explanation.

2.2.3 New Columns (Labelling)
In this study, the water quality index is based on the Cana-
dian Council of Ministers of the Environment (CCME) Water
Quality Index (WQI). The calculated WQI values were then
classified into categories under the "Quality" attribute. The
range of categories for CCME WQI is shown in Table 2 (Gikas
et al., 2020) .

2.2.4 Exploratory Data Analysis (EDA)
Exploratory Data Analysis (EDA) provides a systematic ap-
proach for revealing hidden structures, correlations, and irreg-
ularities within a dataset. Anomalies, such as stray outliers,
frequently emerge during this inspection and serve as early
warning signals for possible data-quality troubles. EDA also
probes the interdependence of variables and sketches the over-
all shape of the dataset long before any formal modelling takes
place. Its toolkit is eclectic, combining summary statistics, his-
tograms, scatter plots, and correlation matrices to visualize
how values are distributed and how they vary across different
columns of the table. Intuitive graphics serve a second purpose:
they nudge researchers toward fresh questions that might merit
further study (Majumder et al., 2022; Komorowski et al., 2016) .
Sample outputs from this phase are collected in Figures 2 and
3 for closer examination.

Data visualizations presented in Figure 2 permit a prelimi-
nary examination of regional water quality and reveal several
pronounced fluctuations around the statistical mean. Dissolved
oxygen concentrations cluster around a moderate baseline, im-
plying the habitat remains broadly tenable for resident biota.
pH readings drift toward the alkaline end of the scale, a ten-
dency that hints at prospective chemical inputs capable of neu-
tralizing natural acidity. Trace-element matrices for nitrogen
and phosphorus show predominantly low values, yet isolated
spikes suggest episodic contributions from runoff linked to row-

crop fertilization or light-industrial discharge. The tempera-
ture distribution shows that many of the samples are warmer,
which might reflect seasonal changes or thermal pollution.

The correlation matrix displayed in Figure 3 reveals sev-
eral robust interrelationships among the water-quality vari-
ables. Most striking is the strong inverse association between
the composite measure of water quality and key pollutants-
fecal matter, sediment, nitrogen, phosphorus, and turbidity.
As concentrations of these contaminants increase, the overall
quality rating declines. Such declines are probably exacerbated
by agricultural runoff and episodic soil erosion that release
phosphorus and suspended particles simultaneously. A second,
much weaker relationship appears between temperature and
dissolved oxygen, implying that elevated temperatures may
impair oxygen availability for aquatic organisms. Collectively,
the data point to the necessity of vigilant monitoring and ac-
tive management of these parameters to restore and sustain
acceptable water quality.

2.2.5 Synthetic Minority Over-Sampling Technique
(SMOTE)

Rather than creating simple copies of existing examples, SMO
TE tackles the issue of class imbalance within datasets by for-
mulating new synthetic examples for the minority class. This
technique SMOTE employs increases the number of occur-
rences for the minority class, creating better balance among the
different classes, leading to improvement of model precision,
recall, and F1 measures for the minority class. Furthermore,
SMOTE alleviates overfitting, improving the generalization of
the model by biasing the classifier towards the minority class,
resulting in better performance on new data (Pradipta et al.,
2021) .

2.3 Data Splitting
2.3.1 Hold Out
Splitting a dataset can be accomplished through the hold-out
method, a practice that assigns separate portions for training
and testing (Ghazvini et al., 2014) . For the current investiga-
tion, 90% of the total observations (2115 samples) were re-
served for model development, while the remaining 10% (235
samples) were kept apart for final testing.

2.3.2 Stratified K-Fold Cross Validation (SKCV)
SKCV is one of the techniques for model validation that re-
quires partitioning data into training and testing sets. SKCV
also has folds like k-fold cross-validation, but every single fold
is class proportionate and therefore better than k-fold cross-
validation as it is class sensitive (Prusty et al., 2022) . A ten-block
(k = 10) design used in the present study, with 90% of samples
featured in every training run and 10% set aside for immediate
performance testing. Such an arrangement guarantees that
every subset reflects the complete class landscape, thereby fos-
tering evaluations that are more robust and widely applicable.

© 2025 The Authors. Page 1001 of 1011
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Table 1. Information of Selected Attributes

Attribute Name Information

WQI FC
Fecal Index. Fecal are organisms that originate from the digestive tract and waste of humans and

animals.

