J. Indones. Math. Soc. (MIHMI) Vol. No. , pp. 27Ae38. ON CERTAIN CLASSES OF P -VALENT FUNCTIONS DEFINED BY MULTIPLIER TRANSFORMATION AND DIFFERENTIAL OPERATOR Tehranchi . Kulkarni and G. Murugusundaramoorthy Abstract. In this paper, we discuss the p-valent functions that satisfy the differential subordinations z(Ip . ,)f . Oe. (Ip . ,)f . O a . B (AOeB))z a. We also obtain coefficient inequalities, extreme points, integral representation and arithmetic mean. Further we investigate some interesting properties of operators defined on Ap . , j, , a. B). INTRODUCTION Denote by A the class of functions f . = z Oe n=2 an z n analytic in D = . OO C : . < . Also denote Ap the class of all analytic functions of the form f . = kz p 2pOe1 tnOep 1 z nOep 1 Oe 2 F1 . , b. , . < 1 n=pOe1 2 F1 . , b. , . , . , . tnOep 1 . , . n! e. = a. 1, n Oe . , c > b > 0, c > a b and e. , n Oe p . , n Oe p . , k > 0. , n Oe p . Oe p . ! Received 14 August 2005, revised 28 July 2006, accepted 2 August 2006 . 2000 Mathematics Subject Classification: 30C45, 30C50. Key words and Phrases: Multivalent function. Differential subordinations, multiplier transformation, differential operator. Tehranchi . Kulkarni and G. Murugusundaramoorthy These functions are analytic in the unit disk D (For details see . , . Definition 1. A function f OO Ap is said to be in the class SpO () , p-valently n 0 o . starlike functions of order , if it satisfies Re zff . > , . O < p, z OO D). We note that Sp . = Sp , the class of p-valently starlike functions in D. A function f OOnAp is said to o be in the class Cp () of p-valently convex of order , if it satisfies . Re 1 zff 0 . > , . O < p, z OO D). Let h. be analytic and h. = 1. A function f OO Ap is in the class SpO . if zf 0 . O h. , f . z OO OI. The class SpO . and a corresponding convex class Cp . are defined by Ma and Minda . But results about the convex class can be obtained easily from the corresponding result of functions in SpO . = 1Oez then the classes reduce to the usual classes of starlike and convex functions. = 1 . Oe. z , 0 O < p, then the classes reduce to the usual classes of starlike 1Oez 1 Az and convex functions of order . If h. = 1 Bz Oe 1 O B < A O 1, then the classes reduce to the class of Janowski starlike function SpO [A. B] defined by 1 Az f OO Ap : 1 Bz SpO [A. B] = Oe 1 O B < A O 1, z OO D . , 0 < O 1, then the classes reduce to the classes of strongly If h. = 1Oez starlike and convex function of order that consists of univalent functions f OO A AA 0 AA Aarg zf . A < A , 0 < O 1, z OO OI f . A or equivalently we have SS O () = f OO Ap : 1Oez , 0 < O 1, z OO OI . ObradovicU and Owa . Silverman . ObradovicU and Tuneski . and Tuneski . have studied the properties of classes of functions defined in terms of the ratio of . 1 zff 0 . and zff . On certain classes of p-valent functions Definition 1. A function f OO Ap is said to be p-valent Bazilevic of type and order if there exists a function g OO SpO such that zf 0 . 