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The Plasmodium parasite, which spreads through the bite of the Anopheles
mosquito, causes malaria, a significant global health concern. Notwithstanding
attempts to curtail its proliferation, malaria continues to be a predominant
cause of mortality in tropical nations, especially in Sub-Saharan Africa and
certain regions of Southeast Asia. Timely identification and precise diagnosis
are essential for effective treatment. This research seeks to create a malaria
classification model using deep learning based on the EfficientNetV2B0
architecture. The model is engineered to identify malaria parasite infections in
microscopic images of erythrocytes. The dataset used is an open-source
collection of photographs depicting red blood cells categorised as either
infected or uninfected with malaria. The development method encompasses
multiple critical stages, beginning with data collection, followed by
preprocessing, data augmentation, and modelling using transfer learning with

E-mail: mildaokt21@gmail.com , . L7 ; .
atl: mi gma the EfficientNetV2B0 model. Bayesian optimisation is used to improve the

model's accuracy by adjusting its hyperparameters. Assessment metrics,
including accuracy, precision, recall, and FIl-score, are used to evaluate the
trained model's performance. The results show that the model has an accuracy
of 96%, with equivalent precision, recall, and F1-scores for both the infected
(under the heading "Parasitised") and uninfected (under the heading
"Uninfected") groups. The model is extremely effective in diagnosing malaria,
making it a valuable diagnostic tool for malaria control and prevention,
especially in resource-constrained locations.

1. Introduction

Malaria is an infectious disease affecting red blood cells caused by the Plasmodium parasite,
which is transmitted to humans through the bite of an infected female Anopheles mosquito. The
term "malaria" is derived from two Italian words, mal (meaning "bad") and aria (meaning "air"),
implying "bad air," as it was formerly widespread in marshy locations that generated foul odours.
This disease is also referred to as Roman fever, swamp fever, tropical fever, and paludism.
Malaria is prevalent in almost all regions globally, especially in nations with tropical and
subtropical climates [1].

Malaria is a significant public health concern in tropical regions such as Africa, Southeast Asia,
and Central and South America, causing considerable morbidity and fatality rates. A WHO
analysis indicates that the global incidence of malaria cases in 2022 is projected to have exceeded
the levels recorded before the COVID-19 epidemic in 2019. The research underscores various
vulnerabilities to the global malaria response, including climate change. In 2022, almost 249
million malaria cases were documented in 85 endemic nations, with an incidence rate of 58 cases
per 1,000 at-risk adults. In 2019, there were approximately 233 million global cases, with an
incidence rate of 57 instances per 1,000 at-risk adults. In 2022, case numbers exceeded the
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objective established by the Global Technical Strategy for Malaria 2025 by 55%, which targeted
for merely 26 cases per 1,000 individuals in the at-risk population by that year [2].

Malaria patients may be infected by one or more species of the Plasmodium parasite (mixed
infection). The disease is generally marked by symptoms like fever, chills, headache, nausea,
vomiting, and flu-like discomfort, with each malaria species potentially exhibiting distinct
symptoms. Severe malaria can result in serious complications, including profound anaemia due
to haemolysis, respiratory distress, hypoglycemia, altered consciousness, convulsions, coma, or
neurological deficits. Efforts to manage the condition have persisted for an extended period. The
existence of drug-resistant malaria parasites exacerbates efforts to eradicate the illness.
Notwithstanding continuous prevention and treatment efforts, the early and precise identification
of malaria cases continues to pose a problem, especially in resource-constrained regions. Current
conventional diagnostic methods are inadequate, prompting the development of more efficient
and precise detection techniques. Misidentification and misdiagnosis may contribute to a rise in
malaria cases [3].

Recently, artificial intelligence technologies, especially deep learning, have demonstrated
considerable potential in aiding malaria detection using microscopic blood cell imaging. A study
by Rajaraman et al. revealed that Convolutional Neural Networks (CNNs) can successfully
evaluate blood pictures and accurately detect the presence of malaria parasites [4]. Furthermore,
the EfficientNet architecture model has proven to be superior in image classification with high
efficiency, as shown in a study by Tan and Le [5].

