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Abstract - Incomplete well log data are very commonly encountered problems in petroleum exploration activity. The
development of artificial intelligence technology offers a new possible way to predict the required logs using limited
information available. Optimizing conventional statistical theory, machine learning is proven to be a reliable tool
for any prediction task in many fields of study. Regression is one of the basic methods that has rapid development
and evolved many techniques with different approaches and purposes. In this study, parametric and nonparametric
regressions {linear regression, Support Vector Machine (SVM), and Gaussian Process Regression (GPR)} are com-
pared to predict the missing log using the available nearby data. Feature selection was done by performing Principal
Component Analysis (PCA) on predictor variables. Different profile of PCA is observed between Cibulakan and
Parigi Formations, which is the basis of conducting separate models based on the formation. Among all the selected
methods, GPR is consistently making slightly better results. The correlation between the predicted and actual poros-
ity of GPR is observed to be up to 0.19 higher compared to the other methods. Similar observation is also found on
the Root Mean Squared Error (RMSE) value comparison. In practice, the GPR method has an inherent advantage
compared to other methods, as it provides uncertainty to the prediction based on the standard deviation of each
estimation result. The standard deviation of the GPR prediction ranges from 0.006 in high confidence cases and up
to 0.077 where uncertainty is high. The models are considered robust and stable according to the RMSE evaluation
from cross validation which is consistently giving the value below 0.04. In conclusion, the reliability of regression
techniques for predicting the missing well log is exposed in this study, which results demonstrate steady and good
accuracy in every formation which are tested on any well logs.
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INTRODUCTION potential). Sometimes miscellaneous logs such
as caliper and spectral noise are also available.

Background Unfortunately, this is a rare privilege especially

Ideally, complete wireline log data contain
resistivity log (deep, medium, and shallow),
porosity log (density, neutron, and sonic) and
lithology log (gamma ray and spontaneous

for older operating fields.

It is not uncommon for some logs to be absent,
either partially (specific interval) or completely
unrecorded. This particular problem could ham-
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per the petrophysicist task in estimating the physi-
cal properties of the rocks. For instance, the lack
of neutron log of the target interval would disrupt
the porosity calculation of the reservoir rock.

To overcome this issue, researchers are trying
to estimate the value of missing logs using various
methods. For example, Bader et al. (2018) esti-
mates the missing log using statistical approach
by correlating multiple surrounding well logs
using local similarity (LSIM). In recent years,
the development of artificial intelligence (AI)
technology provides. Advanced machine learn-
ing (ML) technique was used by many studies
in generating the synthetic well logs (Rolon et
al., 2009; Parapuram et al., 2015; Salehi et al.,
2017). Lately, the implementation of ML on log
prediction goes beyond the other log data. Kanfar
et al. (2020) predicted the real-time well log by
creating a model from the drilling parameters.

While most of the mentioned papers above ap-
plied neural network techniques on their research,
and this paper utilized the combination of the
conventional statistical methods with a simple
ML approach to determine the missing logs. To be
precise, the reliability of the estimation result was
assessed from the regression method using the ex-
isting logs from multiple wells nearby. Principal
Component Analysis (PCA) was done earlier as
the exploratory data analysis of the predictor vari-
ables (available logs) to select the features that
were used later in the regression prediction. This
paper is intended to provide a straightforward yet
trustworthy prediction technique.

Regional Geology and Stratigraphy
Geologically, this research is situated on the

Northwest Java Basin. According to Noble et

al. (1997) (Figure 1), this basin comprises two
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Figure 1. Northwest Java Basin stratigraphic column (Noble et al., 1997).
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main half-grabens, Ardjuna Basin, and Jatiba-
rang Basin. The wells used in this research are
part of Jatibarang/Talang Akar petroleum system
which is categorized as Ardjuna Assessment Unit
(Bishop, 2000).

