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Highlights:
e  This work highlights a Quadcopter real-time PID controller tuning.
e  Real-time application of the PSO search technique is presented.
e  Effective blended control of fuzzy logic and conventional PID controllers is used.
e  Experimental verification and validation of the method is presented.

Abstract. A real-time novel algorithm for proportional, integral and derivative
(PID) controller tuning for quadcopters is introduced. The particle swarm
optimization (PSO) method is utilized to search the quadcopter solution space to
find the best PID controller parameters. A fuzzy logic (FL) controller is used to
provide proper velocity reference signals to serve as tracking set points to be
achieved by the PID controller. This nested loop design is proposed for stabilizing
the quadcopter, where the fuzzy logic controller (FL) is used in the stable loop (i.e.
outer loop) to control the desired angle, while the PID controller is used for the
rate loop (i.e. inner loop). Finally, the optimum generated PID parameters were
achieved in real time using the PSO search algorithm. The generated parameters
were tested successfully using an experimental quadcopter setup at the University
of Jordan.
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1 Introduction

The popular unmanned aerial vehicles (UAV), self-propelled aerial vehicles that
operate without the presence of a human pilot, are increasingly catching the
attention of researchers and engineers. These vehicles are found in many
important applications, including for military and surveillance purposes of great
importance [1-4]. The control of the UAV’s attitude, altitude and position poses
many difficulties and challenges and it has been the subject of numerous studies
[3,5-14]. Researchers and engineers are overwhelmed by the number of advanced
algorithms that have been proposed to address the quadcopter control problem in
particular.

The nonlinearity of the quadrotor behavior poses major obstacles in synthesizing
effective controllers and control algorithms. Proportional, integral and derivative
(PID) controllers are among the popular controllers that have been studied due to
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their simple structure, good performance, reliability and effectiveness when tuned
properly [15-20].

A wide range of control systems have been introduced with a classic PID
controller. The ubiquitous PID controller was successfully used for achieving
attitude stabilization and horizontal position control in several studies [11,19-21].
Recent studies have revealed the proposal of a multi-loop (i.e. inner-loop and
outer-loop) control architecture to control quadcopters for specific applications.
The outer-loop controllers were designed based on a diversity of controllers while
the inner-loop controllers were all implemented using a conventional PID control
strategy [22-25].

This work proposes an optimal tuning method for the ubiquitous PID controller
focusing on attitude stabilization using particle swarm optimization (PSO). PSO
was used previously in the literature for controller tuning [26-29], where several
authors proposed to perform tuning using simulation of a dynamical model and
then implemented the results to a physical model of a quadcopter. However, the
unmodeled quadcopter dynamics and the diversity of uncertainties in dimensions
and physical parameters all combined prevented finding well-tuned parameters.
In this work, to overcome these problems the tuning of the PID controller is
performed online in a real-time environment using the particle swarm
optimization (PSO) search algorithm.

This paper follows the following flow of material. Section 2 gives an overview
of fuzzy PID controllers, while section 3 introduces the quadcopter controller
design and section 4 discusses the theory of the fuzzy logic controllers (FL).
Section 5 introduces the particle swarm optimization (PSO) and proposes its use
for online FL-PID controller parameter tuning as a research methodology.
Section 6 presents the experimental results and their discussion, which is used to
verify and validate the online controller’s tuning technique as applied to a
quadcopter to demonstrate its effectiveness. Finally, section 7 highlights the main
conclusions of this work.

2 Fuzzy PID Controller Overview

PID controllers have been used successfully in the industry for a long time owing
to their simple structure and robust performance in a wide range of operating
conditions. However, lately more demands on performance are placed on these
controllers. Unfortunately, the PID controllers are linear in nature and they are ill
suited for strongly nonlinear systems. This has motivated many researchers to
complement the PID controller with FL based controller because FL is typically
parameterized using rules and membership functions, which makes it easy to add
nonlinearities, logic, and additional input signals to the controller’s control law.
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The PID controller currently takes many forms: direct action (DA), gain
scheduling (GS) and hybrid types of FL-PID controllers.

