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Abstract

Over the past decade, Passive Optical Networks (PONs) have
emerged as a leading solution for next-generation broadband
access, providing high-speed and cost-effective communication.
However, PONs face significant security challenges, including data
interception, denial-of-service (DoS) attacks, and resource
exhaustion caused by malicious Optical Network Units (ONUs).
Machine learning (ML), particularly advanced models like Light
Gradient Boosting Machine (LightGBM), has proven to be a
promising solution for managing complex security issues in PONSs.
Leveraging its ability to handle imbalanced, high-dimensional
datasets, LightGBM was employed in this study to detect and classify
malicious ONUs based on bandwidth usage patterns. The model
achieved an impressive accuracy of 95.27%, a Matthews Correlation
Coefficient (MCC) of 90%, and a precision rate of 93%. While
traditional classifiers, such as Naive Bayes (NB), achieved an
accuracy of 88.53%, LightGBM demonstrated superior robustness in
addressing class imbalance and enhancing detection accuracy. This
work highlights the potential of LightGBM in enhancing PON security
and enabling intelligent, resilient broadband networks.
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INTRODUCTION

Passive Optical Networks (PONs) have
emerged as a premier approach for alleviating
access congestion challenges in recent years.
Their capability to deliver higher transmission
speeds, guaranteed consistent quality of service
(QoS), and cost effectiveness has solidified their
position as the leading fiber-access network
option [1, 2, 3, 4, 5, 6]. It functions through tree
topology, which connects one point to multiple
endpoints, providing user access. In a standard

branched by an optical power splitter, allowing a
single fiber to route ftraffic exchange in the
connection linking the optical line terminal (OLT)
and the optical network units (ONUSs) [7]. Typically,
the communication channels connecting these
two elements utilize distinct wavelengths: 1490
nm is used for downstream transmissions, while
1310 nm is used for upstream transmissions. Due
to the inherently passive design of the PON
network, it offers a high level of security, creating
substantial difficulties for any potential attackers

time-division multiplexing (TDM) PON attempting to intercept the optical signal [5]. For
configuration, an optical fiber is passively example, Gigabit PON (GPON) incorporates
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security measures like data encryption, identity
authentication, and key management, along with
other functionalities. However, recent studies
have shown that attackers have devised multiple
techniques, including splitting and bending
attacks, to illicitly access a PON network [8]. This
setup can potentially be exploited by malicious
entities. aiming to disrupt the standard operations
related to the ONU within the medium access
control (MAC) layer. In these scenarios, rogue
ONUs might intercept sensitive information
intended for other ONUs, which could result in
stealing information.

Every ONU is required to comply and
function in accordance with the dynamic
bandwidth algorithm (DBA) agreement, which
might lead to network vulnerabilities that
potentially undermine the security of the DBA
mechanism. Avoiding this is crucial for optimal
GPON functionality. During the DBA process, a
degradation attack attempts to acquire additional
bandwidth at the expense of other ONUs rather
than causing a complete disruption of GPON
operations. Nevertheless, countering degradation
attacks remains a difficult challenge. Numerous
strategies have been suggested in scholarly
literature to counter such network threats. For
instance, one method to mitigate IP spoofing and
DOS attacks involves labelling network packets
and tracking their origin at the perimeter routers.
Another method is to block out these spoofed
packets at the perimeter routers using hop limit or
time to live filter as a criteria [9].

Given that PON operates within access
networks, whereas its DBA operates primarily
within the medium access control layer, a DoS
attack directed within the network and transport
layers would notably increase traffic frames in both
the downstream and upstream links of a PON [10].
Several other potential attacks include IP
spoofing, routing attacks, selective forwarding
attacks, session hijacking attacks, port scanning
attacks, and distributed denial-of-service attacks.
Specifically, an ONU under attack will experience
a heightened demand for bandwidth in the
upstream shared link. The increased bandwidth
demand will decrease the bandwidth available to
other normal ONUSs. A typical (DBA) scheme for
managing upstream bandwidth often falls short in
addressing this situation.