Among many reservoir formations that oc-
curred in this system, the wells cover the Cibu-
lakan Formation and Parigi Formation. The first
mentioned formation, Cibulakan, was deposited
in Early to Middle Miocene. In this well, two
members of this formation are exposed which are
the main Cibulakan that consists of interbedded
shales, sandstones, siltstones, and limestones
(Butterworth et al., 1995) and pre-Parigi that
contains localized carbonate, the dolomited
wackestone to grainstone (Pertamina BPPKA,
1996). While the second formation, Parigi, com-
prises carbonate platform and regressive clastics
developing in the late post-rift phase (Doust and
Noble, 2008).

METHODS AND MATERIALS

In general, the aim of this research is to predict
the missing log (neutron log in this case) using
other well data nearby. In this research, models
were created for each formation interval. These
models later tested on a well log called valida-
tion well to check which results that produce the
highest accuracy. Three regression methods those
are Gaussian Process Regression (GPR), Support
Vector Machine (SVM), and Linear Regression
are the selected approaches performed in this re-
search. Fundamentally, these three methods have
different characteristics. Linear regression and
Support Vector Machine (SVM) are parametric
regression, while Gaussian Process Regression
(GPR) is nonparametric regression. Parametric
regression is a regression whose curve pattern

f(x) is known, while nonparametric regression
is a regression whose curve pattern f(x) is not
known beforehand.

Before applying those regression methods,
distinct features need to be selected for the model
creation. A proper feature selection is one of the
deciding factors in precisely estimating the value
of the missing log, and PCA was executed to get
the finest possible result. This was also done to
understand the contribution (variance) of each
parameter against the variable of the predicted
log. In this study, all the data processing was done
in a Python programming environment. To sum-
marize, this workflow below explains the steps
of this study (Figure 2).

Linear Regression

A simple linear regression model is a model
with a single regressor x that has a relationship
with a response y that is a straight line (Douglas
etal.,2012), as in the Equation 1.

y:BO+le+g ................................................... (1)

where:

y is the predicted value,

B0 is the intercept,

B1 is the slope, and

the difference between the observed value of y
and the straight line (B0 + B1 x) is the error, €.

This study used more than one predictor
variable (x), so it uses multiple linear regression
models as in the Equation 2.

y=B0 + BIx1 + B2X2 + ... fNXN + € ererereenrees (1)

where:
x1, x2, and xn are the selected well logs with
unknown parameters 0, $1, 2, and pn.

Feature Training Data

Dat: . . .
ata » Selection with » with LR, SVM,

Blind Well Cross Result

Conditioning PCA and GPR

Testing Validation Assessment

Figure 2. Research workflow.
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Assuming that one wants to make a 3-dimen-
sional regression model, hence they are supposed
to use n=2 (x1 and x2) as presented in Figure 3.

Support Vector Machine (SVM)

Kecman (2005) states that the learning
problem setting for SVMs is as follows: there
is some unknown and nonlinear dependency
(mapping, function) y = f(x) between some high-
dimensional input vector x and scalar output y (or
the vector output y as in the case of multiclass
SVMs). There is no information about the un-
derlying joint probability functions. Thus, one
must perform a distribution-free learning. The
only information available is a training data set

D = {(xi, yi) € XxY }, i =[1,...[], where / stands
for the number of the training data pairs, and is
therefore equal to the size of the training data set
D. Often, yi is denoted as di, where d stands for
a desired (target) value. Hence, SVMs belong to
the supervised learning techniques.

SVM for regression basically works based on
a hyperplane and large margin classifier. For the
reason of visualization, assume that there is a 2
classifier/predictor as shown in Figure 4.

During the learning stages, our SVM model
will find parameter w = [wlw2 ... wn]', is the
predictor variable from well data, and w, is the
weight of each variable. The equation d(x,w,b) is
given as in Equation 3.