WQI Oxy
Oxygen Index. The amount of oxygen dissolved in water comes from photosynthesis and oxygen

diffusion from the air.

WQI pH
pH Index. pH is the degree of acidity of a solution. A pH value below 7 indicates the solution is acidic,

above 7 indicates the solution is alkaline, where a value of 7 is considered neutral.

WQI TSS
Total suspended sediment (TSS) Index. TSS is the total mass of solid particles floating in the soil,

without taking into account dissolved or sinking particles. TSS includes dust, soil, mud, organic debris
and particles suspended in water.

WQI Temp
Temperature Index. It is a measure of the hot or cold intensity of water, affecting the quality and the

sustainability of aquatic ecosystems.
WQI TPN Nitrogen Index. Nitrogen is a compound that comes from agricultural, industrial and domestic waste.

WQI TP
Phosphorus Index. Phosphorus is a compound that comes from agricultural fertilizer, domestic waste or

water flow from the surface.

WQI Turb
Turbidity Index. Turbidity is a measure of the extent to which solid particles are dispersed and

dissolved in water.

Figure 2. Numerical Feature Distribution of the Dataset

2.4 Classification with Decision Tree
2.4.1 Random Forest
Random Forest is a classification approach based on an ensem-
ble of several decision trees, each built from a sample of the

data. In this method, a random subset of attributes, denoted
as F, is chosen to determine how to split each node at a deci-
sion tree (Parmar et al., 2019) . With these features, Random
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Table 2. CCME WQI Categories

Category Range Quality
1 95 – 100 Excellent
2 80 – 94 Good
3 65 – 79 Fair
4 45 – 64 Marginal
5 0 – 44 Poor

Figure 3. Correlation Matrix

Table 3. Dataset Comparison After SMOTE

Class Before After
1 27 470
2 346 470
3 470 470
4 88 470
5 40 470

Total 971 2350

Forest has been shown to outperform other learning meth-
ods because it has lower error rates and higher classification
performance, as well as being able to work with large volume
of training data and even incomplete information (Primajaya
and Sari, 2018) . Nurdin et al. (2024) showed that Random
Forest Regression is better than Support Vector Regression
in predicting vehicle fuel consumption, while Fitriyana et al.
(2024) showed that Support Vector Machine is better at clas-
sifying Glycosylation in Lysine Protein Sequences compared
to Random Forest. The algorithm of Random Forest uses a
technique called bootstrap sampling, which involves creating
multiple datasets by randomly selecting samples from the origi-
nal dataset with replacement. Each decision tree in the forest is
trained on a different bootstrap sample. If the original dataset

has N samples, we generate a new bootstrap sample Sb of size
N by randomly selecting samples from the dataset, with re-
placement, as formulated in Equation 1, with xi ∈ Dataset with
replacement. This means some of the data points might ap-
pear multiple times in the same bootstrap sample, while others
might not appear at all.

Sb = {x1 , x2 , . . . , xN } (1)

This algorithm also employs the Gini index, defined in
Equation 2, which quantifies the impurity of a split with respect
to a population composition in a certain branch of the tree.
Because of its dependability and consistency with complex
datasets, this approach has become prevalent in areas such as
medical diagnosis, financial forecasting, and recommendation
system development (Dikananda et al., 2022) . Pi is a symbol
that shows the frequency probability of the i-th class in the
dataset, whereas C represents the number of classes. Gini index
measures the impurity of a node, and a lower value indicates
a more "pure" node, meaning it’s more likely to contain data
points from a single class. Therefore, choosing the feature with
the lowest Gini index for the root node (and subsequent nodes)
helps create a more reliable decision tree (Pavlov, 2000) .

Gini (S) = 1 −
c∑︁
i=1

(pi )2 (2)

In addition to using the Gini index, decision tree construc-
tion can also utilize entropy as a measure of attribute impurity.
Entropy quantifies the uncertainty within a dataset and helps
in determining how well an attribute can separate the data into
distinct classes. The entropy value can be calculated using
Equation 3, with S represents the set of datasets.