The high accuracy of predictions when
machine learning (ML) methods with real traces
are employed in Next Generation Ethernet
Passive Optical Network (NG-EPON )for detecting
network traffic has been illustrated in [11]. The
proposed approach utilizes a single Long Short-
Term Memory (LSTM) model at the location of the

Optical Line Terminal (OLT) for forecasting the
bandwidth requirements of all ONUs under
various network loads. It was demonstrated that
applying ML algorithms for traffic prediction
enhances performance in the context of NG-
EPON. This success was mainly attributable to the
ability to gather and utilize knowledge effectively.
This method demonstrates that high-performing,
intelligent  communication  strategies can
significantly enhance or potentially replace
traditional network control in the near future.

Additionally, [12] proposed an intelligent
approach for classification and prediction within
PON. The authors introduced an advanced
classification technique that autonomously and
incrementally predicts and categorizes future
traffic into various types using LSTM and Gated
Recurrent Unit (GRU) models. Similarly, [13]
sought to illustrate the detection and classification
of events within the PON applications for network
traffic monitoring by incorporating Long Short-
Term Memory (LSTM) with (a) an ensemble
classifier and (b) a neural network, respectively.
Also, [14] focused on demonstrating fault
detection in PON by applying a Support Vector
Machine (SVM) classifier.

Nevertheless, most of the existing DBA
algorithms, with only a few exceptions, lack
security awareness and tend to overlook potential
network attacks, hence security has become an
emerging topic in optical access networks.
Notable studies on secure bandwidth allocation
algorithms include Drakulic et al. [15] and Fadila
et al. [16]. However, they do not incorporate ML
techniques as security measures, including threat
detection and mitigation techniques rely on
collision monitoring per ONU. This approach
identifies only the ONU with the fewest collisions
as a measure of potential threat and imposes
penalties accordingly.

Previous  studies  primarily  utilized
algorithms such as Naive Bayes, Support Vector
Machines (SVM), Decision Trees, and mostly
LSTMs for classification tasks. While these
models demonstrated satisfactory performance in
terms of classification accuracy, region of
convergence (ROC), and precision, their
performance was inferior to modern ensemble
techniques like Light Gradient Boosting Machine
(LightGBM). For instance, a previous study in [12]
employed LSTM and GRU in industrial passive
optical networks for a dynamic bandwidth
allocation algorithm based on traffic classification.
Similarly, the study in [22] explored the synergistic
use of XGBoost, TABPFN, and LightGBM for
enhancing classification performance. LightGBM's
strengths, such as handling class imbalance and
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efficiently processing large datasets, enabled

superior classification of security attacks in PONs.

It outperformed older methods in accuracy,

precision, and ROC metrics, reliably distinguishing

between attack types and advancing real-world

PON security applications.

In summary, the results from studies
relating to machine learning methods applied in
PON models have potential that are outlined as
follows [12, 13, 14, 15]:

1. Supervised learning  techniques are
commonly used. While K-Nearest Neighbors
(KNN), SVM, and Bayesian algorithms have
witnessed increased research attention given
their prevalence in many studies, limited
studies are available on PON models.

2. Most of the supervised learning methods
consistently achieve high mean accuracies,
exceeding 90% in detection effectiveness
across different assessment criteria.

3. In PON implementations, the majority of
studies have utilized SVM and Decision Tree
(DT) methods.

4. Different kinds of datasets have been
employed. Certain studies have utilized data
from online sources like Kaggle, whereas
some have generated datasets through flow
generation methods for use with machine
learning algorithms.

5. No studies have identified the main attributes
of flow records in PON (including priority and
action attributes) for all types of datasets
employed in existing machine learning
approaches.

6. Precision, recall, and F1-score are the primary
frequently employed evaluation metrics for
assessing the performance of ML algorithms
in most research. Conversely, accuracy and
execution time are rarely utlized as
performance measures.

In view of the above trends, this paper aims
to address the gap in detecting and mitigating
various security threats, such as eavesdropping,
DoS attacks, masquerading, and Theft of Service
(ToS) in PON, by classifying malicious vs normal
ONU using ML algorithms. Additionally, we
propose a novel approach using Borderline-
SMOTE post data processing that can further
refine a model's performance on imbalanced
datasets, especially after an initial model has been
trained. This method focuses on adjusting and
enhancing the model's predictions by generating
synthetic samples specifically in regions where the
model misclassifies minority class instances.