This study seeks to establish a novel methodology for malaria diagnosis by analysing blood
sample images via deep learning techniques with the expectation of enhancing accuracy in
distinguishing positive from negative samples. We anticipate that this research will significantly
improve malaria detection efforts and serve as a model for the development of Al-powered
automated diagnostic systems [6] [7].

2. Method

The methodology used in this study to detect malaria-infected blood cells and classify them
consists of four stages: data collection, data preprocessing and augmentation, modelling, and
testing. The stages of this research are illustrated in Figure 1.

Data collection

Y

Data pre-processing and
Augmentation

Y

Modeling

Y

Testing

Figure 1. The stages of research
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In the first stage, image data of blood cells to be used for detection are collected, which include
two samples: healthy blood cells and infected blood cells. The collected data then proceeds to the
preprocessing stage, which involves data splitting and augmentation to optimise the processing
workflow.

Modelling is performed using the EfficientNetV2B0 architecture as the base model, followed by
fine-tuning. EfficientNetV2BO0, as one of the models in the EfficientNet series, has proven to be
effective in various image recognition applications, including the detection of malaria parasites
in red blood cell images. After the model is developed, the testing and evaluation stage is
conducted to assess the model's accuracy. This research uses the organised CRISP-DM (Cross-
Industry Standard Process for Data Mining) method to handle the classification problem, starting
from gathering data all the way to evaluating the model.

This study also applies techniques such as hyperparameter tuning to optimise training parameters,
Bayesian optimisation to accelerate the search for the best parameter combinations, and the use
of callbacks to monitor and manage the model training process. Through these key stages, the
study aims to ensure accurate and optimal classification results in malaria detection using
microscopic blood cell images.

2.1 Data Collection and Dataset Description

Data collection is one of the key stages in building a machine learning (ML) model. Accurate and
high-quality data collection is essential to ensure the accuracy and effectiveness of the model to
be developed. The CRISP-DM methodology provides a systematic framework for this process
[8]. At this stage, the primary focus is on gathering relevant data sources for classification.

The dataset used in this study is an open-source dataset available on the Kaggle platform titled
"Cell Images for Detecting Malaria." This dataset is a collection of red blood cell images, both
infected and non-infected with malaria, sourced from the National Library of Medicine, Lister
Hill National Center for Biomedical Communication [9].

The dataset provides microscopic images of human blood cells, divided into two classes: infected
(malaria-infected) and uninfected (non-infected). With a total of over 27,500 images, this dataset
offers a variety of cell shapes and types, which is crucial for enhancing the model's ability to
detect malaria. This variation allows the model to learn from different blood cell conditions, thus
improving detection accuracy. The average resolution of the images is 64 x 64 pixels. The dataset
is split into three main subsets with a 70:20:10 ratio, designed to ensure that the model is trained
with sufficient data while still retaining enough data for validation and testing. The distribution is
as follows:

a. Training Set: 70% of the data is used for model training.
b. Validation Set: 20% of the data is used for validation during model training.
c. Test Set: 10% of the data is used for evaluation after model training.

2.2 Data pre-processing and Augmentation

Pre-processing is a crucial stage that needs to be performed to enhance the quality of data before
it is input into the model. This process involves several steps, including normalization, resizing,
and augmentation, all of which contribute to improving the performance of the ML model.
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Normalization is the process in which image pixels are transformed into a range of 0-1. The goal
is to facilitate learning by the neural network. By performing normalization, the model can adapt
and learn more quickly from the provided data, as a uniform input scale helps achieve faster
convergence during training [5].

Resizing images is another important step in pre-processing. Images in the dataset often vary in
size, so they need to be resized to a uniform dimension. In this context, the images will be resized
to the same size, such as 64 x 64 pixels. This process not only reduces some details that may not
be critical but also speeds up the learning process. According to Agustin (2023), resizing the
dataset aims to accelerate the training and testing processes on convolutional neural networks
(CNNs) [10].

