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Abstract— To minimize yield losses in maize plantations, control measures that include early leaf disease detection are essential. In this 

study, we evaluated extensive and lightweight convolutional neural network (CNN) models to accurately classify maize diseases from 

leaf images. To achieve a high image classification performance, existing deep learning approaches often use large models that require 

substantial computational resources.  Simpler and lightweight models provide faster inferences but at the expense of lower accuracy in 

prediction performance. To improve maize leaf disease classification performance on the lightweight SqueezeNet model, the response-

based knowledge distillation method was evaluated for model training. In response-based knowledge distillation, the logit output from 

the last layer of the large model is used in the loss function to train the lightweight model. This enables the lightweight model to learn 

from the knowledge of large and complex models, thereby improving its predictive accuracy while maintaining a simpler architecture 

and faster inference. A six-class maize disease dataset was prepared using two publicly available datasets. The dataset was used to train 

and evaluate the selected large and lightweight models. The large and lightweight model demonstrated high classification accuracy 

when trained till 40 epochs. The trained SqueezeNet model showed promising performance for accurately identifying various maize 

leaf diseases with an accuracy of 96.68%. When the model is trained with the response-based knowledge distillation method, the test 

accuracy improves to 97.13%. Such lightweight models with high accuracy can facilitate the deployment on resource-constrained 

devices. 
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I. INTRODUCTION

Maize is one of the top three most important food crops, 

along with rice and wheat [1]. It is a significant food source 
for humans and livestock. However, maize and other crops are 

easily infected by diseases that reduce their yield and thus 

threaten food security [2]. A recent study showed that pests 

and diseases contribute to a mean yield loss of 22.6% in maize 

plantations [3]. Current practice requires farmers to manually 

inspect their crops for signs of disease, which usually manifest 

through visual patterns on the plant's leaves. This tedious 

process is not practical for large farms.  

Many studies have been conducted to perform automated 

disease identification in maize crops [4], [5]. The most 

effective way is through a deep learning approach that 
leverages high-performing models for image recognition, 

such as the convolutional neural network (CNN) and recent 

vision transformer. Survey paper [5] reviewed 70 recent 

papers on deep-learning applications for plant disease 

identification. Many techniques with good accuracy have 

been proposed. However, most rely on complex deep-learning 

models. In addition, when the model was trained and 

evaluated on different datasets involving field images, the 

performance dropped significantly. 

Several papers have shown the effectiveness of 
convolutional neural networks in maize disease identification. 

The Inception CNN model was evaluated on a field-collected 

maize image dataset and obtained an accuracy of 96% [6]. Data 

augmentation using brightness change was applied. Recent 

methods have proposed a lightweight CNN model with 

attention blocks [7], [8]. The smaller CNN model outperforms 

the mainstream larger models for predicting maize leaf 

diseases.  A vision transformer with reduced model complexity 

is proposed for maize disease identification [9], [10]. 

The paper by [11] proposes to solve maize disease severity 

estimation by two-stage segmentation procedure. In the first 
stage, the leaves were segmented. The identified region of 
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interest was then segmented to identify the lesion region. 

Severity was predicted based on the percentage of the leaf-

covered by the lesion associated with the predicted disease. 

Three types of maize diseases were considered: the gray leaf 

spot (gls), northern leaf blight (nlb) and northern leaf spot 

(nls). The proposed method was evaluated using field images. 

Applying deep learning models on low-cost edge devices 

in agricultural settings necessitates reducing model 

complexity. This requirement arises from the resource-

constrained nature of these devices, which are characterized 
by limited computational capabilities and stringent memory 

constraints. However, a simple model provides lower 

accuracy due to its limited representation capacity. 

Consequently, techniques such as knowledge distillation for 

model compression [12] and [13] have garnered significant 

attention for improving the predictive accuracy of small 

models as a way to reduce the computational burden imposed 

by complex deep learning architectures. 

Knowledge distillation (KD) is a technique used to transfer 

knowledge from a larger deep-learning model to a smaller 

lightweight model [14]. In this scheme, the teacher is the large 
model, and the student is the smaller model. Knowledge 

distillation typically involves the following steps. Firstly, the 

teacher model is trained based on the target dataset to achieve 

high generalization performance. The trained teacher 

generates soft targets from its output or intermediate features 

for teaching the student model. This has been shown to 

improve student performance because the soft target contains 

useful information that complements the hard target obtained 

from the ground truth label. This way, the student is trained to 

imitate the teacher’s behavior. 