Entropy(S) = −
c∑︁
i=1

pi · log2 (pi ) (3)

Random Forest in classification tasks applies majority voting
in predicting the class label. If each tree in the forest predicts
a class, the final prediction is the class that appears the most
across all tree, as shown in Equation 4, withT is the number
of trees, and ŷi is the prediction of tree i.

ŷ = mode(ŷ1 , ŷ2 , . . . , ŷT ) (4)

Random Forest has a feature called Out-of-Bag (OOB)
error estimation, where for each training sample, the model
uses the trees that did not include that sample in their bootstrap
sample to test the prediction. This gives an unbiased estimate of
the model’s accuracy, without needing a separate validation set.
The formula is represented in Equation 5, where NOOB is the
number of out-of-bag samples, and I (yi ≠ ŷi ) is an indicator
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function that equals 1 if the true value yi is different from the
predicted value yi (Pavlov, 2000) .

OOBerror =
1

NOOB

∑︁
i∈OOB

I (yi ≠ ŷi ) (5)

2.4.2 XGBoost
XGBoost utilizes an ensemble approach, improving upon the
traditional gradient tree boosting algorithm. This increases
its effectiveness for large-scale machine learning tasks. XG-
Boost performs well at complex models because of advanced
features built into the system to enhance computing speed and
minimize overfitting (Chen and Guestrin, 2016) . Like most
machine learning systems, the first step for XGBoost is to define
an objective function. Mathematically, for multi-class classifica-
tion, the objective function is a combination of the loss function
and regularization. The training loss in this case is an error of
a prediction that is made and which has to be minimized. To
control overfitting, complexity of the model is also controlled
by a regularization term. As highlighted, XGBoost’s balance
of error minimization and complexity control helps it achieve
a level of robustness and generalization with its models. The
structure of this function is provided in detail in Equation 6,
where L(yi , ŷi ) = (yi − ŷi )2 is the loss function for multi-class,
Ω( fk) is the regularization term that penalizes tree complexity,
isT the total number of trees, and N is the number of training
samples (He, 2023) .

O( f ) =
N∑︁
i=1

L(yi , ŷi ) +
T∑︁
k=1

Ω( fk) (6)

The loss function used for multi-class classification is the
softmax loss, which generalizes the binary log loss to multiple
classes, as formulated in Equation 7, where K is the number
of classes, 𝟙(yi = k) is an indicator function that equals 1 if
the true class of the sample i is class k, and 0 otherwise, and
p̂ik = e fk (xi )∑K

j=1 e
fj (xi )

is the predicted probability for class k for sample

i, given the model output fk (xi ). The regularization term Ω( fk)
is designed to penalize overly complex trees. This term is
computed for each decision tree in the model as in Equation 8,
with 𝛾 controls the number of leaves in the tree and 𝜆 is the
L2 regularization term, which penalizes large weights (w j) in
the tree’s leaf nodes.

L(yi , ŷi ) = −
K∑︁
k=1

𝟙(yi = k) log p̂ik (7)

Ω( fk) = 𝛾T + 1
2
𝜆

T∑︁
j=1

w2j (8)

XGBoost refines predictions iteratively, incorporating new
information at each step, denoted as ŷ (t)i (XGBoost Developers,

2023) , as defined in Equation (9). The symbol ŷ (t)i represents
the prediction at the t-th iteration for the i-th data point, with
fk (xi ) denoting the predictor function produced by the k-th
model at the k-th iteration, and t as the total number of itera-
tions.

ŷ (t)i =

t∑︁
k=1

fk (xi ) = ŷ (t−1)i + ft (xi ) (9)

XGBoost also uses gradient boosting to minimize the loss
function, and it uses both the first-order gradient (g) and
second-order Hessian (h) to update the model in each iteration.
For multi-class classification, the calculations are extended to
handle each class. The gradient of the softmax loss function
with respect to the predicted value fk (xi ) for class k is denoted
in Equation 10, and the Hessian (second derivative) for class k
with respect to fk (xi ) is denoted in Equation 11.

gik =
𝜕L(yi , ŷi )
𝜕 fk (xi )

= p̂ik − 𝟙(yi = k) (10)

hik =
𝜕2L(yi , ŷi )
𝜕 fk (xi )2

= p̂ik (1 − p̂ik) (11)

At each node of the tree, XGBoost chooses the best feature
and split to minimize the objective function. This is done by
calculating the gain for each possible split. For a given split
in the decision tree, the gain is the reduction in the objective
function (the total loss) caused by splitting the data at that
node, as calculated in Equation 12, with GL and GR are the
gradients for the left and right child nodes and HL and HR are
the Hessians for the left and right child nodes (He, 2023) .

