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Abstract - Incomplete well log data are very commonly encountered problems in petroleum exploration activity. The 

development of arti昀椀cial intelligence technology o昀昀ers a new possible way to predict the required logs using limited 
information available. Optimizing conventional statistical theory, machine learning is proven to be a reliable tool 

for any prediction task in many 昀椀elds of study. Regression is one of the basic methods that has rapid development 
and evolved many techniques with di昀昀erent approaches and purposes. In this study, parametric and nonparametric 
regressions {linear regression, Support Vector Machine (SVM), and Gaussian Process Regression (GPR)} are com-

pared to predict the missing log using the available nearby data. Feature selection was done by performing Principal 

Component Analysis (PCA) on predictor variables. Di昀昀erent pro昀椀le of PCA is observed between Cibulakan and 
Parigi Formations, which is the basis of conducting separate models based on the formation. Among all the selected 

methods, GPR is consistently making slightly better results. The correlation between the predicted and actual poros-

ity of GPR is observed to be up to 0.19 higher compared to the other methods. Similar observation is also found on 

the Root Mean Squared Error (RMSE) value comparison. In practice, the GPR method has an inherent advantage 
compared to other methods, as it provides uncertainty to the prediction based on the standard deviation of each 

estimation result. The standard deviation of the GPR prediction ranges from 0.006 in high con昀椀dence cases and up 
to 0.077 where uncertainty is high. The models are considered robust and stable according to the RMSE evaluation 

from cross validation which is consistently giving the value below 0.04. In conclusion, the reliability of regression 

techniques for predicting the missing well log is exposed in this study, which results demonstrate steady and good 
accuracy in every formation which are tested on any well logs.

Keywords: well log, log prediction, regression, arti昀椀cial intelligence, machine learning

© IJOG - 2021

Introduction

Background

Ideally, complete wireline log data contain 

resistivity log (deep, medium, and shallow), 

porosity log (density, neutron, and sonic) and 

lithology log (gamma ray and spontaneous 

potential). Sometimes miscellaneous logs such 

as caliper and spectral noise are also available. 

Unfortunately, this is a rare privilege especially 

for older operating 昀椀elds.
It is not uncommon for some logs to be absent, 

either partially (speci昀椀c interval) or completely 
unrecorded. This particular problem could ham-
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Figure 1. Northwest Java Basin stratigraphic column (Noble et al., 1997).

per the petrophysicist task in estimating the physi-

cal properties of the rocks. For instance, the lack 

of neutron log of the target interval would disrupt 

the porosity calculation of the reservoir rock.

To overcome this issue, researchers are trying 

to estimate the value of missing logs using various 

methods. For example, Bader et al. (2018) esti-

mates the missing log using statistical approach 

by correlating multiple surrounding well logs 

using local similarity (LSIM). In recent years, 

the development of arti昀椀cial intelligence (AI) 
technology provides. Advanced machine learn-

ing (ML) technique was used by many studies 
in generating the synthetic well logs (Rolon et 

al., 2009; Parapuram et al., 2015; Salehi et al., 

2017). Lately, the implementation of ML on log 

prediction goes beyond the other log data. Kanfar 

et al. (2020) predicted the real-time well log by 

creating a model from the drilling parameters.

While most of the mentioned papers above ap-

plied neural network techniques on their research, 
and this paper utilized the combination of the 

conventional statistical methods with a simple 

ML approach to determine the missing logs. To be 

precise, the reliability of the estimation result was 

assessed from the regression method using the ex-

isting logs from multiple wells nearby. Principal 

Component Analysis (PCA) was done earlier as 

the exploratory data analysis of the predictor vari-

ables (available logs) to select the features that 

were used later in the regression prediction. This 

paper is intended to provide a straightforward yet 

trustworthy prediction technique. 