1Oe . > , . OO OI) . for some ( Ou . O < . We denote by Bp (, ), the subclass of Ap consisting of all such functions. In particular, a function in Bp . , ) = Bp () is said to be p-valently close-to-convex of order in OI. Definition 1. For two functions f and g, analytic in OI we say f is subordinate to g denoted by f O g if there exists a Schwarz function w. , analytic in OI with w. = 1 and . | < 1, such that f . = g. ), z OO OI. In particular, if the function g is univalent in OI, the above subordination is equivalent to f . = g. , f (OI) OC g(OI). Also, we say that g is superordinate to f . Using the techniques of Cho and Srivastava. ,Cho and Kim. and Uralegadi and Somanatha. we define the following transformation. Definition 1. We define the multiplier transformation operator Ip . , ) on the O infinite series f . = z p Oe an z n as n=p 1 O AA n Ip . , )f . = z Oe an z n , ( Ou . n=1 p We note that SaUlaUgean derivative operators . is closely related to the operators Ip . , ) when the coefficient of f . is positive. Also note that the class I1 . , . = Ir . ,I1 . , ) = Ir the classes studied in . Definition 1. For each f . = z p Oe n=p 1 = an z n we have O z pOej Oe an z nOej Oe . ! Oe n=p 1 where n, p OO N, p > j, and j OO N0 = . O N . For j = 0 we have f . = f . Definition 1. A function f OO Ap is said to be in the class Ap . , j. if it satisfies z(Ip . , )f . O h. Oe . (Ip . , )f . Tehranchi . Kulkarni and G. Murugusundaramoorthy h. = 1 A Oe B z a 1 Bz z OO OI, and Oe1 O B < A O 1, 0 < < p, a > 0 , we denote Ap . , j. = Ap . , j, , a. B). We say that f . is superordinate to h. if f . satisfies the following h. O z(Ip . , )f . Oe . (Ip . , )f . where h. is analytic in OI and h. = 1. We note that if z(Ip . , )f . Oe . B (A Oe B)). O . (Ip . , )f . ) so h. = 1 by choosing j = r = 0, p = 1, then f . OO SpO . Also a = A = = 1. B = Oe1, f . OO SpO . But if a = = 1 and Oe1 O B < A O 1 then f . OO S O [A. B], class of Janowski starlike function. If we put p = a = = A = 1. B = Oe1 then f . OO SS O . classes of strongly starlike. By Definition 1. , if g. starlike and j = r = 0 and p = a = n OO S 0 , univalent zf . A = = 1. B = Oe1 and if Re f . Oe1 g2 . > 1, then f . OO B. , . class Bazilevic function of type = 2 and order = 1. MAIN RESULTS In this section we obtain sharp coefficient estimates for functions in Ap . , j, , a. B). Theorem 2. Let f . be of the form . Then f OO Ap . , j, , a. B) if and only if a. B)(. , . Oe . Oe . , j . ) . , . Oe . , . km < 1 (A Oe B). , j . , j . m=p 1 Ar r . , . = m p . Oe . ! Oe 1 O B < A O 1, 0 < < p, j < p. , . = . Ou 0, p, r OO N On certain classes of p-valent functions Proof. The function f . of the form . can be expressed as f . = z p Oe knOep 1 z nOep 1 , or n=2p f . = z p Oe km z m m=p 1 where m = n Oe p 1 and km = . m! , and also we have for all r, j OO N0 (Ip . , )f . ) Ar p! m pOej km z mOej Oe . ! Oe m=p 1 , . z pOej Oe , . , . km z mOej . m=p 1 Let f . OO Ap . , j, a, . B) then A az(Ip . , )f . Oe a. Oe . (Ip . , )f . A A R. Oe . (I . , )f . Oe Baz(I . , )f . A < 1 where R = aB (A Oe B). Now, we can write , . , . Oe . Oe . , j . )km z mOej m=p 1 < 1. , . , . Oe . R Oe . , j . km z mOej (A Oe B). , j . z pOej Oe m=p 1 We choose the values of z on the real axis and letting z Ie 1Oe then we have O , . , . Oe . Oe . , j . )km m=p 1 (A Oe B). , j . , . B(. , . Oe . Oe . , j . ) Oe . , . (A Oe B). Oe . )km m=p 1 , . B)(. , . Oe . m=p 1 Oe. , j . ) Oe . , . (A Oe B). Oe . ]km < (A Oe B). , j . Conversely, we assume that the condition . holds true. Hence it is sufficient to show that f OO Ap . , j, , a. B), that is to prove that A az(Ip . , )f . Oe a. Oe . (Ip . , )f . A A . Oe . R(I . , )f . Oe Baz(I . , )f . A < 1. < 1, Tehranchi . Kulkarni and G. Murugusundaramoorthy But we have A az(Ip . , )f . Oe a. Oe . (Ip . , )f . A A . Oe . R(I . , )f . Oe Baz(I . , )f . A O = |. , . , . Oe . Oe . , j . )km z mOej ]/ m=p 1 [(A Oe B). , j . z pOej Oe r . , . B(. , . Oe . Oe . , j . ) Oe m=p 1 . , . (A Oe B). Oe . )km ]| O < {. , . , . Oe . Oe . , j . )km ]/ m=p 1 [(A Oe B). , j . O Oe r . , . B(. , . Oe . Oe . , j . ) Oe m=p 1 . , . (A Oe B). Oe . )km ]} < 1 and so proof is complete. The inequality . is sharp for the function f . = z p Oe (A Oe B). , j . , . B)(. , . Oe . Oe . , j . ) Oe . , . (A Oe B). Oe . ] with q Ou 1 p. Corollary 2. Let f OO Ap . , j, , a. B) then we have (AOeB). ,j . km < r . B)(. Oe. Oe. ,j . )Oe. (AOeB). Oe. ] . with m Ou p 1 In the next theorem we prove that the class Ap . , j, , . B) is closed under linear combination. Theorem 2. Let fq . = z p Oe Then the function F . = O m=p 1 km,q z m . = 1, 2. A A A , . be in Ap . , j, , a. B). dq fq . where dq = 1, is also in Ap . , j, , a. B). On certain classes of p-valent functions Proof. We have F . = z Oe km,q z m=1 p yE t m=1 p = z Oe = z Oe . , . O km,q z m=1 p dq km,q (A Oe B). , j . , . Oe . Oe . , j . yE t dq dm,q O a. B)(. , . Oe . Oe . , j . ) . , . Oe . , . Oe (A Oe B). , j . , j . Hence we obtain O a. B)(. , . Oe . Oe . , j . m=1 p m=1 p dq = 1. Now we prove that the class Ap . , j, , a. B) is closed under arithmetic mean. Theorem 2. Let fj . = z p Oe m=1 p km,q z m . = 1, 2. A A A , . are in Ap . , j, , a. B). Then the function F . = z p Oe m=1 p bm z m where bm = 1s km,q , is also in Ap . , j, , a. B). Proof. Since fj . OO Ap . , j, , a. B), then by . we have O a. B)(. , . Oe . Oe . , j . ) . , . Oe . Oe r . , . (A Oe B). , j . , j . m=1 p km,q < 1, q = 1, 2, 3. A A A s. Therefore . , . B)(. Oe. Oe. ,j . ) Oe . Oe. (AOeB). ,j . ,j . Oe. = m=1 p r . , . B)(. Oe. Oe. ,j . ) Oe (AOeB). ,j . ,j . Ps APO B)(. Oe. Oe. ,j . ) . Oe. O s q=1 Oe . ,j . km,q m=1 p . , . (AOeB). ,j . O q=1 1s = 1 m=1 p and this completes the proof. Theorem 2. (Extreme Point. Let fp . = z p and for m Ou 1 p fm . z p Oe (A Oe B). , j . , . B)(. , . Oe . Oe . , j . ) Oe . , . (A Oe B). Oe . ] Tehranchi . Kulkarni and G. Murugusundaramoorthy Then the function f . OO Ap . , j, , a. B) if and only if it can be expressed in the