It is an effective strategy for handling class
imbalance, particularly when the initial model has
difficulty with minority class instances near the
decision boundary. By generating synthetic
samples in these critical regions and re-training
the model, better classification performance
through improved recall and more balanced
precision can be achieved, ultimately leading to a
more robust and reliable model.

The rest of this paper is structured as
follows: Section 1l reviews related work on
machine learning algorithms applied in the PON
domain. The proposed methods are outlined in
Section Ill. Section IV provides a detailed account
of the experimental findings and discussion. In the
end, Section V concludes the paper and highlights
future directions.

METHOD

The model proposed throughout the study
consists of two primary stages: detection and
classification. Figure 1 illustrates the proposed
model for identifying and classifying malicious
ONUs. The initial phase involves distinguishing
between malicious and normal ONUs. In this
phase, the algorithms assess the impact of a
DDoS attack to monitor the behavior of ONUs.
Features of a DDoS attack, such as bandwidth
usage, are crucial for distinguishing between
normal and malicious ONUs. Consequently, the
results from these feature-checking methods
determine whether the ONUs are normal or
malicious. Normal ONUs are passed directly,
while malicious ONUs are sent to the next phase
for further classification. The algorithms proposed
for detecting malicious ONUs, the SVM
algorithms, were developed and implemented to
boost their effectiveness regarding accuracy and
execution time.

The SVM algorithm was selected because
it has demonstrated strong performance in prior
research across various PON applications [19].
Figure 1 shows the algorithmic steps employed in
detecting malicious ONUs. The processes
included in the detection stage are as follows.

1. Execute and operate the method.

2. The method examines the characteristics of
ONUs.

3. The method examines the priority and
bandwidth usage of each ONU.

4. The malicious ONUs are forwarded to the
classification algorithm.
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Figure 1. The proposed model for identifying and classifying ONUs
The second stage of the proposed n
framework involves the classification of ONUs. In L= Z 2 2)
this stage, the DDOS attacks identified during the L 6G-=-9
i

detection stage are analyzed by an algorithm to
assess the behavior of the ONUs. The three
characteristics of ONUs are priority, bandwidth,
and time. Once the checking process is complete,
the ONUs is classified. Figure 1 also shows how
the LightGBM algorithm is used to classify
malicious ONUs. The procedure involved in the
classification stage can be outlined as follows:
1. Execute and operate the LightGBM classifier
method.
2. The method starts by detecting malicious
ONUs.
3. The method examines the priority and
bandwidth usage of each ONU.
It then classifies the types of ONUs based
on the features assessed in step 3.

Gradient Boosting Algorithm

Gradient boosting is a type of ensemble
learning method. Unlike the Naive Bayes method,
where models are created independently,
ensemble boosting builds models sequentially,
iteratively reducing the errors of previously
learned models [18]. It develops a predictive
model by combining M additive tree models (fy, f1,

f2, . . ., fu) to forecast the outcomes (1).
16 = ) () M
m=0

The tree ensemble model is optimized by
minimizing the expected generalization error L, as
described in (2).

L represents a loss function that quantifies
the difference between the target value yi and the
predicted value y for a given data point. There are
three main motivations to use an ensemble-based
approach.

Statistical

Combining and averaging multiple
learners enhances data learning and reduces the
risk of selecting inappropriate classifiers.

Computational

During learning, finding a local optimum to
accurately represent data, such as decision
boundaries, is computationally challenging. For
instance, neural networks use gradient descent to
minimize the loss function, starting from a single
point. Ensemble methods, however, leverage
multiple starting points for local searches,
enabling more accurate estimations of functions
like decision boundaries compared to individual
classifiers.

Representational

In some cases, a single classifier may
struggle to capture complex decision boundaries.
Ensemble-based learning addresses this by
combining diverse decision boundaries from
multiple classifiers [20]. Gradient boosting
enhances classifier robustness by reducing
variance and bias while mitigating individual
shortcomings. This study utilizes LightGBM, a
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novel and highly efficient gradient boosting
algorithm, to build a more robust model.