Knowledge distillation differs from transfer learning, 
where the weights of a model trained on a large dataset are 

used to initialize a similar model for related tasks [15]. The 

model is then fine-tuned on a smaller target dataset. Many 

studies have shown that this results in performance 

improvement compared to a randomly initialized model. 

There are two major approaches to knowledge distillation 

[16], [14]. This depends on information sources leveraged 

from the pre-trained teacher model for training the student 

model. One approach taps into the teacher's output 

probabilities, also known as the logit-based or response-based 

method [17]. The other approach relies on the teacher's 

intermediate representations, often referred to as the hint-
based method [18]. Although many new knowledge 

distillations have been proposed, recent research shows that 

the standard or vanilla knowledge distillation method still 

performs well if strong data augmentation and a large dataset 

is used during training [16]. 

Knowledge distillation has been applied in various fields 

of plant disease identification. In [19],  a small CNN model, 

namely the tiny mobileNet-v2, which has 25% of the original 

model size, is used for plant disease recognition on the 39 

classes of the Plant Village dataset. The model trained with 

standard response-based knowledge distillation from a large 
CNN model showed improved classification performance.  

The large CNN model EfficientNet and Xception model were 

used as the teacher. However, this was only demonstrated on 

a clean lab-prepared dataset. Paper by [20] with student CNN 

model composed of just four layers with 3.71 million 

parameters, standard KD can improve accuracy ranging from 

3.5% to 4.73%. The student model was distilled from various 

large models namely Resnet50, DenseNet121 and Xception. 

In the work [21], the maize disease identification on the Plant 

Village dataset is performed with object detection approach. 

The YOLOv5s model is simplified to reduce its parameter by 

15%. To enhance its performance, channel-wise knowledge 

distillation [22] is used. After training with knowledge 

distillation from the bigger YOLOv5m model, the mean 

average precision mAP (0.5) improved by 3.8%, and the 

parameter size decreased by 15.5%. Similar results on 
knowledge distillation with object detection methods for plant 

disease have also been reported [13]. In a related work [23] 

Knowledge distillation with data augmentation was applied to 

the Plant Doc dataset. Literature studies show that there is still 

limited work that applies knowledge distillation to plant 

disease detection problems. Most of the papers only use to 

clean image datasets that are captured in the lab. However, 

plant diseases should ideally be identified in the field. Such 

images are challenging to process due to challenging 

background objects. This study aims to solve the problem by 

testing a small model in field-collected images. 
In this paper, we aim to evaluate the performance of the 

large and the small, lightweight CNN models and assess the 

impact of using the basic response-based knowledge 

distillation method [24] for training a small CNN model. The 

large models include DenseNet-121 [25], Resnet-50 [26] 

While the two lightweight models MobileNet [27] and 

SqueezeNet [28] are selected for evaluation. Knowledge 

distillation is used with the SqueezeNet model. 

DenseNet-121 and ResNet-50 each have 121 and 50 layers, 

respectively. Both models use skip connections to construct 

deep layers that mitigate the vanishing gradient problem. In 
DenseNet, each layer has skip connections to all other layers 

in a feed-forward manner. These large and deep models have 

been used successfully in many computer vision applications 

and demonstrate impressive performance [29], [30], 

[31]However, these models are not suitable for low-end edge 

devices because they require large memory space and incur 

high latency during inference. To address this issue, a number 

of simple models, such as MobileNet and SqueezeNet, have 

been proposed. 

SqueezeNet is a type of convolutional neural network with 

18 layers [28]. The model's size is less than 0.5 MB. This 

significant complexity reduction is achieved by using the 
squeeze and expansion layers. The squeeze layer, consisting 

of 1x1 convolution filters, reduces the number of channels. 

The expansion layer, using 1x1 and 3x3 convolutional filters, 

increases the number of channels. The squeeze and expansion 

layers are grouped in a module. These modules, known as fire 

modules, are stacked to form the architecture of the 

SqueezeNet model. 

MobileNet introduces a layer that uses depthwise separable 

convolutions to reduce model parameters [27]. This layer uses 

depthwise convolution followed by (1x1) pointwise 

convolution to replace the standard convolution operation. 
This strategy has been shown to significantly reduce model 

parameters and increase computation speed with a minor 

impact on predictive accuracy [27], [32]. A comparison of the 

size of parameters, model file size, and inference time per 

image is shown in Table 1. The size of the lightweight model 

is significantly smaller than that of the large model, such as 
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Resnet-50 [33], and thus, it is feasible for usage on low-end 

edge devices such as Raspberry Pi, where the processor speed 

is low and memory size is restricted. The architectural 

visualization of the large and small lightweight models used 

are shown in Figure (1) – (4). 