The last step is data augmentation, a technique used to create variations in the data samples, which
is essential for avoiding overfitting. By performing augmentation, the model can learn from a
broader range of variations, thereby improving its ability to generalize to new data. Common
augmentation techniques include zooming, random image rotation within a specified range, and
flipping. This helps create a more diverse dataset from a limited original set, thus enhancing the
model's robustness [11].
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Figure 2. Class Distribution Analysis

Class distribution analysis is conducted to ensure the balance of the dataset, an essential factor in
the development of machine learning models. The number of samples per class is calculated and
visualized in a bar chart to detect potential data imbalance. Imbalance can lead the model to favor
predicting the majority class, thus reducing performance on the minority class. If imbalance is
detected, techniques such as oversampling, undersampling, or augmentation can be applied to
enhance the representation of the minority class, ensuring that the model can learn patterns
optimally and provide accurate predictions for all classes [12]. All labels are also processed in a
categorical format, with class indices assigned as parasitized: 0 and uninfected: 1, ensuring
consistency in the mapping of labels to numerical or numeric formats for multi-class
classification.

The dataset is divided into three main parts: training, validation, and testing. Seventy percent of
the data is allocated for training, while the remaining 30% is further split into validation data
(20%) and test data (10%). This process uses the 'train_test_split' function with the 'shuffle=True'
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parameter to randomize the data before splitting and 'random_state=123' to ensure consistent data
division across each execution.

The use of 'TmageDataGenerator', which incorporates both preprocessing and data augmentation
capabilities, is directly applied to the training, validation, and test data loaded through a data
generator to increase the quantity and variability of the training data. Several transformations are
applied, including pixel value normalization to a range of 0-1, random rotation up to 15 degrees,
horizontal and vertical shifts, horizontal flipping, zoom adjustments up to 10%, and brightness
adjustments within a range of 90%-110%. Any empty areas resulting from the transformations
are filled using the nearest pixel values.
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Figure 3. Training Images

The training data generator utilizes the prepared augmentations, with several parameters
configured, such as resizing the target image to 64x64 pixels through the 'target size=(64,64)'
parameter. This size is small enough to accelerate model training without losing too many
important details of the images. Additionally, a batch size of 32 and RGB color format (Red,
Green, and Blue) are used. The data is also shuffled to ensure that the model does not learn any
specific order patterns.
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Figure 4. Validation Images

The 'plot_images' function is used to visualize 5 random samples from the images in each data
subset using the generator, with the class labels displayed in Figure 4: Validation Images. In the
validation data, random samples are shown to evaluate the model during testing. In contrast, for
the validation data, only normalization is applied without augmentation, and the data is not
shuffled to maintain the accuracy of the model evaluation, reflecting the model's true
performance. This visualization is crucial to ensure that the validation data is well-distributed and
properly represents the existing classes.

Figure 5. Test Images
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The test data is used to measure the model's performance after training is completed and is used
to evaluate the model's accuracy. In the test data, only normalization is applied without any
augmentation, and the data is not shuffled to ensure that model evaluation is performed
consistently. This visualization helps ensure that the test data is not biased, providing a reliable
measure of the model’s generalization ability.

2.3 Modeling

In the modeling phase for malaria disease detection, a transfer learning approach using the pre-
trained EfficientNetV2BO0 architecture was chosen as the primary method. The selection of this
architecture is based on its lightweight nature and fast training time, while still maintaining
optimal results [13]. Additionally, the base model of this architecture is capable of recognizing
common features in images without the need for training from scratch.

After selecting EfficientNetV2B0 as the base model, the next step is fine-tuning to adapt the
model to the pre-existing dataset. By performing appropriate fine-tuning, the model can be
customized to the prepared dataset, thus improving accuracy and efficiency in detecting malaria
infections. The fine-tuning process involves several key steps, including adding a classification
layer after the base model, configuring and adding dense layers, incorporating a dropout layer,
and adding the final dense layer, which serves as the output layer [14].

The process of searching for optimal hyperparameters is carried out using a Bayesian
Optimization approach, implemented through Keras Tuner. The 'build model' function is used to
construct the EfficientNetV2B0-based classification model architecture. This model uses pre-
trained weights from ImageNet, with the top layers removed to allow for fine-tuning. The
hyperparameters tested include the number of units in the Dense layers, dropout rate, and learning
rate, with the search space predefined. The final layer of the model is designed for multi-class
classification with a softmax activation function. The entire configuration is optimized to
maximize validation accuracy using the categorical cross-entropy loss function [10].