Gain =
1
2

(
(GL +GR)2
HL +HR + 𝜆

−
G2
L

HL + 𝜆
−

G2
R

HR + 𝜆

)
− 𝛾 (12)

After training all the trees, the final predictions for each class
are computed using the softmax function. If the final prediction
for each class k at iteration t is represented as f (t)k =

∑T
j=1 fk , j (x),

with fk , j (x) is the score from class k from the j-th tree, the
probability for class k is then given in Equation 13, where
p̂ik is the predicted probability for class k for sample i, and
the denominator is the sum of exponentials over all classes to
normalize the probabilities.

p̂ik =
e f

(t)
k∑K

k′=1 e
f (t)k′

(13)

The final class prediction for a given sample is the class with
the highest predicted probability, denoted as ŷi = argmaxk p̂ik.
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2.4.3 C5.0
The C5.0 algorithm is an enhancement to the classification ap-
proach of data mining of decision trees containing advanced fea-
tures like ID3 and C4.5 by Ross Quinlan (Pandya and Pandya,
2015) . C4.5 and C5.0 both calculated entropy and information
gain for the decision trees, but C5.0 has further enhancement
for selection of attributes by splitting nodes using the gain ratio.
This guarantees that the most informative attribute is at the
parent node, thereby increasing the accuracy and efficiency of
the decision tree (Myint and Tin, 2021) . The entropy calcula-
tion is similar as in other decision trees algorithms, such as the
entropy in Random Forest given in Equation 3. Information
gain measures how much entropy is reduced by splitting the
data based on a particular feature. The goal is to select the
feature that provides the largest reduction in uncertainty (en-
tropy). The information gain for an attribute A is calculated as
in Equation 14, with E(D) is the entropy for the entire dataset,
V alues(A) is the set of possible values for the attribute A, Dv
is the subset of D where attribute A has value v, and E(Dv) is
the entropy of the subset Dv.

IG (D, A) = E(D) −
∑︁

v∈V alues (A)

|Dv |
|D| E(Dv) (14)

The bias towards distinct valued attributes is shown by the
gain ratio, detailed in Equation 15, which makes C5.0 a very
tough and reliable system to use for various classification tasks.
Equation 15 shows the calculation of gain ratio for a feature A,
with IG (D, A) represents the information gain for attribute A
and E(A) represents the split information for attribute A. Split
Information is a measure of how much information is needed
to describe the possible splits of an attribute. It is used to avoid
bias toward attributes with many distinct values (which might
result in overfitting). The split information for an attribute
is the entropy of the split that the attribute creates when it
divides the dataset into distinct subsets, as defined in Equation
16 (Myint and Tin, 2021) .

GR(D, A) = IG (D, A)
E(A) (15)

E(A) = −
∑︁

v∈values (A)

|Dv |
|D | log2

(
|Dv |
|D |

)
(16)

The decision tree is built recursively by splitting the dataset
at each node based on the attribute that provides the high-
est gain ratio. The steps are as follows: (1) Calculate the en-
tropy of the dataset; (2) Compute the information gain for
each attribute and the gain ratio; (3) Split the data based on
the attribute with the highest gain ratio; and (4) Repeat the
process recursively on the resulting subsets until a stopping
criterion is met (e.g., maximum depth or minimum subset
size). After the tree is constructed, C5.0 applies a pruning step

to remove branches that do not contribute to improving the
model’s performance. The pruning process is typically post-
pruning, meaning it occurs after the full tree is constructed.
During pruning, C5.0 evaluates the error rate at each node,
and if pruning a node result in a lower error rate, the node is
removed.