® x,

10

w
\ 220
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186

169

10 X,
Figure 3. (a). Regression plane for the model E(y) =50+ 10x, + 7x,, (b). Contour plot (Douglas et al., 2012).
|
1
X; Smallest : X,
3 margin M | A
- Class 1
R‘\, -~ : d O O Class 1
1
1o S
i O
P
. O
I T~ -
D D : = T - - = -
D | Separation line, i.e.,
! decision boundary
cass2 [0 ! Class 2
l Y
X, X,

Figure 4. Two-out-of-many separating lines: a good one with a large margin (right) and a less acceptable separating line

with a small margin (left) (Kecman, 2005).
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dx,w,b)=W' x+b = X7 [ 1w, X,+b e 3)

Gaussian Process Regression

A Gaussian process is a generalization of
the Gaussian probability distribution; whereas a
probability distribution describes random vari-
ables which are scalars or vectors (for multivariate
distributions), a stochastic process governs the
properties of functions.

Unlike the other supervised machine learning
method, Gaussian process is a nonparametric
model. There is no worry whether it is pos-
sible for the model to fit the data since Gaussian
Process infers a probability distribution over all
possible values using Bayesian approach. The
combination of the prior model and the training
data leads to a posterior distribution model.

The mean prediction is shown as a solid line
and four samples from the posterior are shown as
dashed lines (Figure 5). In both plots, the shaded
region denotes twice the standard deviation at
each input value x (Rasmussen and Williams,
2006). Figure 5 also shows that f(x) is the variable

i
0 .05 1
input x
(a). prior

0 05 1
mput x
(b). posterior

Figure 5. (a). Four samples drawn from the prior distribution;
(b). A situation after two data points have been observed
(Rasmussen and Williams, 2006).

that is wanted to be predicted (NPHI), while input
x are the well predictor variables.

Principal Component Analysis (PCA)

PCA is an unsupervised machine learning pro-
cedure which could find the patterns of variation
from much information without reference to prior
knowledge about the data itself. This method al-
lows the dimensionality reduction without losing
much important information.

The operation was done by using the linear
combination of the original dataset and trans-
forming into a new dimensional space using the
eigenvector of each data, which could act as a
good summary of the data (Lever, 2017). By this
advantage, which parameters (log data) that could
be left were assessed without reducing the quality
of the result and possibly increased the accuracy
in the other ways.

Eigenvalue and eigenvector is a pair of special
scalar in a linear equation (i.e. matrix equation).
In matrix transformation, this information could
be the guidance to restore the information from
the original matrix. While the eigenvector keeps
the direction of the transformation, the eigen-
value indicates the original information that was
retained. In this operation (PCA), the direction
of the new coordinate axis is the eigenvector and
the variations of each parameter displayed by the
eigenvalue or the axis, higher eigenvalue indicate
the higher variation (Wallisch, 2014).

Abdelaziz et al. (2017) illustrate the equation
of the full component transformation of X as
below (Figure 6):

T =X W oottt 4)

nxp nxp nxp

where T is the score matrix with each column rep-
resenting the value of each principal component at
(n) observations. This matrix was generated from
the multiplication of X which is the original data
set matrix consisting of (p) as each the value of
variables at (n) observations and W as the weight
(loading matrix) of the transformation to the new
dimension.
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Figure 6. Principal component analysis illustration (Abdelaziz et al., 2017).

In this research, the contribution of the pa-
rameters (log informations) is assessed against
the target response through the eigenvector of
each parameter and decided which features are
used for the regression predictions. This method
is analogous to the study by Roden ef al. (2015)
for feature selection analysis, where it is inher-
ently assumed that the variation that is contained
for each feature is directly proportional to the
feature efficacy.

Grid Search

Grid search is an algorithm that can choose the
best parameters for a model based on the given
parameter options. This process can automate
the “trial and error” method of selecting the best
parameters in a regression model. Grid search is
then applied to SVM and GPR methods (Figure
7), since these regression methods have hyper-
parameters that are hard to optimize manually.