 

 
Fig. 1  DenseNet architecture diagram [25] 

 

 
Fig. 2  ResNet50 architecture diagram [34] 

 

 
Fig. 3  MobileNet architecture diagram [33] 

 

 
Fig. 4  SqueezeNet architecture diagram [28] 

TABLE I 

NUMBER OF PARAMETERS, FILE SIZE AND MODEL INFERENCE TIME FOR THE 

CNN MODELS EVALUATED IN THE EXPERIMENT 

Model 

Number of 

Parameters 

(million) 

File 

Size 

(MB) 

 

Model 

Inference 

Time 

(seconds) 

 

MobileNet-V2 3.50 M 13.9  0.066  
SqueezeNet1.1 1.24 M 4.8   0.066  

Resnet-50 25.56 M 100.1   0.074  
DenseNet-121 7.98 M 31.6   0.082  

II. MATERIALS AND METHOD 

A. Method 

We use the standard knowledge distillation approach [24] 

to improve the small lightweight CNN model. This enables 

the lightweight model to learn from the actual label and 
complex model response. In this case the lightweight model 

is named as the student model while the deep complex model 

is named as the teacher. 

The student model is trained with both the student 

classification loss and distillation loss. The distillation loss 

function uses Kullback-Leibler (KL) [35] the metric function 

is shown in equation (2). It is used to measure the distribution 

difference between the soft targets generated from the teacher 

model output pt and the predicted probabilities of the student 

model ps. The SoftMax function parameterized by the 

temperature T is used to obtain class probability estimates for 

both the teacher (soft targets) and student models. Higher 
temperature leads to smoother class probability distribution 

and this can aid in transferring the teacher’s knowledge to the 

student model. 

Output 
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Let zi be the logit output for class i. The class probability pi(T) of 

the image is given by equation (1). When all classes are considered, 

the class predictions form the vectorial input ps and pt used in the 

Kullback-Leibler metric function shown in equation (2).  

 ����� � ��	
��

 �

∑ �� �	
��

 �

 (1) 

 ������ , ��� � ∑ ������ ��� �	�����
	� ���!�  (2) 

In standard knowledge distillation, the student model is 

trained based on the loss function that is the weighted sum of 
the Kullback–Leibler divergence (KL) loss and cross-entropy 

(CE) loss, as shown in equation (3). The training scheme is 

illustrated in Figure 5. Training involves two stages. In the 

first stage, the teacher is trained on the selected dataset. In the 

second stage, the teacher’s output from the training images is 

used as soft target. The hard target is obtained from the ground 

truth label y and this is jointly used with the soft target for 

training the student model. 

 L�#, �� , ��� � αT%������,  ��� &  �1 ( α��)*�#, ��� (3) 

 
Fig. 5 Visualization of the student model training scheme based on the 

standard response-based knowledge distillation. 

B. Dataset 

To evaluate the models, we prepared the maize image dataset 

by combining the publicly available CDS [36] and Makerere 

maize plant disease dataset [37] to form a new six-class dataset 

named the CDS Makerere maize disease dataset. The CDS 

dataset contains images from three classes of disease: Gray Leaf 
Spot (GLS), Northern Leaf Blight (NLB), and Northern Leaf 

Spot (NLS). The Makerere dataset has two classes of maize 

disease: Maize Leaf Blight (MLB) and Maize Streak Virus 

(MSV), with one healthy class. Since the number of images from 

the Makerere dataset is much more significant than the CDS 

dataset, an approximately equal number of images from each 

class are sampled to match the class distributions in the CDS 

dataset.  Five classes of maize plant diseases and one normal 

class are used in the six classes dataset. The detailed distribution 

of the classes is presented in Table 2. Sample images in each class 

are shown in Figure 6. The field-collected images are challenging 
due to high interclass similarities, low intraclass differences, and 

cluttered backgrounds. 