Regional Geology and Stratigraphy 

Geologically, this research is situated on the 

Northwest Java Basin. According to Noble et 

al. (1997) (Figure 1), this basin comprises two 
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main half-grabens, Ardjuna Basin, and Jatiba-

rang Basin. The wells used in this research are 

part of Jatibarang/Talang Akar petroleum system 

which is categorized as Ardjuna Assessment Unit 

(Bishop, 2000).

Among many reservoir formations that oc-

curred in this system, the wells cover the Cibu-

lakan Formation and Parigi Formation. The 昀椀rst 
mentioned formation, Cibulakan, was deposited 

in Early to Middle Miocene. In this well, two 

members of this formation are exposed which are 

the  main Cibulakan that consists of interbedded 

shales, sandstones, siltstones, and limestones  

(Butterworth et al., 1995) and pre-Parigi that 

contains localized carbonate, the dolomited 

wackestone to grainstone (Pertamina BPPKA, 

1996). While the second formation, Parigi, com-

prises carbonate platform and regressive clastics 

developing in the late post-rift phase (Doust and 

Noble, 2008).

Methods and Materials

In general, the aim of this research is to predict 

the missing log (neutron log in this case) using 

other well data nearby. In this research, models 

were created for each formation interval. These 

models later tested on a well log called valida-

tion well to check which results that produce the 

highest accuracy. Three regression methods those 

are Gaussian Process Regression (GPR), Support 

Vector Machine (SVM), and Linear Regression 

are the selected approaches performed in this re-

search. Fundamentally, these three methods have 

di昀昀erent characteristics. Linear regression and 
Support Vector Machine (SVM) are parametric 

regression, while Gaussian Process Regression 

(GPR) is nonparametric regression. Parametric 

regression is a regression whose curve pattern 

f(x) is known, while nonparametric regression 

is a regression whose curve pattern f(x) is not 

known beforehand.

Before applying those regression methods, 

distinct features need to be selected for the model 

creation. A proper feature selection is one of the 

deciding factors in precisely estimating the value 

of the missing log, and PCA was executed to get 

the 昀椀nest possible result. This was also done to 
understand the contribution (variance) of each 

parameter against the variable of the predicted 

log. In this study, all the data processing was done 

in a Python programming environment. To sum-

marize, this work昀氀ow below explains the steps 
of this study (Figure 2).

Linear Regression

A simple linear regression model is a model 

with a single regressor x that has a relationship 

with a response y that is a straight line (Douglas 

et al., 2012), as in the Equation 1.

y = β0 + β1x + ε ................................................... (1)

where: 

y is the predicted value, 

β0 is the intercept, 
β1 is the slope, and 
the di昀昀erence between the observed value of y 
and the straight line (β0 + β1 x) is the error, ε.

This study used more than one predictor 

variable (x), so it uses multiple linear regression 

models as in the Equation 2.

y = β0 + β1x1 + β2x2 + ... βnxn + ε ................. (1)

where: 

x1, x2, and xn are the selected well logs with 

unknown parameters β0, β1, β2, and βn. 

Data 
Conditioning

Feature 
Selection with 

PCA

Training Data 
with LR, SVM,

 and GPR

Blind Well 
Testing 

Cross 
Validation

Result 
Assessment

Figure 2. Research work昀氀ow.
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Assuming that one wants to make a 3-dimen-

sional regression model, hence they are supposed 

to use n=2 (x1 and x2) as presented in Figure 3.

Support Vector Machine (SVM)

Kecman (2005) states that the learning 

problem setting for SVMs is as follows: there 

is some unknown and nonlinear dependency 

(mapping, function) y = f(x) between some high-

dimensional input vector x and scalar output y (or 

the vector output y as in the case of multiclass 

SVMs). There is no information about the un-

derlying joint probability functions. Thus, one 

must perform a distribution-free learning. The 

only information available is a training data set 

D = {(xi, yi) ∈ X×Y }, i = [1,...l], where l stands 

for the number of the training data pairs, and is 

therefore equal to the size of the training data set 
D. Often, yi is denoted as di, where d stands for 

a desired (target) value. Hence, SVMs belong to 

the supervised learning techniques.
SVM for regression basically works based on 

a hyperplane and large margin classi昀椀er. For the 
reason of visualization, assume that there is a 2 

classi昀椀er/predictor as shown in Figure 4.
During the learning stages, our SVM model 

will 昀椀nd parameter w = [w1w2 ... wn]T, is the 

predictor variable from well data, and w
i
 is the 

weight of each variable. The equation d(x,w,b) is 
given as in Equation 3.

