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Abstract— To minimize yield losses in maize plantations, control measures that include early leaf disease detection are essential. In this
study, we evaluated extensive and lightweight convolutional neural network (CNN) models to accurately classify maize diseases from
leaf images. To achieve a high image classification performance, existing deep learning approaches often use large models that require
substantial computational resources. Simpler and lightweight models provide faster inferences but at the expense of lower accuracy in
prediction performance. To improve maize leaf disease classification performance on the lightweight SqueezeNet model, the response-
based knowledge distillation method was evaluated for model training. In response-based knowledge distillation, the logit output from
the last layer of the large model is used in the loss function to train the lightweight model. This enables the lightweight model to learn
from the knowledge of large and complex models, thereby improving its predictive accuracy while maintaining a simpler architecture
and faster inference. A six-class maize disease dataset was prepared using two publicly available datasets. The dataset was used to train
and evaluate the selected large and lightweight models. The large and lightweight model demonstrated high classification accuracy
when trained till 40 epochs. The trained SqueezeNet model showed promising performance for accurately identifying various maize
leaf diseases with an accuracy of 96.68%. When the model is trained with the response-based knowledge distillation method, the test
accuracy improves to 97.13%. Such lightweight models with high accuracy can facilitate the deployment on resource-constrained
devices.
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papers on deep-learning applications for plant disease
I. INTRODUCTION identification. Many techniques with good accuracy have
been proposed. However, most rely on complex deep-learning
models. In addition, when the model was trained and
evaluated on different datasets involving field images, the
performance dropped significantly.

Several papers have shown the effectiveness of
convolutional neural networks in maize disease identification.
The Inception CNN model was evaluated on a field-collected
maize image dataset and obtained an accuracy of 96% [6]. Data
augmentation using brightness change was applied. Recent
methods have proposed a lightweight CNN model with
attention blocks [7], [8]. The smaller CNN model outperforms
the mainstream larger models for predicting maize leaf
diseases. A vision transformer with reduced model complexity
is proposed for maize disease identification [9], [10].

The paper by [11] proposes to solve maize disease severity
estimation by two-stage segmentation procedure. In the first
stage, the leaves were segmented. The identified region of

Maize is one of the top three most important food crops,
along with rice and wheat [1]. It is a significant food source
for humans and livestock. However, maize and other crops are
easily infected by diseases that reduce their yield and thus
threaten food security [2]. A recent study showed that pests
and diseases contribute to a mean yield loss of 22.6% in maize
plantations [3]. Current practice requires farmers to manually
inspect their crops for signs of disease, which usually manifest
through visual patterns on the plant's leaves. This tedious
process is not practical for large farms.

Many studies have been conducted to perform automated
disease identification in maize crops [4], [5]. The most
effective way is through a deep learning approach that
leverages high-performing models for image recognition,
such as the convolutional neural network (CNN) and recent
vision transformer. Survey paper [5] reviewed 70 recent
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interest was then segmented to identify the lesion region.
Severity was predicted based on the percentage of the leaf-
covered by the lesion associated with the predicted disease.
Three types of maize diseases were considered: the gray leaf
spot (gls), northern leaf blight (nlb) and northern leaf spot
(nls). The proposed method was evaluated using field images.

Applying deep learning models on low-cost edge devices
in agricultural settings necessitates reducing model
complexity. This requirement arises from the resource-
constrained nature of these devices, which are characterized
by limited computational capabilities and stringent memory
constraints. However, a simple model provides lower
accuracy due to its limited representation capacity.
Consequently, techniques such as knowledge distillation for
model compression [12] and [13] have garnered significant
attention for improving the predictive accuracy of small
models as a way to reduce the computational burden imposed
by complex deep learning architectures.

Knowledge distillation (KD) is a technique used to transfer
knowledge from a larger deep-learning model to a smaller
lightweight model [14]. In this scheme, the teacher is the large
model, and the student is the smaller model. Knowledge
distillation typically involves the following steps. Firstly, the
teacher model is trained based on the target dataset to achieve
high generalization performance. The trained teacher
generates soft targets from its output or intermediate features
for teaching the student model. This has been shown to
improve student performance because the soft target contains
useful information that complements the hard target obtained
from the ground truth label. This way, the student is trained to
imitate the teacher’s behavior.