TABLE II 

DISTRIBUTION OF TRAINING AND TEST IMAGES FOR THE 6 CLASSES CDS 

MAKERERE DATASET 

Class Name #Training Images #Test Images 

gls 262 261 
healthy 250 250 

mlb 250 250 
msv 250 250 

nlb 249 248 
nls 275 276 

Total 1536 1535 

 
Fig. 6  Shows sample images from the training set for the 6 classes of the 

CDS Makerere dataset. Each row shows 3 sample images for one class. The 

classes from the top row are gls, healthy, MLB, MSV, nlb, and nls. 

III. RESULTS AND DISCUSSION 

A. Experiments Setup 

The experiment aims to evaluate the performance of large 

and lightweight models in maize disease identification from 

leaf images. The DenseNet-121 and the Resnet-50 models are 

selected for the large model. The MobileNetV2 and 

SqueezeNet1.1 are the selected versions of the light models. 

The models are all developed with Pytorch 1.1 software. The 

experiment was conducted on an x86 Intel-based desktop 

computer with 32 GB memory and was equipped with Nvidia 
GPU RTX3070 8GB RAM. The images from the CDS 

Makerere dataset are used in this study. The training images 

are augmented using a transformation pipeline comprising of 

resizing to 224x224 pixels, random horizontal flipping, and 

random rotations within ±15 degrees. All experiments are 

executed with the random seed 41 to ensure reproducible 

results. 

All the models are initialized with pre-trained weights from 

the ImageNet dataset with the transfer learning method. The 

trained weight is obtained from the Pytorch Torchvision 

library. Training involves finetuning all the layers of the 

model. The AdamW optimizer is used with a learning rate of 
0.0001, batch size sixty-four, and trained for 40 epochs. 

B. Results 

The first experiment trains the DenseNet-121, Resnet-50, 

MobileNet (version 2), and SqueezeNet (version 1.1) based 

on the CDS Makerere training images. The models are then 

evaluated on the test images. The classification accuracy for 

all the evaluated models on the CDS_Makere test set is shown 

in Table 3. The DenseNet-121 model shows the highest 
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accuracy of 99.22%. It is worth noting that the lightweight 

model MobileNetV2 manages to attain higher accuracy than 

the larger Resnet50 model. 

TABLE III 

CLASSIFICATION ACCURACY FOR VARIOUS CNN MODELS ON THE CDS 

MAKERERE MAIZE DISEASE DATASET.   

CNN Model 
Classification 
Accuracy (%) 

DenseNet-121 99.22 

Resnet-50 97.20 
MobileNet (mobilenet_v2) 98.70 
SqueezeNet (squeezenet1_1) 96.68 
SqueezeNetKD 97.13 

 

The name in brackets shows the exact version used. 
squeezenetkd is a squeeze net trained with standard 

knowledge distillation. In the second experiment, the best 

large model, DenseNet121, is used to train the SqueezeNet 

model with the standard knowledge distillation method [25]. 

DenseNet-121 is used as the teacher model, and SqueezeNet 

is used as the student model. The same CNN training 

parameters are used as in the first experiment. The aim is to 

evaluate whether knowledge distillation can help increase the 

accuracy of the SqueezeNet model. 

In knowledge distillation, logit output from the teacher is 

utilized as a soft target to train the student model with a 
custom training loss function indicated in equation (3).  The 

training loss depends on two parameters, namely temperature 

T and distillation weight loss, as shown in equation (3). The 

paper [24] recommends the use of T in the range [2.5, 4]. To 

achieve a smoother soft target for aiding student model 

learning, the temperature value of 4 (T=4) is used. Knowledge 

distillation with three values of α is compared to evaluate the 

effect of distillation loss weight. The result is tabulated in 

Table 4.  

TABLE IV 

IMPACT OF DISTILLATION LOSS WEIGHT Α ON STUDENT MODEL 

CLASSIFICATION ACCURACY ON CDS MAKERERE DATASET.  

Alpha Student Accuracy (%) 

0.1 95.11 
0.5 96.35 
0.9 97.13 

 

Densenet-121 serves as the teacher model, and SqueezeNet 

as the student model. Higher distillation loss weights improve 

classification performance, demonstrating the advantage of 

stronger model logits in training weaker models during 
knowledge distillation. Using the optimal loss weight 

enhances SqueezeNet's accuracy over standard cross-entropy 

training. The SqueezeNet model trained with knowledge 

distillation (α=0.9) and DenseNet-121 will be referred to as 

the SqueezeNetKD model. 