For DA control, the FL controller replaces the PD controller part in the
conventional PID structure, while the I-control action stays the same. However,
this modification in the PID structure requires providing two measured inputs for
the FL controller, as depicted in Figure 1. Several researchers have proven that
the two PD systems are equivalent with the addition of providing more
intelligence due to FL’s heuristic nature and ability to handle both linear and
nonlinear systems [30-32].

de(tydt

Integrator

Figure 1 Direct action FL-PID controller implementation.

In GS controllers the FL part provides a dynamical mean to adjust the
conventional PID controller’s parameters in relation to the current dynamical
system behavior. This adaptation turns out to be very useful in handling nonlinear
systems with varying properties, characteristics, uncertainties, etc. Figure 2
illustrates the GS fuzzy based PID controller implementation scheme.

In hybrid FL-PID controller designs, the PID controller’s effective working space
is extended by using an FL based controller. However, both controllers utilize the
error signal as input. Figure 3 illustrates the implementation of a hybrid FL-PID
controller. An intelligent switching scheme that makes a decision on the priority
of the controllers’ contributions may be utilized for further enhancement.
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Figure 2 Gain scheduling FL-PID controller implementation.
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Figure 3 Hybrid FL-PID controller implementation.

3 Quadcopter Controller Design

Typically, the attitude controller of a quadcopter requires the controlling of
angular velocities and the corresponding Euler angles (i.e. yaw, roll and pitch).
The velocities and angles are measured using an accurate inertial measurement
unit (IMU). An FL controller will be used to provide proper velocity reference
signals to serve as tracking set points to be achieved by the PID controller. This
nested loop design was used in this study for stabilizing the quadcopter, where an
FL controller was used for the stable loop (i.e. outer loop) to control the desired
angle and the PID controller was used for the rate loop (i.e. inner loop). Figure 4
depicts the nested control loops that are proposed to stabilize the altitude. The top
of the diagram shows a box designating the PSO algorithm that is used online to
dynamically adjust the PID parameters searching for optimal parameters.



On-Line Optimal Tuning of Quadcopter Attitude Confroller 749

B des (deg) - @ \ ‘ M 0 des (deg/s) Motors
—>»—— T FL/C —_— PID —_—
0 (deg) T T
0 (degss)
IMU
VN-100

Figure 4 Controller strategy for attitude stabilization.

4 Fuzzy Logic Controller (FLC)

Since Zadeh first introduced fuzzy set theory and Mamdani applied it to replace
operators in control many newly developed FL applications have emerged. All
these applications may be categorized into two distinct fields: control and expert
systems. Both fields apply inference and approximate reasoning using rule bases
with the aid of membership functions over fuzzy logic sets [0, 1] in contrast to
classical logic sets {0, 1}. In control applications, the two most widely accepted
fuzzy linguistic inference tools are the Mamdani and the Takagi-Sugeno methods.
This work considered a Mamdani-based FL controller design methodology.

The FL controller provides its crisp output (defuzzified) based on crisp input
(fuzzified internally) by utilizing the inference process via a rule base. Hence, the
FL controller design involves designing three stages: fuzzification, rule-base, and
defuzzification. Normally the FL controller design is sequential in the
fuzzification stage; the membership functions are first selected and partitioned
and then the rule base is constructed; finally, the defuzzification stage is
implemented. Figure 5 summarizes the conventional top/bottom design approach
and the main components of the FL controller.

The difficulty in designing a FL. controller comes from having to capture and
cover all the aspects of the system’s dynamics, which is heavily dependent on the
rule base and the selection of the membership functions (MF). The rule base
should be constructed in such a way that the rule set spans the solution space.
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On the other hand, the designer must choose the type of fuzzification (singleton
or non-singleton), the number of membership functions, the functional forms of
the membership functions (piecewise linear, Gaussian, sigmoidal), the
parameters of the membership functions (fixed or tuned during a training
procedure), the conjunction operator (t-norm, t-conorm), the implication or
inference operator [33], the aggregation operator (t-norm, t-conorm) and the type
of defuzzification (centroid, maxima, height). This demonstrates the richness and
flexibility of fuzzy controllers, but also it reveals the need for some guidelines
for their practical design.