2.5 Evaluation Metrics
This study evaluated the classification model using test data with
known actual values through a confusion matrix. A confusion
matrix is a tabular description of a classification process that
offers detailed insights thorough comparison of actual classifica-
tions and predicted classifications (Joloudari et al., 2020) . The
classical binary class confusion matrix (as illustrated in Table
4), consists of consists of Predicted and Actual value combina-
tions includes: True Positive (TP); True Negative (TN); False
Positive (FP); and False Negative (FN) (Theissler et al., 2022) .
In this context, TP indicates correct positive prediction, TN
indicates correct negative prediction, FP indicates incorrect
positive prediction, and FN indicates incorrect negative predic-
tion. Accuracy, precision, recall, and F1 score, which are key
performance indicators, can be derived using the confusion
matrix main components as shown in Equation 17 to Equa-
tion 20. Such metrics are critical for assessing overall model
effectiveness, error types, and steps toward enhanced model
accuracy and reliability.

Accuracy =
TP +TN

TP + FP + FN +TN (17)

Precision =
TP

TP + FP (18)

Recall =
TP

TP + FN (19)

F1 Score = 2 × Precision × Recall
Precision + Recall (20)

However, for a multiclass problem, the confusion matrix is
slightly extended, and metrics calculations are slightly modi-
fied to evaluate the performance of a multi-class classification
model. The illustration of a multi-class confusion matrix is
presented in Table 5, and the modified formulas are available
in Equation 21 to Equation 24, with MC refers to multiclass,
and Li indicates that the calculation is for the specific class Li
(Markoulidakis et al., 2021) .

MC_Accuracy =

∑C
i=1TPLi∑C

i=1
∑C
j=1 Li j

(21)

MC_PrecisionLi =
TPLi

TPLi + FPLi
(22)
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Table 4. Evaluation Result of Each Class Using Hold-Out

Class
Accuracy Precision Recall F1-Score

RF XGB C5.0 RF XGB C5.0 RF XGB C5.0 RF XGB C5.0
1 1.000 0.995 0.991 1.000 0.979 0.979 1.000 1.000 0.979 1.000 0.989 0.979
2 0.957 0.940 0.931 0.870 0.821 0.803 0.940 0.920 0.900 0.903 0.867 0.849
3 0.953 0.927 0.919 0.923 0.885 0.857 0.818 0.704 0.681 0.867 0.784 0.759
4 0.991 0.970 0.970 0.961 0.905 0.890 1.000 0.960 0.980 0.980 0.932 0.933
5 0.995 0.987 0.991 1.000 0.976 1.000 0.976 0.953 0.953 0.988 0.964 0.976

Table 5. Average Results with Hold Out

Method Accuracy Precision Recall F1-Score Runtime
Random
Forest

0.979 0.950 0.946 0.947 429.806 ms

XGBoost 0.964 0.913 0.907 0.907 315.998 ms
C5.0 0.960 0.906 0.898 0.899 62.28 ms

Table 6. Classical Binary Confusion Matrix

Predicted Positive Predicted Negative

Actual Positive TP FN
Actual Negative FP TN

Table 7. Multi-Class Confusion Matrix

Predicted\Actual Class 1 Class 2 · · · Class C

Class 1 TP1 FP1,2 · · · FP1,C
Class 2 FP2,1 TP2 · · · FP2,C
· · · · · · · · · · · · · · ·

Class C FPC ,1 FPC ,2 · · · TPC

MC_RecallLi =
TPLi

TPLi + FNLi
(23)

MC_F1ScoreLi = 2×
(MC_PrecisionLi ×MC_RecallLi )
(MC_PrecisionLi +MC_RecallLi )

(24)

3. RESULTS AND DISCUSSION

Classification tasks are executed using the Python program-
ming language. The evaluation is carried out in three phases,
each based on the data-splitting approach to ensure a compre-
hensive assessment of the model’s performance. However, the
parameters for each algorithm remained consistent across all
splitting approaches.

The Random Forest algorithm was configured with n_estim
ators = 100, meaning it builds 100 decision trees to make pre-

dictions. Each tree is trained independently on a random sam-
ple of the data, and the final decision is made by combining
the outputs of all trees through majority voting. To prevent
the trees from becoming overly complex and overfitting the
training data, the maximum depth of each tree was limited to
5. This depth restriction helps the model capture meaning-
ful patterns while maintaining its ability to generalize well to
unseen data.