Cross Validation

Cross validation (CV) is a statistical method
that can be used to evaluate the performance of a
model or algorithm where data are separated into
two subsets, i.e. training data and validation data.
First, merging all the well data is needed (seven
wells for Cibulakan Formation and five wells for
Parigi and pre-Parigi Formation). Cross valida-
tion is done by using K-fold CV. K-Fold CV will
separate the dataset (well data) into K-subset. In
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Figure 7. SVM hyperparameter optimization workflow using
grid search (Syarif et al., 2016).

this study, ten-fold CV was used as shown at the
illustration Figure 8.

For each of the ten subsets of data, CV will
use nine folds for training and one fold for test-
ing. This ten-fold CV is then applied to the three
regression methods used. The purpose of applying
the CV method is to present the model overfitting
which is more prone if only one validation set is
used. After testing is done, the RMSE calculation
was performed to see the accuracy of the model
obtained from all of the three regression methods.
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Figure 8. Examples of ten-fold cross validation (Talpur,
2017).

Materials

This research used seven well-log dataset
(Table 1 and see the map at Figure 9 for the
distribution of the well locations). For the model
creation, only five wells (1 - 5) were used as the
training dataset. Well #6 and Well #7 were pre-
pared as the implementation/test dataset of the
prediction models (Figures 10, 11, and 12). Ten-
fold cross validation (Figure 8) was performed
to assess the reliability (avoid the possibility of
overfitting) of the models on the results from the
prediction of Well #6 and Well #7.

Since the neutron log is the one that is pre-
dicted in this research, the other logs (CALI,
ILD, MSFL, RHOB, VP, P_IMP) were used as

the predictor parameters.

Table 1. Well Data Descriptions

Well Remark

Well-1

Well-2

Well-3

Well-4

Well-5 Not used for Parigi and Pre-Parigi Fm.

Well-6

Well-7 Not used for Parigi and Pre-Parigi Fm.
Training well
Testing well

RESULTS AND DISCUSSION

Feature Selection

Data normalization was performed to the
combined training wells to reduce the possibility
of data redundancy and prevent the anomalous
information caused by the value range differ-
ence of each log. PCA was performed to all the
predictor variables on the training wells. This
process changes the predictor variable to the
principal component (eigenvector and eigenval-
ue). Eigenvectors were used as the guidance to
select a certain feature that was used later in the
regression prediction. The first two components
of the PCA, namely PC1 and PC2, are shown in
Figure 13.

In this study, the eigenvector of PC1 is ana-
lyzed which is the main component, and has a
very large contribution to the variance of the

A B C D
O well-4
1 1
Well-6
OWcll—7
2 2
OWell-3
Well-5
3 O 3
Well-1
O
4 4
Well-2
A B C D

Figure 9. Basemap showing distribution of well locations.
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Figure 11. Preview of the log from Well #6 at interval of Parigi Formation.

entire dataset (around 80%). The absolute value
of each PC1 coefficients is shown on Figure 14.

The PCA eigenvector results from each for-
mation indicates that parameters with higher
correlation to the prediction target (NPHI log) are
different. While there are no dominant parameters

392

correlated with NPHI log at pre-Parigi and Parigi
Formations, the result from Cibulakan Formation
shows four dominant parameters (ILD, VSh, VP,
and P Imp) which have high correlations with
NPHI log. Due to this, all the logs were used at
pre-Parigi and Parigi Formations as the training
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Figure 13. Principal components of each formation.

set and only four logs were used to create the
model at Cibulakan Formation interval.
Through comparison of the PCA results, the
lithology variation is hypothesized, and it is
highly influencing the eigenvalue of the predictor
variable on the feature selection. The pre-Parigi

Figure 14. The absolute eigenvectors from each parameter
on three different parameters.

and Parigi Formations are discovered to have
more complex lithology composition than the
Cibulakan Formation which shows different
eigenvector results. Due to the variation of eigen-
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vectors from each formation, different models for
each interval were created to get the best possible
prediction result.