O AAm fm . = where AAm Ou 0 and O AAm = 1. Proof. Suppose that f can be expressed in the form . then we have O AAm fm . AAp fp . AAm fm . m=p 1 AAp z p AAm . p Oe m=p 1 (A Oe B). , j . , . B)(. , . Oe . Oe . , j . ) Oe . , . (A Oe B). Oe . ] O z p Oe m=1 p Consequently O (A Oe B). , j . z m AAm r . , . B)(. , . Oe . Oe . , j . ) Oe . , . (A Oe B). Oe . ] r . , . m=p 1 a. B)(. , . Oe . Oe . , j . ) . , . Oe . Oe (A Oe B). , j . , j . (A Oe B). , j . AAn r . , . B)(. , . Oe . Oe . , j . ) Oe . , . (A Oe B). Oe . ] O AAm = 1 Oe AAp < 1. m=1 p Therefore we conclude the result. Conversely, let f OO Ap . , j, , a. B) since by . we may set AAm = r . , . km a. B)(. , . Oe . Oe . , j . ) Oe . , . (A Oe B). Oe . (A Oe B). , j . with m Ou 1 p. Therefore AAm Ou 0 and if we set AAp = 1 Oe m=1 p AAn then we can f . z p Oe km z m m=1 p z p Oe m=1 p (A Oe B). , j . AAm z m , . B)(. , . Oe . Oe . , j . ) Oe . , . (A Oe B). Oe . ] On certain classes of p-valent functions z p Oe AAm . p Oe fm . ) m=1 p z p . AAm ) Oe m=1 p AAm fm . m=1 p AAm fm . Remark 2. The extreme points of the class Ap . , j, , a. B) are the function fp . , fm p . , m Ou 1 p as in Theorem 2. In the following theorem, we obtain the integral representation for Ap . , j, , a. B). Theorem 2. Let f . OO Ap . , j, , a. B) then AZ z p(O. R . = exp 0 t. BO. ) where |O. | < 1, z OO U and R = aB (A Oe B). Also AZ p(AOeB) f . = z exp log. Oe Bx. dAA. where AA. is the probability measure on X = . : . = . Proof. Set z(Ip . , )f . = Q. Oe . (Ip . , )f . A a(Q. Oe. A Since f . OO Ap . , j, , a. B) so A ROeaBQ. A < 1 where R = aB (A Oe B). a(Q. Oe. = O. , |O. | < 1. Consequently we put ROeaBQ. R a Finally we can write Q. = a aBO. (Ip . , )f . Oe . (O. R . BO. ) (Ip . , )f . Then we have log(Ip . , )f . ) . Z z . (Ip . , )f . ) AZ z = exp . Oe . (O. R . BO. ) . Oe . (O. R . BO. ) Tehranchi . Kulkarni and G. Murugusundaramoorthy for r = j = 0 we have AZ z p(O. R . BO. ) f . = exp For obtaining the second representation let X = . : . = . then we have a(Q. Oe. ROeaBQ. = xz, z OO OI and then we conclude that (Ip . , ). (Ip . , )f . Oe . Oe . (A Oe B) . Oe . (Rxz . Bx. Bx. x(A Oe B) . Oe . Bx. log(Ip . , )f . ) (A Oe B) log. Bx. = . Oe . Oe . (A Oe B) (Ip . , )f . Bx. pOej Oe. (AOeB) . pOej dAA. (Ip . , )f . ) = z log. Oe Bx. where AA. is probability measure on X. For j = r = 0 we have AZ f . = z exp log. Oe Bx. p(AOeB) dAA. Now, we introduce an integral operator due to Bernardi . Lc . ) = Z z f . tcOe1 dt, . > Oe. and we study the effect of this operator on class Ap . , j, , a. B). Theorem 2. If f OO Ap . , j, , a. B) then Lc . ) is also in Ap . , j, , a. B). Proof. If f . = z p Oe m=1 p Lc . ) = km z m then z p Oe Z zyE t Oe m=1 p km z m . m=1 p tcOe1 dt On certain classes of p-valent functions Since m > p then m c O 1 so we have a. B)(. Oe. Oe. ,j . ) . Oe. Oe m=1 p (AOeB). ,j . ,j . m c km PO Oe . Oe. km < 1. O m=1 p r . , . B)(. Oe. Oe. ,j . ) (AOeB). ,j . ,j . PO Thus Lc . ) OO Ap . , j, , a. B). REFERENCES