Knowledge distillation differs from transfer learning,
where the weights of a model trained on a large dataset are
used to initialize a similar model for related tasks [15]. The
model is then fine-tuned on a smaller target dataset. Many
studies have shown that this results in performance
improvement compared to a randomly initialized model.

There are two major approaches to knowledge distillation
[16], [14]. This depends on information sources leveraged
from the pre-trained teacher model for training the student
model. One approach taps into the teacher's output
probabilities, also known as the logit-based or response-based
method [17]. The other approach relies on the teacher's
intermediate representations, often referred to as the hint-
based method [18]. Although many new knowledge
distillations have been proposed, recent research shows that
the standard or vanilla knowledge distillation method still
performs well if strong data augmentation and a large dataset
is used during training [16].

Knowledge distillation has been applied in various fields
of plant disease identification. In [19], a small CNN model,
namely the tiny mobileNet-v2, which has 25% of the original
model size, is used for plant disease recognition on the 39
classes of the Plant Village dataset. The model trained with
standard response-based knowledge distillation from a large
CNN model showed improved classification performance.
The large CNN model EfficientNet and Xception model were
used as the teacher. However, this was only demonstrated on
a clean lab-prepared dataset. Paper by [20] with student CNN
model composed of just four layers with 3.71 million
parameters, standard KD can improve accuracy ranging from
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3.5% to 4.73%. The student model was distilled from various
large models namely Resnet50, DenseNet121 and Xception.
In the work [21], the maize disease identification on the Plant
Village dataset is performed with object detection approach.
The YOLOVSs model is simplified to reduce its parameter by
15%. To enhance its performance, channel-wise knowledge
distillation [22] is used. After training with knowledge
distillation from the bigger YOLOvSm model, the mean
average precision mAP (0.5) improved by 3.8%, and the
parameter size decreased by 15.5%. Similar results on
knowledge distillation with object detection methods for plant
disease have also been reported [13]. In a related work [23]
Knowledge distillation with data augmentation was applied to
the Plant Doc dataset. Literature studies show that there is still
limited work that applies knowledge distillation to plant
disease detection problems. Most of the papers only use to
clean image datasets that are captured in the lab. However,
plant diseases should ideally be identified in the field. Such
images are challenging to process due to challenging
background objects. This study aims to solve the problem by
testing a small model in field-collected images.

In this paper, we aim to evaluate the performance of the
large and the small, lightweight CNN models and assess the
impact of using the basic response-based knowledge
distillation method [24] for training a small CNN model. The
large models include DenseNet-121 [25], Resnet-50 [26]
While the two lightweight models MobileNet [27] and
SqueezeNet [28] are selected for evaluation. Knowledge
distillation is used with the SqueezeNet model.

DenseNet-121 and ResNet-50 each have 121 and 50 layers,
respectively. Both models use skip connections to construct
deep layers that mitigate the vanishing gradient problem. In
DenseNet, each layer has skip connections to all other layers
in a feed-forward manner. These large and deep models have
been used successfully in many computer vision applications
and demonstrate impressive performance [29], [30],
[31]However, these models are not suitable for low-end edge
devices because they require large memory space and incur
high latency during inference. To address this issue, a number
of simple models, such as MobileNet and SqueezeNet, have
been proposed.

SqueezeNet is a type of convolutional neural network with
18 layers [28]. The model's size is less than 0.5 MB. This
significant complexity reduction is achieved by using the
squeeze and expansion layers. The squeeze layer, consisting
of 1x1 convolution filters, reduces the number of channels.
The expansion layer, using 1x1 and 3x3 convolutional filters,
increases the number of channels. The squeeze and expansion
layers are grouped in a module. These modules, known as fire
modules, are stacked to form the architecture of the
SqueezeNet model.