Prediction Comparison

As mentioned earlier, the predictions were
done in three sets of regression methods. Each
of the models from Cibulakan Formation was
implemented on two test wells (Well #6 and Well
#7). Comparison of the result from both wells is
presented at Figures 15, 16, and 17.

Grid search has been carried out to determine
the most optimum hyperparameters in SVM and
GPR methods. In this formation, the SVM ap-
proach produces the lowest quality of prediction
result with correlation value at 0.63 and 0.64
compared to the linear (0.85 and 0.76) and GPR
method (0.82 and 0.77). The RMSE of SVM is
also relatively higher than the other two on both
wells (see the details at Tables 2 and 3).

Figures 18 and 19 show the results of the
three regression methods in Parigi and pre-Parigi
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Figure 15. Result of linear regressions on Well #6 and Well #7 at Cibulakan Formation.
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Figure 17. Result of Gaussian Process Regression on Well #6 and Well #7 at Cibulakan Formation.

Table 2. Correlation Between the Actual and Predicted Value
for Each Regression Method in Every Formation

Correlation
Formation GPR SVM Linear
Cibulakan well #6 0.829787 0.63817 0.850902
Cibulakan well #7 0.779752 0.641468 0.764006
Parigi well #6 0.81016 0.807826 0.786406
Pre Parigi well #6 0.817512 0.815208 0.814958

Table 3. RMSE Between the Actual and Predicted Value for
Each Regression Method in Every Formation

RMSE
Formation GPR SVM Linear
Cibulakan well #6 0.025895 0.036686 0.024804
Cibulakan well #7 0.031178 0.04002 0.032386
Parigi well #6 0.028199 0.028072 0.032635
Pre Parigi well #6 0.04152 0.026366 0.046271

Formation. Similar to the results obtained from
Cibulakan Formation (Figures 15, 16, and 17),
the results from pre-Parigi and Parigi Formations
using GPR are slightly better than the other two
methods, both in the correlation (0.817 and 0.810)
and RMSE value (0.0017 and 0.0008).

In general, GPR consistently produces con-
siderably better performance compared to the
other methods in any formation interval, both
qualitatively and quantitatively. It is assumed
that this was caused by the ability of GPR to
calculate the distribution of each single data for

the value estimation. Nonparametric character-
istics of GPR also have a big role in adjusting
to the optimum trend of the target variable,
since this method does not have an attachment
to a particular form of function. The complete
recapitulation of the quantitative comparison of
each method in every formation is summarized
in Tables 2 and 3.

Another useful property of the GPR method is
the intrinsic ability to predict the corresponding
uncertainties, as can be seen in Figures 20 and 21.

Based on the confidence interval plotting re-
sult, it can be seen that each target variable has its
own standard deviation. Table 4 shows the result
of minimum and maximum standard deviations.

From Table 4, it can be seen that there is a dif-
ference between the standard deviation results of
each formation. The Cibulakan Formation tends
to have a smaller standard deviation compared to
Parigi and pre-Parigi Formations. This indicates
that the uncertainty in the Cibulakan Formation
is lower than the other formations.

Cross Validation

After getting the correlation and RMSE re-
sults from each method, then the cross validation
process was executed. Cross validation is per-
formed to validate whether the predicted results
of the three regression methods vary significantly