Input/output
Signals Levels

Membership
Functions

Rules Base
Selection

Inference
Selection

Figure 5 FL controller structure and conventional design methodology.

The FL controller regulates the dynamical system according to a collection set of
rules (i.e. rule base) in the form of linguistic IF-THEN rules. For example: IF
error (e;) is big and the rate of change of error (dei/dt) is small, THEN the
controller output (u;) is medium, where: e; and dei/dt are the inputs and u; is the
FL controller’s rule fired output. Also, the big, medium and small are linguistic
terms in the membership function (fuzzy subsets) of universe U of discourse.
Traditionally, in the literature these sets of rules are presented in table form
instead of as a cascaded IF-THEN statement.

Since the quadcopter model being used is symmetric in the x and y directions, the
roll and pitch movements present the same dynamic. Therefore, the same
controller is capable of controlling both angles. The error in the roll and pitch
angle input is divided into five regions in the membership function: negative large
(NL), negative small (NS), zero (Z), positive small (PS) and positive large (PL).
Also, the rate of change is divided into five regions in the membership function:
negative large (NL), negative small (NS), zero (Z), positive small (PS) and
positive large (PL). Figure 6 shows the finalized input membership functions.
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Figure 6 Input membership functions.

The controller output for the angle reference is divided into five membership
functions: negative large (NL), negative small (NS), zero (Z), positive small (PS)
and positive large (PL). Figure 7 shows the output membership function.
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Figure 7 Output membership function.
Table 1 lists the used set of rules of knowledge base for the fuzzy inference

system for the roll and pitch controllers, while Figure 8 depicts the FL generated
control surface.
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Table 1 Fuzzy Rules for Attitude Control

0
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Figure 8 FL control surface.

5 PID Controller Tuning Using Particle Swarm Optimization

The literature shows that PID controllers have been applied successfully to
quadrotors with some limitations [7,9,10]. However, the tuning of the PID
controller may present challenges as it has to provide effective quadcopter
dynamical behavior around the balance point. Several researchers have
successfully used particle swarm optimization (PSO) based techniques to tune the
PID controller parameters during the design stage or as an offline experimental
technique; interested readers can consult the following recent references [25-27].
To achieve the desired performance in practice, an automated search technique
that is based on PSO needs to be implemented for tuning the PID controller’s
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gains [34-39]. The PSO search technique was first introduced by Kennedy and
Eberhart in 1995, which was based on fish school and bird flock behaviors.

Particle swarm optimization aims to find the minimum cost function in the search
space according to a few simple dynamical formulas. A good metaphor for the
PSO algorithm is to imagine a swarm of bees in a field searching for flowers. The
objective of the swarm is to find the location with the most flowers.

Basically, each bee conducts a random search and memorizes the densest location
of flowers it encountered. Also, by assuming that all the individual bees may
share the information about their best findings of locations, each bee will be
guided by its own personal discovery and by the best location reported by the
others. Consequently, by altering the direction of their trajectory to fly
somewhere between the two locations, the bees will explore the fields by
overflying locations with the highest concentrations and eventually will be drawn
to the densest flower location [40].

The following definitions and notes are needed to realize the PSO algorithm:

1. A number n = 3 of particles is used in PSO.

2. Every particle is identified by: current position P;, velocity v; and P;_ge in the

searched solution space.

All particles share their information about their best findings of locations.

4. The individual particle best position P; corresponds to its minimum evaluated

cost function J(p;) throughout its search journey.

The global best position is the best of all the best particle positions, Pgiobal.