For the XGBoost algorithm, the parameter n_estimators =
100 sets the total number of decision trees that the model will
build one after another. Each tree tries to fix the mistakes made
by the previous ones, helping the model improve step by step.
The learning_rate of 0.1 controls how much each new tree
affects the overall prediction. A smaller learning rate means the
model learns more slowly but often ends up generalizing better
to new data. To keep the trees simple and avoid overfitting,
max_depth is limited to 2, meaning each tree can only grow
to two levels deep. Additionally, the model uses subsample
= 0.8 and colsample_bytree = 0.8, which means that in each
training round, only 80% of the data and 80% of the features
are randomly selected. This randomness helps the model avoid
relying too much on any specific data or feature and makes it
more robust.

On the other hand, the C5.0 algorithm works a bit differ-
ently. Setting subset = True allows it to automatically pick the
most relevant subsets of features, making the model focus on
what really matters. By turning off winnow (setting it to False),
the model keeps all features during training instead of trying to
filter out less important ones. The confidence factor (CF = 0.1)
controls how aggressively the model prunes the decision tree-a
lower value means more pruning to keep the tree simpler and
reduce the risk of overfitting. With minCases = 10, the algo-
rithm only splits a node if it has at least ten data points, which
also helps keep the model from getting too complex. The train-
ing process is further improved by earlyStopping=True, which
stops training early if the model’s performance stops getting

© 2025 The Authors. Page 1006 of 1011



Shofiana et. al. Science and Technology Indonesia, 10 (2025) 999-1011

Table 8. Evaluation Result of Each Class Using SKCV

Class
Accuracy Precision Recall F1-Score

RF XGB C5.0 RF XGB C5.0 RF XGB C5.0 RF XGB C5.0
1 0.998 0.994 0.995 0.993 0.979 0.985 1.000 0.994 0.991 0.996 0.987 0.988
2 0.965 0.954 0.950 0.912 0.876 0.877 0.912 0.902 0.872 0.912 0.888 0.875
3 0.946 0.929 0.929 0.887 0.858 0.833 0.838 0.774 0.808 0.862 0.814 0.820
4 0.979 0.963 0.968 0.928 0.888 0.905 0.972 0.936 0.942 0.950 0.911 0.923
5 0.997 0.990 0.989 0.993 0.976 0.978 0.995 0.974 0.968 0.994 0.975 0.973

better. Like in XGBoost, the maximum depth of trees is set to
2 with maxDepth = 2 to keep the trees shallow. The boosting
process runs for 100 iterations (trials = 100) to gradually build
a stronger model. Other parameters like bands = 0, sample =
0, and fuzzyThreshold = False are left at default, meaning no
special sampling or fuzzy logic is applied.

Overall, these settings reflect a careful balance between
building a model that’s accurate but not too complicated. By
limiting tree depth, introducing randomness through sampling,
and applying pruning and early stopping, the models are de-
signed to generalize well without overfitting. Choosing these
parameters thoughtfully is key to creating effective and inter-
pretable machine learning models.

3.1 Evaluation Using the Hold-Out Method
In the initial experiment, the dataset is split using the hold-out
method, with 90% of the data allocated for training and 10%
for testing. Table 6 juxtaposes three classification methods-
Random Forest (RF), XGBoost (XGB), and C5.0 - presenting
their performance across all classes. The performance metrics
calculated for each class include accuracy, precision, recall, and
F1-score.

Table 6 shows that Random Forest (RF) performs well for
all of the metrics and classes throughout. For instance, in Class
1, Random Forest achieves astounding results, having received
an accuracy, precision, recall, and F1 score all equal to 1.000,
outperforming XGBoost and C5.0 for this class. XGBoost
and C5.0 also perform well but show slight variations in their
metrics.

Table 7 summarizes average performance outcomes for
three decision-tree variants, each evaluated through the stan-
dard hold-out scheme of 90:10. Random Forest (RF) tops
every available metric, yet its mean runtime of 429.806 mil-
liseconds reveals a significant computational burden. In con-
trast, the C5.0 algorithm, while lagging slightly behind on the
same measurements, completes its run in just 62.28 millisec-
onds and thus earns the title of fastest algorithm among them.
XGBoost, parked between the extremes of accuracy and speed,
surfaces as a reasonable, middle-ground alternative.