Figure 3. (a). Regression plane for the model  E(y) = 50 + 10x
1
 + 7x

2
, (b). Contour plot (Douglas et al., 2012).

a b

220

203

186

169

152
X  1

10

8

6

4

2

0
0               2                4               6                8              10

X2

240

E 
(y

)

X  1 10 
0 

2 
4 

6 
8 

10

X2

200
160
120

0 2 4 6 8

80
40

0

Smallest 
margin M

x1x1

x2 x2

Class 1
Class 1

Class 2 Class 2

Separation line, i.e., 
decision boundary 

Largest 
margin M

Figure 4. Two-out-of-many separating lines: a good one with a large margin (right) and a less acceptable separating line 
with a small margin (left) (Kecman, 2005).
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                                                           ............. (3)d(x,w,b) =  WT x+b =  Σ n
     i=1 w  i x  i +b

Gaussian Process Regression

A Gaussian process is a generalization of 

the Gaussian probability distribution; whereas a 

probability distribution describes random vari-

ables which are scalars or vectors (for multivariate 

distributions), a stochastic process governs the 

properties of functions.

Unlike the other supervised machine learning 

method, Gaussian process is a nonparametric 

model. There is no worry whether  it is pos-

sible for the model to 昀椀t the data since Gaussian 
Process infers a probability distribution over all 

possible values using Bayesian approach. The 

combination of the prior model and the training 

data leads to a posterior distribution model.

The mean prediction is shown as a solid line 

and four samples from the posterior are shown as 

dashed lines (Figure 5). In both plots, the shaded 

region denotes twice the standard deviation at 

each input value x (Rasmussen and Williams, 

2006). Figure 5 also shows that f(x) is the variable 

that is wanted to be predicted (NPHI), while input 

x are the well predictor variables.

Principal Component Analysis (PCA)

PCA is an unsupervised machine learning pro-

cedure which could 昀椀nd the patterns of variation 
from much information without reference to prior 

knowledge about the data itself. This method al-

lows the dimensionality reduction without losing 

much important information. 

The operation was done by using the linear 

combination of the original dataset and trans-

forming into a new dimensional space using the 

eigenvector of each data, which could act as a 

good summary of the data (Lever, 2017). By this 

advantage,  which parameters (log data) that could 

be left were assessed without reducing the quality 
of the result and possibly increased the accuracy 

in the other ways. 

Eigenvalue and eigenvector is a pair of special 

scalar in a linear equation (i.e. matrix equation). 
In matrix transformation, this information could 

be the guidance to restore the information from 

the original matrix. While the eigenvector keeps 

the direction of the transformation, the eigen-

value indicates the original information that was 

retained.  In this operation (PCA), the direction 

of the new coordinate axis is the eigenvector and 

the variations of each parameter displayed by the 

eigenvalue or the axis, higher eigenvalue indicate 

the higher variation (Wallisch, 2014).

Abdelaziz et al. (2017) illustrate the equation 
of the full component transformation of X as 

below (Figure 6):

T
nxp

 = X
nxp

 W
nxp  

.................................................
 
(4)

where T is the score matrix with each column rep-

resenting the value of each principal component at 

(n) observations. This matrix was generated from 

the multiplication of X which is the original data 

set matrix consisting of (p) as each the value of 

variables at (n) observations and W as the weight 

(loading matrix) of the transformation to the new 

dimension.