MobileNet introduces a layer that uses depthwise separable
convolutions to reduce model parameters [27]. This layer uses
depthwise convolution followed by (1x1) pointwise
convolution to replace the standard convolution operation.
This strategy has been shown to significantly reduce model
parameters and increase computation speed with a minor
impact on predictive accuracy [27], [32]. A comparison of the
size of parameters, model file size, and inference time per
image is shown in Table 1. The size of the lightweight model
is significantly smaller than that of the large model, such as



Resnet-50 [33], and thus, it is feasible for usage on low-end
edge devices such as Raspberry Pi, where the processor speed
is low and memory size is restricted. The architectural
visualization of the large and small lightweight models used
are shown in Figure (1) — (4).
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Fig. 3 MobileNet architecture diagram [33]

Number of File Ir?f/[e(:'(elfllce
Model Parameters Size Time
(million) (MB) (seconds)
MobileNet-V2 3.50M 13.9 0.066
SqueezeNet1.1 1.24M 4.8 0.066
Resnet-50 25.56 M 100.1 0.074
DenseNet-121 798 M 31.6 0.082

II. MATERIALS AND METHOD

A. Method

We use the standard knowledge distillation approach [24]
to improve the small lightweight CNN model. This enables
the lightweight model to learn from the actual label and
complex model response. In this case the lightweight model
is named as the student model while the deep complex model
is named as the teacher.

The student model is trained with both the student
classification loss and distillation loss. The distillation loss
function uses Kullback-Leibler (KL) [35] the metric function
is shown in equation (2). It is used to measure the distribution
difference between the soft targets generated from the teacher
model output pt and the predicted probabilities of the student
model ps. The SoftMax function parameterized by the
temperature T is used to obtain class probability estimates for
both the teacher (soft targets) and student models. Higher
temperature leads to smoother class probability distribution
and this can aid in transferring the teacher’s knowledge to the
student model.



Let z be the logit output for class i. The class probability pi(T) of
the image is given by equation (1). When all classes are considered,
the class predictions form the vectorial input p* and pf used in the
Kullback-Leibler metric function shown in equation (2).

_ enl)
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In standard knowledge distillation, the student model is
trained based on the loss function that is the weighted sum of
the Kullback—Leibler divergence (KL) loss and cross-entropy
(CE) loss, as shown in equation (3). The training scheme is
illustrated in Figure 5. Training involves two stages. In the
first stage, the teacher is trained on the selected dataset. In the
second stage, the teacher’s output from the training images is
used as soft target. The hard target is obtained from the ground
truth label y and this is jointly used with the soft target for
training the student model.

L(y, p%,p%) = aT’L, (%, p°) + (1 — )Lce(y, p°) (3)
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Fig. 5 Visualization of the student model training scheme based on the
standard response-based knowledge distillation.

B. Dataset

To evaluate the models, we prepared the maize image dataset
by combining the publicly available CDS [36] and Makerere
maize plant disease dataset [37] to form a new six-class dataset
named the CDS Makerere maize disease dataset. The CDS
dataset contains images from three classes of disease: Gray Leaf
Spot (GLS), Northern Leaf Blight (NLB), and Northern Leaf
Spot (NLS). The Makerere dataset has two classes of maize
disease: Maize Leaf Blight (MLB) and Maize Streak Virus
(MSV), with one healthy class. Since the number of images from
the Makerere dataset is much more significant than the CDS
dataset, an approximately equal number of images from each
class are sampled to match the class distributions in the CDS
dataset. Five classes of maize plant diseases and one normal
class are used in the six classes dataset. The detailed distribution
of'the classes is presented in Table 2. Sample images in each class
are shown in Figure 6. The field-collected images are challenging
due to high interclass similarities, low intraclass differences, and
cluttered backgrounds.

TABLE II
DISTRIBUTION OF TRAINING AND TEST IMAGES FOR THE 6 CLASSES CDS
MAKERERE DATASET
Class Name #Training Images #Test Images

gls 262 261
healthy 250 250
mlb 250 250
msv 250 250

nlb 249 248

nls 275 276
Total 1536 1535
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Fig. 6 Shows sample images from the training set for the 6 classes of the
CDS Makerere dataset. Each row shows 3 sample images for one class. The
classes from the top row are gls, healthy, MLB, MSV, nlb, and nls.