To assess the performance of SqueezeNetKD for each 

class, the model performance is visualized in a confusion 

matrix. The confusion matrix shows the number of predicted 

labels belonging to true and incorrect labels. This way, the 

model's confusion concerning its predicted class can be 

analyzed. The prediction accuracy for each class can be 

quantified as well. This is achieved by computing the class-
wise precision, recall, and F1 score. The multi-class 

classification is framed as a separate binary classification in 

this setup. Thus, for each sample in the test set, the model 

predicts a positive class or unfavorable class. This is repeated 

for each class in the test set. For each binary classification, the 

predicted output is labeled as either true positive, true 

negative, false positive, or false negative. The total true 

positive, true negative, false negative, and false positive labels 

are named TP, TN, FN, and FP, respectively. These scores are 

used to compute the class-wise Precision, Recall, and F1 

values for the model performance metrics, as shown in 

equations (4), (5), and (6). 

 +,-./0/�1 � �2
�2 4 52 (4) 

 6-.7�� � �2
�2 4 58  (5) 

 91 � 2 ∙ 2<�=���>? ∙ @�=ABB
2<�=���>? 4 @�=ABB (6) 

Figure 7 displays the confusion matrix of SqueezeNetKD 

on CDS Makerere test images, showing highly accurate 

predictions across all classes. Analysis indicates strong 
Precision, Recall, and F1 score metrics for all classes (see 

Table 5). Figure 8 shows training and testing results for 

SqueezeNetKD across various epochs, demonstrating 

convergence to stable training and test loss values. Figure 9 

illustrates SqueezeNetKD's test accuracy, which rises rapidly 

in the first five epochs and stabilizes after 30 epochs. 

TABLE V 

REPORT ON PRECISION, RECALL AND F1 SCORE FOR SQUEEZENETKD MODEL 

TESTED ON THE CDS MAKERERE DATASET 

Class Precision Recall F1-Score 

gls 0.9731 0.9693 0.9712 
healthy 0.9718 0.9640 0.9679 

mlb 0.9683 0.9760 0.9721 
msv 0.9801 0.9840 0.9820 
nlb 0.9606 0.9839 0.9721 
nls 0.9741 0.9529 0.9634 

 
Fig. 7 Confusion matrix for SqueezeNetKD prediction on CDS 

Makerere dataset test set. 

 
Fig. 8 Training and test loss for SqueezeNetKD model when 

evaluated after various training epochs. The model is evaluated with 

the CDS Makerere dataset 
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Fig. 9  Test accuracy for SqueezeNetKD model when evaluated after 

various training epochs. Model is tested on the CDS Makerere dataset 

IV.    CONCLUSION 

In this paper, we evaluate the application of large and 
lightweight convolutional neural network models to 

recognize maize leaf diseases from leaf images accurately. 

Our experiments demonstrated the promising performance of 

the deep and large CNN models, DenseNet-121 and ResNet-

50, in accurately classifying various maize leaf diseases. 

However, the deployment of these large models on resource-

limited edge devices in agricultural settings is hindered by 

their substantial computational requirements and memory 

footprint. To address this challenge, we evaluated lightweight 

models and contrasted the performance with the larger 

model's. The result shows that small model can attain 
comparable accuracy to the large model on the proposed 

maize leaf disease dataset.   

Knowledge distillation is used to train the SqueezeNet 

model to improve the performance of the small model. This 

enables knowledge transfer from the best-performing 

complex model, DenseNet-121, to the smaller SqueezeNet 

model. Specifically, we trained the lightweight SqueezeNet 

model using the standard response-based knowledge 

distillation method, with DenseNet-121 as the teacher model. 

The results revealed that knowledge distillation improves the 

classification accuracy of the SqueezeNet model, bridging the 

performance gap with the larger models. The SqueezeNet 
model, trained with knowledge distillation, achieved an 

accuracy of 97.13% on the CDS Makerere dataset, 

outperforming the standard SqueezeNet model trained solely 

on ground truth labels. 

The successful application of knowledge distillation in this 

study highlights its potential for developing accurate and 

efficient lightweight models for plant disease identification in 

the field with resource-constrained edge devices. By 

leveraging the knowledge of large and complex models, 

lightweight models can achieve comparable performance 

while maintaining a smaller memory footprint and faster 
inference times. Although our study focused on maize leaf 

diseases, the knowledge distillation method can be applied to 

other plant species and disease categories, fostering the 

development of practical and affordable solutions for 

sustainable agriculture. 
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