2

1

0l(x
)

-1

-2

0                              0.5                              
input x

(a). prior

1

2

1

0l(x
)

-1

-2

0                              0.5                              
input x

(b). posterior

1

Figure 5. (a). Four samples drawn from the prior distribution; 
(b). A situation after two data points have been observed 
(Rasmussen and Williams, 2006).
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In this research, the contribution of the pa-

rameters (log informations) is assessed against 

the target response through the eigenvector of 

each parameter and decided which features are 

used for the regression predictions. This method 

is analogous to the study by Roden et al. (2015) 

for feature selection analysis, where it is inher-

ently assumed that the variation that is contained 

for each feature is directly proportional to the 

feature e昀케cacy.

Grid Search

Grid search is an algorithm that can choose the 

best parameters for a model based on the given 

parameter options. This process can automate 

the “trial and error” method of selecting the best 

parameters in a regression model. Grid search is 

then applied to SVM and GPR methods (Figure 

7), since these regression methods have hyper-

parameters that are hard to optimize manually.

Cross Validation

Cross validation (CV) is a statistical method 

that can be used to evaluate the performance of a 

model or algorithm where data are separated into 

two subsets, i.e. training data and validation data. 

First, merging all the well data is needed (seven 

wells for Cibulakan Formation and 昀椀ve wells for 
Parigi and pre-Parigi Formation). Cross valida-

tion is done by using K-fold CV. K-Fold CV will 

separate the dataset (well data) into K-subset. In 

this study, ten-fold CV was used as shown at the 

illustration Figure 8.

For each of the ten subsets of data, CV will 

use nine folds for training and one fold for test-

ing. This ten-fold CV is then applied to the three 

regression methods used. The purpose of applying 

the CV method is to present the model over昀椀tting 
which is more prone if only one validation set is 

used. After testing is done, the RMSE calculation 

was performed to see the accuracy of the model 

obtained from all of the three regression methods.

1                                    1                                    

1 1

n                                    n                                    
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Wpxp
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p

Figure 6. Principal component analysis illustration (Abdelaziz et al., 2017).

Input: 
SVM parameters, minimum value, maximum value, 

number of steps scaling method

Build a grid search space

Train SVM with selected parameters 
using 10-fold cross validation

Performance Evaluation

No

Yes

Try all 
parameter 

combinations?

SVM optimized parameters

Re-train SVM with optimized parameters

Output: Classification Accuracy

Figure 7. SVM hyperparameter optimization work昀氀ow using 
grid search (Syarif et al., 2016).
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Materials

This research used seven well-log dataset 

(Table 1 and see the map at Figure 9 for the 

distribution of the well locations). For the model 

creation, only 昀椀ve wells (1 - 5) were used as the 
training dataset. Well #6 and Well #7 were pre-

pared as the implementation/test dataset of the 

prediction models (Figures 10, 11, and 12). Ten-

fold cross validation (Figure 8) was performed 

to assess the reliability (avoid the possibility of 

over昀椀tting) of the models on the results from the 
prediction of Well #6 and Well #7.

Since the neutron log is the one that is pre-

dicted in this research, the other logs (CALI, 

ILD, MSFL, RHOB, VP, P_IMP) were used as 

the predictor parameters.

Results and Discussion 

Feature Selection

Data normalization was performed to the 

combined training wells to reduce the possibility 

of data redundancy and prevent the anomalous 

information caused by the value range di昀昀er-
ence of each log. PCA was performed to all the 

predictor variables on the training wells. This 

process changes the predictor variable to the 

principal component (eigenvector and eigenval-

ue).  Eigenvectors were used as the guidance to 

select a certain feature that was used later in the 

regression prediction. The 昀椀rst two components 
of the PCA, namely PC1 and PC2, are shown in 

Figure 13.

In this study, the eigenvector of PC1 is ana-

lyzed which is the main component, and has a 

very large contribution to the variance of the 

Figure 8. Examples of ten-fold cross validation (Talpur, 
2017).