6. The solution space is explored by driving the particles to move according to
their best findings and also influenced by the best locations reported by the
other particles. The mathematical representation of the swarm iterative
updates for all particles, n, is given by the following equations:

P(i)Bexr (t) ifJ (P(i)Be.rt (’)) SJ(P(i)Besr (Hl))
P(i)Besr (H'l) ifJ (P(i)Best (t)) > J(P(i)Best (Hl))

98]

b

By

i)Best (H-l) =

ey

P

Global(r) — min( J ( By pesi() ) J (P Global(r))) 2)
Figure 9 illustrates how the particles are moving and sweeping the solution space
intelligently and it also summarizes the used pseudo-algorithm. Each particle in
the swarm tracks its position by means of two vectors one accelerates the particle
in the direction of its own best and another towards the global best for the whole
swarm (best of the best). The advancement of the particles in the solution space
is controlled by a simple kinematic equation:



754 Musa Abdalla & Salam Baradie

P(t+1)=P(t)+Acr v,(¢) 3)

where At is the advancement in time (increment) and P; is the current location of
the particle (i.e. the solution). On the other hand, the particles’ velocities are
updated during the search with the following formula:

v, (t + 1) = v, (t) + clrand( )(P(I_)Bm (t) - P(;) (t)) +
czrana'( )[P(i)ﬂlobal (t) - P(z) (t))
where w is a scalar that generates some form of momentum for the particle taken

from the previous iteration. The value that was used in this study was changed
dynamically as well (in an adaptive fashion).

)

Figure 9 Particle movement in solution space.

The constants ¢l and c2 represent the emphasis toward the particle’s best or
toward the global swarm’s best, weighted by random terms. Typical values from
the literature for these weights are within the interval [0 4]. The local best is the
best value of the solution attained by the particles and the global best is the best
value of the solution attained by the whole swarm. The stochastic behavior of the
PSO algorithm is realized by giving two random sequences.
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Figure 10 PID tuning process.

In this implementation, the objective is to find the minimum error in the fitness
function, where the fitness of the particle is evaluated based on the system’s step
responses. It is estimated using the sum square error (SSE). This will also act as
a stopping criterion for the algorithm in conjunction with the maximum number
of iterations allowed, i.e. once the iteration reaches the set maximum value the
quadcopter stops the calibration process and the best result obtained is stored for
further processing. The complete controller’s tuning process is summarized and
depicted in Figure 10 as a flowchart. This algorithm will be executed in real time
as mentioned above. This poses some challenges but the produced results are
worth the effort of getting them.
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6 Experimental Verification and Validation

An in-house built quadcopter and testing platform was used to verify and validate
the effectiveness of the proposed real-time PSO algorithm for tuning the PID
controller parameters. Figures 11 and 12 depict an image of the quadcopter and
the corresponding block diagram of the main units. The control algorithms were
implemented on an STM32F4 - ARM Cortex-M4 board, where the board used
different methods and protocols to communicate with the remaining hardware
units. Each quadcopter motor was powered and controlled by its own electronic
speed controller (ESC) that provided a 3-phase alternating current. The ESCs
keep each motor rotating at an rpm value determined by a pulse width they
receive from the MCU board. An inertial magneto unit (IMU) equipped with
magnetometers, gyroscopes and accelerometers was used to provide all the
needed measurements (i.e. filter algorithms, bias estimation and magnetometer
calibration) to operate the quadcopter. The IMU ran at a frequency of 400 Hz and
the control loop at a rate of 250 Hz, which is the frequency of main loop.

Radio Controller )
4 STM32F4

5inch Prop ESC

2450 KV Motor

VN-100
IMU

Figure 11 Quadcopter testing platform.

Initially, the parameters ¢ (roll), 6 (pitch), and y (yaw) were all set to zero
degrees. Since the model used is symmetric in the x and y directions, the same
controller is capable of controlling both angles. The quadcopter is started with a
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stock PID value and when the PSO is activated by the user, the initialization of
the PSO will start to set the maximum iteration fixed to 25 with three swarm
particles. After that the PSO starts updating the particle position and velocity
every 16 seconds for pitch angle with a fixed desired angle (zero degrees). After
the iteration reaches the maximum number of iterations, the stop criterion is
satisfied and the best gain is stored. Performance is satisfied around a constant
set point (zero degrees), however, the user can select another state to optimize it.
After achieving the optimized gain, the user can select the optimization under a
variable desired angle, where the user’s desired value is changed every 1.5
seconds to find the optimal gains, which should improve the stabilization of the
quadcopter.