The tuning process involves training the model for three epochs on each hyperparameter
combination, using the training and validation data. Early stopping is applied to halt the training
early if no improvement is observed in the validation loss, while ensuring the best weights are
saved. After tuning is completed, the best hyperparameters and model are evaluated using the
validation data to calculate accuracy and loss [15]. The optimal hyperparameters, such as the
number of units, dropout rate, and learning rate, are saved in JSON format to facilitate replication
and reuse in further training or testing. This approach ensures that the resulting model has an
optimal configuration for the best classification performance.

After loading the best hyperparameters saved in the JSON file, the image classification model is
built using the optimized parameters. The base model used is EfficientNetV2BO0, pre-trained on
the ImageNet dataset, with the classification top-layer removed to allow for fine-tuning. The
loaded hyperparameters include the number of units in the Dense layers, dropout rate, and
learning rate, which are applied to add custom classification layers. The first Dense layer is added
with the number of units determined by the hyperparameter, followed by a Dropout layer to
reduce overfitting. The output layer uses a softmax activation function to generate the probability
distribution for each class. This structure ensures that the model can effectively learn from the
training data and make accurate class predictions.

The model is then assembled by connecting the input from the base model and the output from
the classification layers. The Adam optimizer is used with the predefined learning rate, and the
categorical cross-entropy loss function is applied for multi-class classification. Accuracy is used
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as the metric to evaluate the model's performance. Once the model is fully assembled and
compiled, the complete model structure, along with the number of parameters, is displayed to
provide an overview of the architecture. This helps in understanding the design and complexity
of the model. The model is then ready for further training and evaluation on the relevant dataset.

Several callback strategies are used to optimise the model's training process. The first callback is
EarlyStopping, which checks validation loss and stops training if no improvement is seen after a
set number of epochs, returning the model weights to the best state discovered during training.
The second callback is Reduce.LROnPlateau, which cuts the learning rate when the validation loss
stagnates in order to hasten the model's convergence. Additionally, ModelCheckpoint is used to
save the best model throughout training, either as the full model or just the model weights, with
monitoring of the validation loss to ensure that only the model with the best performance is saved.
These callbacks help ensure efficient training and prevent overfitting by optimizing the model's
learning process.

The model training process is conducted with the utilization of several callbacks previously
described, and the training duration is calculated to assess the time required. The start time of
training is recorded before the training process begins, and the end time is calculated after the
process is completed. The total training time is then displayed in minutes and seconds to provide
an overview of the training efficiency. The model is trained for 50 epochs, with continuous
monitoring of the validation loss to optimize the model according to the prevailing conditions.

Next, the training history data, which contains information about the model's performance,
including loss and accuracy for each epoch, is saved in JSON format. This storage allows for
further analysis of the training process, with the data available for visualization or future model
evaluation. By adopting this approach, all training-related information, including model
performance and training duration, can be accessed and analyzed in greater detail once the training
is completed.

2.4 Testing and Evaluation

After the model has passed through the modeling and training stages, it moves on to the testing
and evaluation phase to assess its accuracy. Evaluation on the training data is essential to ensure
that the trained model performs well and does not experience overfitting or underfitting. Through
evaluation, the model’s learning process can be monitored to determine how it learns from the
data and makes accurate predictions. To measure the model's performance, commonly used
evaluation metrics include accuracy, recall, precision, and F1-Score [16].

2.4.1 Accuracy

The previously saved JSON data can be used to analyse the model's performance. The accuracy
result measures how often the model makes correct predictions. In general, it indicates the ratio
of correct predictions to the total number of predictions. The formula for calculating accuracy is
shown as (1).

TP +TN

ACCUFHC_V:mXZOO (1

Where:
TP : True Positive (The model correctly predicts positive samples)
TN : True Negative (The model correctly predicts negative samples)
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FP : False Positive (The model predicts positive samples that are actually negative)
FN : False Negative (The model predicts negative samples that are actually positive)

2.4.2 Recall

Recall is a metric that measures how often the model correctly identifies true positives from all
ground truth positives. This metric is used to extract the ratio of correctly identified positive
instances to all actual positives in the ground truth. The formula for calculating recall is shown as
formula (2).

Recall = —+— 2
TP + FN

2.4.3 Precision

Precision is an evaluation statistic that assesses a model's ability to correctly forecast positive
samples. This measure is the ratio of true positives to all positive predictions, including false
positives, using the following formula (3).