3.2 Evaluation Using the Stratified K-Fold Cross Validation
(SKVC) Method

In the next experiment, the dataset is split using SKCV with
k = 10. Table 8 displays the performance outcomes for the
three classification methods. Similar to the hold-out results, RF

consistently achieves slightly higher metrics results compared
to XGBoost and C5.0. Interestingly, the class with the highest
metrics for all algorithms is the one that was initially a minority
class before applying SMOTE (see Table 3), whereas Class 3,
which had no instances added after SMOTE, scores the lowest.
The recall metric for XGBoost in Class 3 is lower compared to
the other algorithms, indicating a higher rate of false negatives.
The lower recall for XGBoost suggests it is less reliable for
detecting all positive instances in Class 3, which could be due
to the characteristics of the data. Despite this, both XGBoost
and C5.0 also demonstrate competitive results overall.

The average performance results for three classification
methods-Random Forest (RF), XGBoost (XGB), and C5.0 -
are detailed in Table 9. In line with the hold-out results, Ran-
dom Forest demonstrates the highest performance across all
metrics. However, it has the longest runtime at 8584.102 mil-
liseconds, attributed to its nature of creating multiple trees.
XGBoost and C5.0 exhibit very similar performance metrics,
with both methods achieving an accuracy of 0.966. Precision
and recall are nearly identical for both. Despite this, XGBoost’s
runtime is significantly longer, at 4181.01 milliseconds, which
is more than twice that of C5.0’s 1771.632 milliseconds. This
makes C5.0 preferable over XGBoost in this particular experi-
ment, especially when computational efficiency is a priority.

3.3 Comparison of the Methods
Figure 4 shows the comparison of training and validation ac-
curacy for Random Forest, XGBoost, and C5.0 algorithms
using the SKCV method. The results indicate that the accuracy
values for training and validation are very close for all models,
which is a good sign. This means the models have learned well
from the training data without overfitting (too closely fitting the
training data) or underfitting (not learning enough). Training
accuracy reflects how well the model performs on the data it
was trained on, while validation accuracy indicates how well it
generalizes to new, unseen data during training. When these
two metrics are both high and similar, it typically means the
model is balanced and likely to perform well on new data. Con-
versely, a large gap with higher training accuracy can signal
overfitting, and low values for both may indicate underfitting.
Overall, the results in Figure 4 suggest that the models are
well-tuned and capable of delivering reliable predictions for
this dataset.

Figure 5 summarizes confusion-matrix results for three
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Table 9. Average Results with SKCV

Method Accuracy Precision Recall F1-Score Runtime
Random
Forest

0.977 0.943 0.943 0.943 8584.102 ms

XGBoost 0.966 0.915 0.916 0.915 4181.01 ms
C5.0 0.966 0.916 0.916 0.916 1771.632 ms

Figure 4. Comparison of Training and Validation Accuracy of
the Decision Tree Algorithms

popular decision-tree algorithms applied to the test set. Across
both the simple hold-out partition and the more exhaustive
stratified k-fold cross-validation, the Random Forest variant
regularly records the highest numbers. Accuracy values for
that method hover just under 0.98 in both settings. In the
same comparisons, precision, recall, and the combined F1
score remain reassuringly strong, signaling the model’s over-
all reliability. C5.0 and XGBoost trail by only a few decimal
points, both landing in the 0.96. A curious rebound shows with

SKCV, however, where C5.0 sometimes equals or narrowly ex-
ceeds XGBoost on the measurements, hinting at the classifier’s
sensitivity to how the data is partitioned.

Examination of the runtimes presented in Tables 4 and 6
in Sections 3.1 and 3.2 reveals an inherent imbalance when
hold-out and SKCV times are weighed against one another.
The former executes a single 90:10 partition, while the k =
10 SKCV scheme repeats that split ten separate times. Even
so, both splitting strategies conclude the same lesson about
Random Forest: its ensemble nature drives up wall time, a
liability that shows up when response time is crucial. C5.0, by
contrast, gives nearly identical accuracy numbers yet finishes
the work much faster, making it the obvious pick for high-
throughput tasks. XGBoost lands midway between the two,
faster than Random Forest but still slower than C5.0, and while
that stride can feel satisfactory it sits slightly behind the latter in
sheer speed. Based on these findings, the best model depends
on the application scenario as shown in Table 10.