Motors
STM32F4 ’
i i S T A R TR T ; y
Radio PWM-Input : |
Receiver [ Captur T bt
- PWM
Controller —_— ESC
VectorNav : :
VN-100 ——UART- - 7
IMU :
UART

Figure 12 Quadcopter testing platform.

Figure 13 depicts the tuned PID controller parameters and the corresponding cost
function. The quadcopter roll controller performance was evaluated for a period
of 16 seconds. The initial controller gains were taken as (ky= 0.85, ki= 0.04, with
fix ka=40). After releasing 25 swarms searching the solution space, the algorithm
reached the optimal gain, marked with white points in the top area, while the
initial controller gain in the bottom area was taken from the previous global best
swarm and the integration gain was fixed. The (k, and kq) was optimized after
reaching the 25th iteration; the optimized gain is marked with white points in the
bottom area. The quadcopter yaw controller performance was also evaluated for
a period of 16 seconds with the initial controller gainstaken as (kp = 1.1, ki =
0.07. After 25 swarms the algorithm reached the optimal gain, marked by white
points in the surface, as shown in Figure 14.
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Finally, the quadrotor controller performance was evaluated for a period of 2.5
seconds while varying the desired angle. The initial controller (shown in blue in
Figure 15) performed poorly but was stable. In contrast, the optimized controller
(shown in red) showed an optimized, smooth, and fast response. The other
controller parameters that were evaluated are shown in gray.

0.056

0.052

Cost Function

. “’\
- d/%/;“ )
- '~
WG 7
>
P

0.042 =
N : '
i

0.04

Cost Function

Figure 13 Quadcopter iterating tuning using real-time PSO.
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Figure 14 Quadcopter roll iterating tuning using real-time PSO.

Pitch optimized controller
= Roll optimized controller
s Desired

Pitch initial controller
wes. Roll initial controlier
PSO leration

0.5 1 15 2 25 3 35 o 45 5
Time [sec]

Roll optimized controller
e Desired

Roll initial controller
PSO Iteration

0.5 1 15 2 25 3 35 4 45 5
Time [sec]

Angle [degree]

Angle [degree]

20

=)

— Pitch optimized controlier
e Desired

s Pitch initial controlier
PSO lteration

0 0.5 1 15 2 25 3 35 4 45 5
Time [sec]

— a1 Oplimized controller
e Desired

|
(—Yaw initial controller
PSO lteraton

0 05 1 15 2 25 3 35 4 45 5
Time [sec]

Figure 15 Quadcopter step responses for all swarms for pitch, yaw and roll.
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Figure 16 depicts a series of user-defined steps and the corresponding quadcopter
angle responses that resulted from using the optimized real-time tuning using
PSO. The figure shows the roll angle command response of the quadcopter in
carrying out the user inputs. Such good performance would not be possible
without real-time tuning.

The figure also depicts the quadcopter roll angle response during a ten-second
disturbance period generated by artificial wind produced by a fan. The curve
illustrates how the quadcopter oscillated and represents the effectiveness of the
tuned PID controller. The controller was able to compensate for the disturbance
effect and preserved quadcopter stability.
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Figure 16 Roll, pitch and yaw angle step responses.

7 Conclusions

In this paper, a novel proportional, integral and derivative (PID) controller real-
time tuning algorithm based on particle swarm optimization (PSO) search
strategy was presented. The tuning strategy was tested on a laboratory
experimental quadcopter platform with a fuzzy logic controller on board to
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provide proper velocity reference signals to serve as tracking set points to be
achieved by the PID controller.

Optimum PID working-parameters were successfully produced in real time by
the PSO algorithm. The quadcopter response enhancement due to utilizing the
new tuned parameters was clear. This technique seems to be insensitive to errors
in the mathematics or modeling errors of the system in contrast to offline tuning
strategies but is a little riskier.
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