A                                                      B                                                   C                                                       D

1

2

3

4

1

2

3

4

A                                                     B                                                      C                                                   D

Well-1

Well-2

Well-3

Well-4

Well-5

Well-6

Well-7

Figure 9. Basemap showing distribution of well locations.

Well Remark

Well-1

Well-2

Well-3

Well-4

Well-5 Not used for Parigi and Pre-Parigi Fm.

Well-6

Well-7 Not used for Parigi and Pre-Parigi Fm.

Training well

Testing well

Table 1. Well Data Descriptions
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Figure 10. Preview of the log from Well #6 at interval of Cibulakan Formation.

Figure 11. Preview of the log from Well #6 at interval of Parigi Formation.  

entire dataset (around 80%). The absolute value 

of each PC1 coe昀케cients is shown  on Figure 14.
The PCA eigenvector results from each for-

mation indicates that parameters with higher 

correlation to the prediction target (NPHI log) are 

di昀昀erent. While there are no dominant parameters 

correlated with NPHI log at pre-Parigi and Parigi 

Formations, the result from Cibulakan Formation 

shows four dominant parameters (ILD, VSh, VP, 

and P Imp) which have high correlations with 

NPHI log. Due to this, all the logs were used at 

pre-Parigi and Parigi Formations as the training 
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Figure 12. Preview of the log from Well #6 at the interval of pre-Parigi Formation. 
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Figure 13. Principal components of each formation.
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Figure 14. The absolute eigenvectors from each parameter 
on three di昀昀erent parameters.set and only four logs were used to create the 

model at Cibulakan Formation interval.

Through comparison of the PCA results,  the 

lithology variation is hypothesized, and it is 

highly in昀氀uencing the eigenvalue of the predictor 
variable on the feature selection. The pre-Parigi 

and Parigi Formations are discovered to have 

more complex lithology composition than the 

Cibulakan Formation  which shows di昀昀erent 
eigenvector results. Due to the variation of eigen-
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vectors from each formation, di昀昀erent models for 
each interval were created to get the best possible 

prediction result.

Prediction Comparison

As mentioned earlier, the predictions were 

done in three sets of regression methods. Each 

of the models from Cibulakan Formation was 

implemented on two test wells (Well #6 and Well 

#7). Comparison of the result from both wells is 

presented at Figures 15, 16, and 17.

Grid search has been carried out to determine 

the most optimum hyperparameters in SVM and 

GPR methods. In this formation, the SVM ap-

proach produces the lowest quality of prediction 
result with correlation value at 0.63 and 0.64 

compared to the linear (0.85 and 0.76) and GPR 

method (0.82 and 0.77). The RMSE of SVM is 

also relatively higher than the other two on both 

wells (see the details at Tables 2 and 3). 

Figures 18 and 19 show the results of the 

three regression methods in Parigi and pre-Parigi 
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Figure 15. Result of linear regressions on Well #6 and Well #7 at Cibulakan Formation.

3300
actual
prediction

SVM Model

3350

D
ep

th

Porosity

3400

3450

3500

3550

3600

3650

0.25                0.30                0.35                0.40                0.45

actual
prediction

SVM Model

Porosity

D
ep

th

3400

3450

3500

3550

3600

0.15                      0.20                      0.25                     0.30                     0.35                     0.40                      0.45                  0.50

3650

3700

3750

Figure 16. Result of Support Vector Machine on Well #6 and Well #7 at Cibulakan Formation.
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Formation. Similar to the results obtained from 

Cibulakan Formation (Figures 15, 16, and 17), 

the results from pre-Parigi and Parigi Formations 

using GPR are slightly better than the other two 

methods, both in the correlation (0.817 and 0.810) 

and RMSE value (0.0017 and 0.0008). 