TP
TP + FP

Precision =

3)

2.4.4 F-1Score

The F1-score is a statistic that combines precision and recall to give a more complete picture of
the model's performance. This statistic is very valuable when dealing with class imbalance, as
precision or recall alone may not suffice. The F1-score goes from 0 to 1, with values near 1
suggesting superior model performance in terms of precision and recall. The F1-score can be
determined using the following formula (4).

Precision x Recall
F-15core =2 x —— (4)

Precision + Recall

3. Results and Discussion

The results of the training and evaluation of the malaria classification model based on
EfficientNetV2B0 will be presented in this section. Additionally, an analysis of the model's
performance will be provided, along with the factors that influenced these results. The discussion
section will include the interpretation of the results and the accuracy level of the model.

Overall, the research on the EfficientNetV2B0-based malaria classification model demonstrates
excellent and satisfactory performance. For each class, 'Parasitized' and 'Uninfected', the model
exhibits a good balance in detecting both classes, with a relatively low error rate. The model
achieves an accuracy rate of 96%, indicating that it can classify images very effectively, whether
they belong to the infected class ('Parasitized') or the non-infected class (‘Uninfected').

The precision for the 'Parasitized' class is higher (0.97) compared to the 'Uninfected' class (0.95).
The higher precision in the 'Parasitized' class indicates that the model is more accurate in
identifying images as infected. This is likely due to the larger number of samples in the
'Parasitized' class (1,410 labels) compared to the 'Uninfected' class (1,345 labels). As a result, it
can be concluded that the model interacted more frequently with data from the 'Parasitized’ class
during training, enhancing its ability to recognize 'Parasitized' images.
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However, the recall for the 'Uninfected' class is higher (0.97), which means the model performs
better in detecting 'Uninfected' images. This indicates that, despite the "Uninfected' class having
fewer sample images, the model is still able to accurately detect these images. This suggests that
the model is effective in identifying the 'Uninfected' class, even with a smaller sample size.

The F1-Score shows a balanced value for both classes (0.96), indicating that the model in this
study is not biased towards the more dominant class and is able to classify both classes accurately.
This suggests that the model performs well in achieving a balance between precision and recall
for both the 'Parasitized' and 'Uninfected' classes.

Table 1. Model Performance Evaluation

Evaluation Metrics

Class Labels
Precision Recall F-1 Score
Parasitized 0.97 0.95 0.96
Uninfected 0.95 0.97 0.96
Accuracy 0.96
Val Accuracy 0.95

In Figure 6, the confusion matrix is presented to visualize the evaluation of recall and how the
model classifies each label from the testing dataset. The results show that the model successfully
predicted 95.39% of the parasitized samples correctly, demonstrating a high accuracy in detecting
positive cases. However, there is a misclassification rate of 4.61%, where samples that were
actually infected were incorrectly classified as uninfected. On the other hand, for the uninfected
samples, the model performed excellently, correctly predicting 97.24% of those labels.
Nonetheless, a misclassification rate of 2.76% occurred, where samples that were actually
uninfected were mistakenly classified as parasitized.

Based on this analysis, it can be concluded that the model exhibits strong capabilities in
classifying both infected and uninfected samples with a relatively high accuracy. This highlights
the model's potential for use in real-world applications, where accuracy and reliability in diagnosis
are crucial, especially under supervised conditions.
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Figure 6. Confusion Matrix based on the testing dataset results
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4. Conclusion

This study demonstrates that the EfficientNetV2B0 model delivers excellent performance,
achieving a high accuracy rating of 96% after hyperparameter tuning using Bayesian optimisation.
These adjustments optimised an already well-trained model, improving its ability to detect
malaria-infected blood cells. The approach is in line with recent research leveraging machine
learning to enhance the efficiency, speed, and accuracy of disease detection. By utilising deep
learning models such as EfficientNetV2BO0, the identification of potential malaria infections can
be performed much faster compared to traditional methods. This accelerates diagnostic time and
improves accuracy, potentially making a significant impact on malaria control and prevention
efforts. As a result, the research aims to contribute to the advancement of disease diagnosis
technologies, making them more sophisticated and reliable, particularly in remote areas with
limited medical resources.
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