395



Indonesian Journal on Geoscience, Vol. 8 No. 3 December 2021: 385-399

Linear Model Linear Model
™ T
+ actual « actual T
= prediction 2210 » prediction il .. *s
1.9 ua
b
1950 2220 g Fe’
& " R S
L} .5)l..
22304 . ;.!.:
e
-
2000 e .
22401 .
=
g
2 8 2250
2 2050 e S
-, 2260 o “, .
o "aar
o Fe & 1
..
2100 2270 " goe t .‘
oy )
is 2280 o
te 8 o
2150 .,
22904, : - - - : -
0.30 025 030 035 0.40 0.45 0.50 0.55
Porosity Porosity
SVM Model SVM Model
R R
- actugl ) ml = ‘_‘:'* ;:ﬁ sond| ® actual
» prediction Y « prediction
- - -
19504 =S 2220
-
s wenel . -:;. ve, %l
-
P A 22304
oA
TR L
Tad . 2240 iz
<
"E_ e, . g
g e 22250
2050 7 -,
Pl
L]
R R T R 2601 .
i S Th st "
LR s~ sl
21007 Hrean .., : 2270
- .l" ]
ve o mvemiRARt et
ser “gw dWes 00 0T 5 ros 22801
o . M
2150 1 nE el i *.
s T ) e . )
J J J 22901 - - :
035 0.40 0.45 0.30 035 0.40 0.45 0.50 0.55
Porosity Porosity
GPR Modeli GPR Model
1 i )
= actual T, ey s = . g
- s [ SR » actual . . . .
= prediction '{'-‘~: 2210 « prediction '.:.'c . cs oy
- -
. ey n", :;',‘.q"“—r AL, "t
1950+ I B . 'i’ .
" esam g et BTE e 2220 -
want g -.\"f\‘:"." . . b 4. 2=
o Ll T 5400 g ..l".
- gt 3% By 22304 ‘A et
N e
2000 __,,b_,._...iﬁ, . weoe A
LU 1) e P 22401
PR = L3t 5
< 2
3 s
3 2 2250
a ]
2050 -
sarve &
22601 P> . .
- o -
- ., . .t. .. 4 'f‘
2100 2270 LA S
ue= -~ i g "' &
4 't P
R A Lo Y eyt
ser 23 FpPeaa = Aol avip 2280+ i oo BE
" P eu Bt P L L
21501 T 4’.!.‘_"-_?“: s aing e Nl
' o ' 2290 ! St ; i :
035 040 045 030 035 0.40 045 0.50 055
Porosity Porosity

Figure 18. Result of linear regression, SVM, and GPR at

Figure 19. Result of linear regression, SVM, and GPR at
interval Parigi Formation on Well #6.

interval pre-Parigi Formation on Well #6.

with ten fold validations. Tables 4 and 5 below
are the complete cross validation recapitulation

or not when applied to different wells. In this case,
a cross validation of all well data was conducted
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Figure 21. GPR confidence interval plotting overlayed by actual and prediction porosity in Parigi Formation (left) and pre-

Parigi Formation (right).

of the quantitative comparison of each method
in every formation.

Comparing the results of RMSE between the
initial model (Table 3) and cross validation result

(Table 5), it appears that the two results have
an identical value. It can be concluded that the
model is robust for predicting the target variable
in every well.
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Table 4. Minimum and Maximum Value of Standard Devia-
tion Results

Standard Deviation

Formation Min Max
Cibulakan Well #6 0.006058 0.02593
Cibulakan Well #7 0.006088 0.077096
Parigi Well #6 0.011651 0.047845
Pre-Parigi Well #6 0.014178 0.05199

Table 5. Cross Validation RMSE Results
RMSE (Cross Validation)
Formation GPR SVM Linear
Cibulakan 0.029061 0.034201 0.029326
Parigi 0.031962 0.038243 0.030526
Pre-Parigi 0.025868 0.041596 0.025998
CONCLUSIONS

The eigenvector from PCA of the feature pre-
dictor is highly dependent on the lithology varia-
tion in each formation, since the PC1 eigenvector
value has a significant difference between Cibu-
lakan Formation and Parigi/pre-Parigi Formation.

Regression methods could be a practical op-
tion in predicting the missing well log issue faced
in the industry. According to the results of this
study, high correlation prediction results from two
test wells (Well #6 and Well #7) were produced by
implementing these three regression algorithms.

GPR is consistently producing better results
compared to the other regression methods. GPR
also provides the uncertainty of each target vari-
able.

The models created in this study are consider-
ably robust and reliable on predicting the missing
log at any well. This is also proven after applying
cross validation technique on the models.
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