In general, GPR consistently produces con-

siderably better performance compared to the 

other methods in any formation interval, both 

qualitatively and quantitatively. It is assumed 
that this was caused by the ability of GPR to 

calculate the distribution of each single data for 

the value estimation. Nonparametric character-

istics of GPR also have a big role in adjusting 

to the optimum trend of the target variable, 

since this method does not have an attachment 

to a particular form of function. The complete 

recapitulation of the quantitative comparison of 
each method in every formation is summarized 

in Tables 2 and 3.

Another useful property of the GPR method is 

the intrinsic ability to predict the corresponding 

uncertainties, as can be seen in Figures 20 and 21.

Based on the con昀椀dence interval plotting re-

sult, it can be seen that each target variable has its 

own standard deviation. Table 4 shows the result 

of minimum and maximum standard deviations.

From Table 4, it can be seen that there is a dif-

ference between the standard deviation results of 

each formation. The Cibulakan Formation tends 

to have a smaller standard deviation compared to 

Parigi and pre-Parigi Formations. This indicates 

that the uncertainty in the Cibulakan Formation 

is lower than the other formations.

Cross Validation

After getting the correlation and RMSE re-

sults from each method, then the cross validation 

process was executed. Cross validation is per-

formed to validate whether the predicted results 

of the three regression methods vary signi昀椀cantly 
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Figure 17. Result of  Gaussian Process Regression on Well #6 and Well #7 at Cibulakan Formation.

Correlation

Formation GPR SVM Linear

Cibulakan well #6 0.829787 0.63817 0.850902

Cibulakan well #7 0.779752 0.641468 0.764006

Parigi well #6 0.81016 0.807826 0.786406

Pre Parigi well #6 0.817512 0.815208 0.814958

Table 2. Correlation Between the Actual and Predicted Value 
for Each Regression Method in Every Formation

RMSE

Formation GPR SVM Linear

Cibulakan well #6 0.025895 0.036686 0.024804

Cibulakan well #7 0.031178 0.04002 0.032386

Parigi well #6 0.028199 0.028072 0.032635

Pre Parigi well #6 0.04152 0.026366 0.046271

Table 3. RMSE Between the Actual and Predicted Value for 
Each Regression Method in Every Formation
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Figure 18. Result of linear regression, SVM, and GPR at 
interval Parigi Formation on Well #6.

Figure 19. Result of linear regression, SVM, and GPR at 
interval pre-Parigi Formation on Well #6.

or not when applied to di昀昀erent wells. In this case, 
a cross validation of all well data was conducted 

with ten fold validations. Tables 4 and 5 below 

are the complete cross validation recapitulation 
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Figure 20. GPR con昀椀dence interval plotting overlayed by actual and prediction porosity in Well #6 (left) and Well #7 (right) 
Cibulakan Formation.
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Figure 21. GPR con昀椀dence interval plotting overlayed by actual and prediction porosity in Parigi Formation (left) and pre-
Parigi Formation (right).

of the quantitative comparison of each method 
in every formation.

Comparing the results of RMSE between the 

initial model (Table 3) and cross validation result 

(Table 5), it appears that the two results have 

an identical value. It can be concluded that the 

model is robust for predicting the target variable 

in every well.
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Conclusions

The eigenvector from PCA of the feature pre-

dictor is highly dependent on the lithology varia-

tion in each formation, since the PC1 eigenvector 

value has a signi昀椀cant di昀昀erence between Cibu-

lakan Formation and Parigi/pre-Parigi Formation. 

Regression methods could be a practical op-

tion in predicting the missing well log issue faced 

in the industry. According to the results of this 

study, high correlation prediction results from two 

test wells (Well #6 and Well #7) were produced by 

implementing these three regression algorithms. 

GPR is consistently producing better results 

compared to the other regression methods. GPR 

also provides the uncertainty of each target vari-

able.

The models created in this study are consider-

ably robust and reliable on predicting the missing 

log at any well. This is also proven after applying 

cross validation technique on the models.
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