In the context of predicting water quality, RF’s accuracy is
ideal in some tasks, but it may not be suitable for applications
with low latency requirements; for example, in systems de-
ployed for water quality monitoring in real time. For scenarios
where speed is more desirable such as in real-time classification,
or settings with limited resources like IoT-based water moni-
toring, C5.0 works efficiently. XGBoost, which works better
than C5.0 but is slower, is ideal for medium to large datasets
where reasonable accuracy with efficient processing is needed.
If subsequent studies include more features or other parameters
of water, XGBoost might have better scalability than Random
Forest. Also, in water quality monitoring, balanced evaluation
is necessary because some levels of contamination are not rep-
resented adequately in the unprocessed data. SKCV makes the
estimates more applicable to the real world by minimizing the
variance observed in the results.

From the evaluation results, it is evident that some water
quality classes are more challenging to classify correctly than
others. Notably, Class 3 (Fair quality) consistently shows lower
recall and precision across all models compared to other classes
as shown in Table 6 and Table 8. This difficulty likely arises be-
cause the feature distributions for Class 3 significantly overlap
with those of Class 2 (Good) and Class 4 (Marginal), making
it hard for the models to distinguish between them. Although
SMOTE was applied to address class imbalance, the subtle
differences in important parameters such as nitrogen concen-
tration and turbidity still lead to misclassifications among these
classes.
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Figure 5. Comparison of Decision Tree Algorithms (RF, XGBoost, and C5.0)

Table 10. Best Decision Tree based on Application Scenario

Scenario Best Decision Tree Reason
Highest Accuracy Random Forest Best predictor among the three but has high computational cost.
Fastest Execution C5.0 Maintains high accuracy with minimal runtime.

Balanced Trade-Off XGBoost Good accuracy and efficiency but slower than C5.0.
Real-Time Water

Quality Monitoring
C5.0 or XGBoost Fast response time is critical.

Large-scale Datasets XGBoost Scales better than Random Forest in big data.

These misclassifications can have practical implications. In-
correctly labeling water quality levels could result in inappropri-
ate treatment decisions or insufficient monitoring, potentially
impacting environmental management and public health out-
comes. To address this, future research could focus on incor-
porating additional or more discriminative features that better
separate closely related classes. Applying explainability tech-
niques such as SHapley Additive exPlanations (SHAP) or Lo-
cal Interpretable Model-agnostic Explanations (LIME) would
help uncover which features contribute most to the model’s
predictions and identify sources of confusion.

Furthermore, exploring alternative machine learning mod-
els or ensemble approaches that combine strengths of different
classifiers could enhance accuracy. A hybrid data augmentation
strategy that blends oversampling (like SMOTE) and under-
sampling methods may better balance the dataset and reduce
overfitting. Lastly, expanding the dataset size and improving
data quality, particularly for underrepresented classes, will likely

improve model robustness and reduce misclassification rates.

4. CONCLUSIONS

Through systematic analysis, this research assesses the effec-
tiveness of three decision tree-based models: Random Forest,
XGBoost, and C5.0, in order to forecast water-quality rat-
ings. The classification step is preceded by a thorough data
analysis and preprocessing step to get better insight from the
dataset. The data was processed using the SMOTE technique
to enhance the class imbalance problem. Although Random
Forest achieved the best accuracy of almost 0.98, the model
is unsuitable for scenarios where time is of the essence such as
real-time water monitoring system, due to a longer runtime.
C5.0 is much faster and has a run time of approximately 0.96
which makes the model a good-fit for cases where speed is
important. XGBoost performed similarly to C5.0, but was less
efficient in terms of runtime. All experimentation relies on a
medium-sized set of 971 rows with 10 feature columns. For
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bigger and complicated datasets, XGBoost might outperform,
whereas Random Forest will have even slower performance
because of its process of multiple-tree generation. In future
studies, the efficiency of Random Forest and XGBoost models
can be improved by using the pruning techniques alongside
parallel computing or graphic processing unit (GPU) accel-
eration, which is expected to solve the models’ high runtime.
In addition, to improve transparency, predicting SVM, KNN,
or even Neural Networks performance can be benchmarked
against other non-tree classifiers alongside SHAP and LIME
explainability techniques. Lastly, considering the issues of over-
fitting, dataset scalability, and generalizability will fortify the
study’s concern for real world application.
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