III. RESULTS AND DISCUSSION

A. Experiments Setup

The experiment aims to evaluate the performance of large
and lightweight models in maize disease identification from
leaf images. The DenseNet-121 and the Resnet-50 models are
selected for the large model. The MobileNetV2 and
SqueezeNetl.1 are the selected versions of the light models.
The models are all developed with Pytorch 1.1 software. The
experiment was conducted on an x86 Intel-based desktop
computer with 32 GB memory and was equipped with Nvidia
GPU RTX3070 8GB RAM. The images from the CDS
Makerere dataset are used in this study. The training images
are augmented using a transformation pipeline comprising of
resizing to 224x224 pixels, random horizontal flipping, and
random rotations within +15 degrees. All experiments are
executed with the random seed 41 to ensure reproducible
results.

All the models are initialized with pre-trained weights from
the ImageNet dataset with the transfer learning method. The
trained weight is obtained from the Pytorch Torchvision
library. Training involves finetuning all the layers of the
model. The AdamW optimizer is used with a learning rate of
0.0001, batch size sixty-four, and trained for 40 epochs.

B. Results

The first experiment trains the DenseNet-121, Resnet-50,
MobileNet (version 2), and SqueezeNet (version 1.1) based
on the CDS Makerere training images. The models are then
evaluated on the test images. The classification accuracy for
all the evaluated models on the CDS_Makere test set is shown
in Table 3. The DenseNet-121 model shows the highest



accuracy of 99.22%. It is worth noting that the lightweight
model MobileNetV2 manages to attain higher accuracy than
the larger Resnet50 model.

TABLE III
CLASSIFICATION ACCURACY FOR VARIOUS CNN MODELS ON THE CDS
MAKERERE MAIZE DISEASE DATASET.

Classification
CNN Model Accuracy (%)
DenseNet-121 99.22
Resnet-50 97.20
MobileNet (mobilenet v2) 98.70
SqueezeNet (squeezenet]l 1) 96.68
SqueezeNetKD 97.13

The name in brackets shows the exact version used.
squeezenetkd is a squeeze net trained with standard
knowledge distillation. In the second experiment, the best
large model, DenseNet121, is used to train the SqueezeNet
model with the standard knowledge distillation method [25].
DenseNet-121 is used as the teacher model, and SqueezeNet
is used as the student model. The same CNN training
parameters are used as in the first experiment. The aim is to
evaluate whether knowledge distillation can help increase the
accuracy of the SqueezeNet model.

In knowledge distillation, logit output from the teacher is
utilized as a soft target to train the student model with a
custom training loss function indicated in equation (3). The
training loss depends on two parameters, namely temperature
T and distillation weight loss, as shown in equation (3). The
paper [24] recommends the use of T in the range [2.5, 4]. To
achieve a smoother soft target for aiding student model
learning, the temperature value of 4 (T=4) is used. Knowledge
distillation with three values of a is compared to evaluate the
effect of distillation loss weight. The result is tabulated in
Table 4.

TABLE IV
IMPACT OF DISTILLATION LOSS WEIGHT A ON STUDENT MODEL
CLASSIFICATION ACCURACY ON CDS MAKERERE DATASET.

Alpha Student Accuracy (%)
0.1 95.11
0.5 96.35
0.9 97.13

Densenet-121 serves as the teacher model, and SqueezeNet
as the student model. Higher distillation loss weights improve
classification performance, demonstrating the advantage of
stronger model logits in training weaker models during
knowledge distillation. Using the optimal loss weight
enhances SqueezeNet's accuracy over standard cross-entropy
training. The SqueezeNet model trained with knowledge
distillation (0=0.9) and DenseNet-121 will be referred to as
the SqueezeNetKD model.