Light Gradient Boosting Machines

LightGBM [21] is a gradient boosting
method that employs a vertical, leaf-level tree-
building approach. LightGBM selects the leaf with
the greatest loss reduction for splitting and uses
histogram-based methods to identify optimal
splits. To improve training, it employs Gradient-
based One-Side Sampling (GOSS), which
prioritizes data samples with larger gradients while
ignoring those with smaller gradients, assuming
they have fewer errors and are well-trained [20,
21,22, 23, 24, 25, 26].

Thus, GOSS recommends ignoring less-
informative data points and using the remaining
ones to compute information gain for optimal
splits. However, this can introduce bias toward
samples with larger gradients and distort the
original data distribution.

To address this issue, GOSS uses random
sampling for low-gradient data while retaining
high-gradient points. It compensates by increasing
the weights of low-gradient points during
information gain calculation. LightGBM uses a
unique feature grouping algorithm to address data
sparsity. LightGBM effectively handles data
sparsity and imbalance by merging mutually
exclusive features in a nearly lossless manner,
reducing feature count while retaining key
information. Using Gradient-based One-Side
Sampling (GOSS), it prioritizes samples with
higher errors, as those with lower errors are
considered adequately trained. Additionally, its
"Exclusive Feature Bundling" method enables
efficient processing of high-dimensional data, a
common challenge in sentiment analysis.

Algorithm LighgtGBM Training Process
Input: Traing data D = {(x;,3;)}, (x;e R", y;€Y)

Output: Multi-Class Classification

1. Target column contains multiple k classes.
2. Fori=1toT
3. Fit the classifier y;, calculate P(Y,, ) using Bayes theorem,
_ P(¥)P(X|¥m)
P(Y,lX)= W, 1=mzk
4. Maximum Likelihood Estimation
Given (x;, y;)e¥; & P(Y|X) > P(Y,[X),i=m
_ frequency(¥n in ¥train}
5. Compute P(Y,,) = pre—
6. Using conditional independence assumption, Fi.nd;|
P(X‘Ym) = Hgip(xilym)
1. Compute P(x;|¥) = g(x;, . 0y, ). Where 1y, , 0y, represent mean
And standard deviation.
8. end for.

Figure 2. LightGBM Training Procedure

The operation of LightGBM is illustrated
by the algorithm depicted in Figure 2. Additionally,
it has been shown that LightGBM achieves
quicker convergence than other algorithms within
the gradient boosting framework. As part of this
study, we adopt the identical hybrid method,
expected to be detailed in the section on related
work.

Naive Bayes

The algorithm applies Bayes' theorem,
assuming variable independence relative to the
class variable, a simplification rarely accurate in
practice, hence the term "Naive." Nonetheless, it
performs efficiently in controlled classification
tasks [27][28], as shown in (3) and (4) for
probability calculations under known conditions.

P(A|B) = P(A)P(B|4) (3)
P(A)P(%) (4)
P(B)

We develop a LightGBM classifier to
differentiate between ONUs (i.e., normal and
malicious). The performance of classifiers is
widely recognized as being highly dependent on
the features used for training. Throughout this
research, our goal is to accomplish the following.
1. Develop a classification model using LGBM to

analyze ONUs affected by DDOS attacks in
terms of bandwidth utilization.

2. Examine how the proposed features perform
on our dataset.

3. Explore the correlation between normal and
malicious ONUs derived from our dataset.

4. Compare LightGBM with another classifier,
specifically Naive Bayes.

5. Assess the effectiveness of the analysis.

We outline the additions of this study as
follows.

1. Create a cutting-edge LightGBM-based model
for analyzing DDOS attacks on ONUs.

2. Conduct comprehensive evaluations of
classification algorithms using different
feature subsets through experiments on our
dataset.

Where P(A|B) represents the probability of
event A occurring given that event B has occurred.
P(A) is the probability of event A occurring. P(B|A)
is the probability of the occurrence of event B
when event A occurs, P(B) is the probability of
event B occurring. The concept behind the Naive
Bayes algorithm is to determine the posterior
probability of a data instance ti in a class ¢j in
belonging to a class within the data model.