To assess the performance of SqueezeNetKD for each
class, the model performance is visualized in a confusion
matrix. The confusion matrix shows the number of predicted
labels belonging to true and incorrect labels. This way, the
model's confusion concerning its predicted class can be
analyzed. The prediction accuracy for each class can be
quantified as well. This is achieved by computing the class-
wise precision, recall, and F1 score. The multi-class
classification is framed as a separate binary classification in
this setup. Thus, for each sample in the test set, the model
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predicts a positive class or unfavorable class. This is repeated
for each class in the test set. For each binary classification, the
predicted output is labeled as either true positive, true
negative, false positive, or false negative. The total true
positive, true negative, false negative, and false positive labels
are named TP, TN, FN, and FP, respectively. These scores are
used to compute the class-wise Precision, Recall, and F1
values for the model performance metrics, as shown in
equations (4), (5), and (6).

Precision = —— 4
TP + FP
Recall = —— (%)
TP+ FN

Fl=2- Precision - Recall (6)

Figure 7 displays the confusion matrix of SqueezeNetKD
on CDS Makerere test images, showing highly accurate
predictions across all classes. Analysis indicates strong
Precision, Recall, and F1 score metrics for all classes (see
Table 5). Figure 8 shows training and testing results for
SqueezeNetKD across various epochs, demonstrating
convergence to stable training and test loss values. Figure 9
illustrates SqueezeNetKD's test accuracy, which rises rapidly
in the first five epochs and stabilizes after 30 epochs.

Precision + Recall

TABLE V
REPORT ON PRECISION, RECALL AND F1 SCORE FOR SQUEEZENETKD MODEL
TESTED ON THE CDS MAKERERE DATASET

Class Precision Recall F1-Score
gls 0.9731 0.9693 0.9712
healthy 0.9718 0.9640 0.9679
mlb 0.9683 0.9760 0.9721
msv 0.9801 0.9840 0.9820
nlb 0.9606 0.9839 0.9721
nls 0.9741 0.9529 0.9634
2 0 0 0 3 5 250
% 0 5 3 1 0 200
% £ 0 5 244 0 0 1 150
I 2 2 246 0 0 100
2 3 0 0 0 244 1
50
X 4 0 1 2 6 263
gls healthy mib msv nib nis 0
Predicted label

Fig. 7 Confusion matrix for SqueezeNetKD prediction on CDS
Makerere dataset test set.
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|

! .
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1
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Fig. 8 Training and test loss for SqueezeNetKD model when
evaluated after various training epochs. The model is evaluated with
the CDS Makerere dataset
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Fig. 9 Test accuracy for SqueezeNetKD model when evaluated after
various training epochs. Model is tested on the CDS Makerere dataset

IV. CONCLUSION

In this paper, we evaluate the application of large and
lightweight convolutional neural network models to
recognize maize leaf diseases from leaf images accurately.
Our experiments demonstrated the promising performance of
the deep and large CNN models, DenseNet-121 and ResNet-
50, in accurately classifying various maize leaf diseases.
However, the deployment of these large models on resource-
limited edge devices in agricultural settings is hindered by
their substantial computational requirements and memory
footprint. To address this challenge, we evaluated lightweight
models and contrasted the performance with the larger
model's. The result shows that small model can attain
comparable accuracy to the large model on the proposed
maize leaf disease dataset.

Knowledge distillation is used to train the SqueezeNet
model to improve the performance of the small model. This
enables knowledge transfer from the best-performing
complex model, DenseNet-121, to the smaller SqueezeNet
model. Specifically, we trained the lightweight SqueezeNet
model wusing the standard response-based knowledge
distillation method, with DenseNet-121 as the teacher model.
The results revealed that knowledge distillation improves the
classification accuracy of the SqueezeNet model, bridging the
performance gap with the larger models. The SqueezeNet
model, trained with knowledge distillation, achieved an
accuracy of 97.13% on the CDS Makerere dataset,
outperforming the standard SqueezeNet model trained solely
on ground truth labels.

The successful application of knowledge distillation in this
study highlights its potential for developing accurate and
efficient lightweight models for plant disease identification in
the field with resource-constrained edge devices. By
leveraging the knowledge of large and complex models,
lightweight models can achieve comparable performance
while maintaining a smaller memory footprint and faster
inference times. Although our study focused on maize leaf
diseases, the knowledge distillation method can be applied to
other plant species and disease categories, fostering the
development of practical and affordable solutions for
sustainable agriculture.
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