S. Bibi et al., An intelligent approach for detection and classification of security attacks ...
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Algorithm Naive Bayes Training Process

Input: Training data D = {(x;, y;)}, (x;e R", y;€¥)

Output: Multi-Class Classification

1. Target column contains multiple k classes.
2. Fori=1toT
3. Fit the classifier y;, calculate P(Y,,) using Bayes theorem,
_ PV )P(X|¥m)
P(Y,lX)= W, l=mzk
4. Maximum Likelihood Estimation
Given (x;,3;)eY; & P(Y|X) > P(¥,1X),i #m
_ Frequency(Vn in xergin)
5. Compute P(Y,,) = pr—
6. Using conditional independence assumption, Fi.nd;|
P(lem) = HELP(JCJY,,,‘)
1. Compute P(x;|¥,,) = g(x;, 4y, 0y, ). where p, o, represent mean
And standard deviation.
8. end for.

Figure 3. The Naive Bayes algorithm Training
Process

The posterior probability P (ti|c,-) represents
the likelihood that t; can be assigned the label c;. P
(ti|Cj) can be determined by multiplying the
probabilities of all attributes of the data instance
within the data model.

P(t; |Cj) ) T, P (t; lc;) (5)

Where P represents the number of attributes in
each data instance. The posterior probability is
computed for all classes, and the class with the
maximum probability is assigned as the label for
the instance. The flowchart for this algorithm is
shown in Figure 3.

RESULTS AND DISCUSSION

This section discusses the implementation
of Naive Bayes and LightGBM and the analysis of
the performance of these models based on
evaluation metrics. This work uses OMNET++
simulated data network comprising 64 ONUs and
one OLT with a fiber distance of 40 km in the ODN.
All the models were trained on a synthetic dataset
that was created to train a classifier to detect
malicious ONUs within a PON based on their
bandwidth usage patterns. This dataset includes
bandwidth demand profiles from ONUs recorded
under normal conditions and during simulated
attacks. The response variable for the binary
classification is labeled as 0 for normal ONUs and
1 for malicious ONUs. Predictive features include
each ONU's average and peak bandwidth
demands. Data cleaning involved removing
outliers from the bandwidth data. During the
simulation, ONUs were labeled as either malicious
or normal based on their behavior in attack
scenarios.

The Accuracy, Precision and MCC of the
proposed methods are computed using the
formulas given by (6), (7), and (8), respectively.

Procisi TP 6
recision = —mm
TP + FP 6)
TP + TN
Accuracy = (7)
(TP + TN — FP + FP
MCC =TP xTN — FP x FN (8)

The initial model used for analysis is Naive
Bayes. The model produces predictions based on
the validation set. Three distinct metrics were
computed for the predictions generated by the
model: Precision, Matthews Correlation
Coefficient (MCC), and Accuracy. The Naive
Bayes classifier achieved a precision of 81.185%,
an MCC of 80.503%, and an accuracy of 88.359%
using the validation data. Subsequently, the same
trained model was used to estimate the labels for
the test data. The values for True Positives (TP),
True Negatives (TN), False Positives (FP), and
False Negatives (FN) can be determined by
plotting the confusion matrix comparing the actual
predictions with the values predicted by our
model.

The detailed results of the confusion matrix
include True Positives (TP=31). The confusion
matrix offers a detailed breakdown of the
classifier's performance by displaying actual
versus predicted classifications, with True
Positives (TP=31). The model accurately identified
31 instances as positive. True Negatives (TN=16).
The model accurately predicted 16 instances as
negative. False Positives (FP=5) were incorrectly
predicted as positive, while False Negatives
(FN=0) were incorrectly predicted as negative, as
illustrated in Figure 4.

20

Actual Class

10

0 1

Predicted Class
Figure 4. Confusion matrix for actual class and
predicted class detection
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Roc Curve

The ROC curve demonstrates the
balance between sensitivity and specificity by
plotting the true positive rate against the false
positive rate at various threshold settings,
illustrating the trade-off between sensitivity and
specificity.

AUC (Area under Curve=0.88)

The AUC value of 0.88 indicates that the
model has good discriminative ability, as shown in
Figure 5. A model with an AUC closer to 1 is
considered excellent, while an AUC closer to 0.5
suggests no discriminative power.

These Performance Metrics are calculated.
The bar charts provide a summary of key
performance metrics: Accuracy, Precision, and
MCC are shown in Figure 6. The NB classifier
achieved a precision of 81.185%, an MCC of 80%,
and an accuracy of 88.359% using the validation
data.

Accuracy
The high accuracy demonstrates that the
model is reliable in its predictions.

Precision

The precision value indicates the model's
effectiveness in minimizing false positives, which
is particularly important in scenarios where false
positives are costly.

MCC (Matthews Correlation Coefficient)

A high MCC score indicates a strong overall
performance, accounting for true and false
positives and negatives. This is useful for a

comprehensive perception of the model’s
performance.
10] © =000 eememmme e g
08
%l)ti '}
204
0.2
T I | S NB = 0.88

0.0 0.2 0.4 0.6 08 1.0
False Positive Rate

Figure 5. ROC for Naive Bayes (NB)Classifier
with AUC 0.88 for ONU fault

M

H.‘-l_

Figure 6. Performance Metrics of Naive Bayes
(NB) Classifier for ONU Fault Detection:
Accuracy, Precision, and MCC

From the above discussion, it is observed
that the LightGBM model demonstrates excellent
performance across all evaluation metrics. Figure
7 shows the confusion matrix for actual and
predicted classes using the LGBM model, with
true negatives (19), false positives (2), false
negatives (0), and true positives (31). The model
demonstrates high accuracy, with only two
misclassifications, indicating strong predictive
performance.

The model's exceptional discriminative
ability is highlighted by the ROC curve in Figure 8,
where the LightGBM (LGBM) classifier achieves
an AUC of 0.95. This high AUC highlights the
model's strong ability to distinguish between
classes, outperforming the Naive Bayes classifier,
which typically has lower AUC scores due to its
simplifying assumptions and limitations.

30
= 2 25
20
”
%
] 15
10
- 0 &
5
0
0 1

Predicted Class

Actual Cla

Figure 7. Confusion matrix for the actual class
and predicted class.
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Figure 8. ROC for LightGBM Classifier with AUC
0.95 for ONU fault detection
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Figure 9. Performance Metrics of LightGBM
Classifier for ONU Fault Detection: Accuracy,
Precision, and MCC

Figure 9 shows the performance metrics of
the LightGBM classifier for ONU fault detection,
focusing on Accuracy, Precision, and MCC. The
LGBM classifier achieved a precision of 93%, an
MCC of 90%, and an accuracy of 95.27% using
the validation data. The high accuracy reflects the
model's overall correctness in predictions, while
the high precision indicates its ability to minimize
false positives, making it reliable for fault
detection. Additionally, the high MCC score
demonstrates the classifier's balanced and robust
performance, accounting for all aspects of the
confusion matrix, even in scenarios with potential
class imbalance. Overall, the results confirm the
effectiveness of the LightGBM classifier in
accurately detecting ONU faults.

Based on Table 1, the LGBM model
outperforms NB in all metrics, making it the
superior choice for detecting security threats and
classifying ONUs. While NB is simpler and more
efficient, its performance is lower.

Table 1. Performance of our models at detecting
security threats and classifying ONUs

Accuracy MCC Precision
Model (%) (%) (%)
LGBM 95.27 90 93
NB 88.36 80.50 81.19

For optimal threat detection with minimal false
positives, LGBM is preferred.

CONCLUSION

This study evaluates the classification of
normal and faulty ONUs using LightGBM and
Naive Bayes (NB). It also compares the
performance of LGBM, an advanced classification
method, against NB, one of the earliest
classification algorithms, demonstrating that
LightGBM achieved superior scores. The findings
indicate that the LGBM classifier outperforms
others in terms of accuracy, precision, and
Matthews correlation coefficient (MCC). LightGBM
excels in addressing class imbalance issues,
delivering the best results with a detection
accuracy of 98.49%, outperforming NB. LGBM
shows robustness in accuracy, precision, and
MCC, achieving the highest scores among the
evaluated techniques. Future work could explore
the impact of varying dosage levels on
classification performance. To the best of our
knowledge, this is the first effort to apply machine
learning algorithms for detecting and classifying
the nature of ONUs.
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