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The multi-distributed activation energy model (multi-DAEM) is
the most effective approach for outlining the kinetics model of

biomass pyrolysis. The purpose of this study is to identify the
optimal number and shape of the DAEM for sugarcane bagasse
pyrolysis and to discuss its thermodynamic characteristics
using the combination of multi-DAEM and differential thermal
analysis (DTA). The heating rate of 10, 30, and 50 °C/min was
employed. The results revealed that the multi-DAEM with five
pseudo components and Weibull distribution shape gave the
lowest relative root mean of the squared error (RRMSE) of
0.66% and 0.41%, respectively. Kinetic and thermodynamic
studies showed that the 15t and 4" pseudo components which
represent lignin, have activation energy (Eo) of 189.6 and 180.6
kJ/mol, and less endothermic or possibly exothermic
properties. Meanwhile, the 2", 39 and 5% pseudo
components which represent cellulose, hemicellulose, and
moisture have activation energy (Eo) of 176.1, 152.2, and 145.6
kJ/mol, respectively, and endothermic properties.
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1. INTRODUCTION

One of Indonesia's major sources of
farming waste is bagasse. (Pradana et al,,
2019). Bagasse can be used as fuel in boilers
and power generators (Ordonez-Loza et al.,
2021). It is a lignocellulosic biomass that
Several processes (including pyrolysis) can
convert into fuel. (Jamilatun et al., 2022;
Pradana et al., 2019). Pyrolysis is a thermal
decomposition without an oxidizing agent
(air or oxygen) (Guedes et al., 2018; Pitoyo
et al., 2022). It is considered a superior
method to other thermochemical
conversions because of its versatility in
choosing raw materials, wider temperature
operational (300-600 °C), possible operation
at atmospheric pressure, and its ability to
produce three valuable products (solid,
liquid, and gas) simultaneously (Jamilatun et
al.,, 2019; Terry et al., 2021). Several
research studies have been carried out
related to the mechanism, operating
parameters, and kinetics model of pyrolysis
(Hameed et al., 2019; Kaczor et al., 2020;
Wang et al., 2017).

There are two fundamental mathematical
procedures to experimentally determine the
kinetics of biomass pyrolysis's parameters:
model-free and model-fitting methods (Cai
etal., 2014). The former method, also called
the iso-conventional method, assumes that
the conversion value affects kinetic
parameters like the frequency factor and
activation energy (Aboyade et al., 2011).
This method includes Miura differential
method, Miura-Maki integral method,
Coats-Redfern, Flynn-Wall-Ozawa, Kissinger,
and Kissinger-Akahira-Sunose. This method
is easier because it only requires linear
regression (Bonilla et al., 2019; Sukarni,
2020; Zhao et al., 2020).

However, it has several areas for
improvement, such as requiring a minimum
of three experiments with different heating
rates and not being suitable for multiple
reactions (Vyazovkin et al.,, 2011).
Sometimes it is difficult to find conversion

derivatives to the activation energy due to
significant variations in conversion to the
activation energy (Cai et al., 2014).

The model-fitting method can be grouped
into single-reaction and multi-reaction
models. Multi-reaction models include the
lumped kinetic model and DAEM. The
lumped kinetic model assumes several
parallel reactions, each with their individual
activation energy. At the same time, DAEM
assumes that the decomposition mechanism

involves multiple independent parallel
reactions with various activation energies
for each reaction (see

https://www.american.edu/sis/centers/car
bon/removal; Sonobe & Worasuwannarak,
2008; Vyazovkin et al., 2011).

DAEM explains the kinetics of biomass
pyrolysis, the mechanism of thermally
degradable materials, and complex chemical
systems such as coal pyrolysis (Quan et al.,
2009). However, the model-fitting method is
weak, as the obtained kinetic parameters
provide accurate data fitting at only one
heating rate (Varhegyi et al., 2011).

The distributional shape of DAEM
describes different behavior and kinetic
mechanisms. The exact shape of the
distribution of activation energy is unknown.
Its shape can be grouped into two types,
symmetrical and asymmetrical. Symmetric
distribution shapes include Gaussian,
Gumbel, Cauchy, and Logistic, with the
Gaussian distribution being the most widely
applied (Dhaundiyal & Singh, 2016; Tran et
al., 2016). However, the Gaussian
distribution has a weakness as it is
symmetrical, while the actual distribution is
asymmetrical (Burnham & Braun, 1998).
This makes asymmetric distributions such as
the Weibull and Gamma distributions more
attractive to be implemented (Cai & Liu,
2007; Kuo-Chao et al., 2009). In addition to
the shape of the distribution, the number of
distributions or pseudo-components is an
important factor. It determines the accuracy
of a simulation and the complexity of
calculations. Too few distributions reduce
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the accuracy of a model, while too many
require high computational costs. Three
distribution numbers have been broadly
employed to describe the pyrolysis of
biomass (Cai et al., 2014). The use of a
distribution number of four or five has also
been employed to describe the thermal
decomposition of plastic waste, marine
biomass, and also lignocellulosic biomass
(Burra & Gupta, 2018; Kristanto et al., 2021;
Y. Lin et al., 2019). Choosing the correct
number and shape of the model can simplify
the complexity of the calculations while
increasing the prediction ability and
accuracy of the simulations performed.
Thermogravimetric differential thermal
analysis (TG-DTA) is an analysis method
generally used to study the thermal
decomposition of biomass (Viju et al., 2018).
TG-DTA can simultaneously calculate weight
change and differential heat flow as a
function of time and temperature. DTA
measurement is based on the difference
between the reference and sample
temperatures. The thermodynamic
properties of the pseudo component have a
significant correlation with the reaction
enthalpy profile (Kristanto et al., 2021). To
our best knowledge, systematic
determination of the number and shape of
DAEM is rarely investigated, while the use of
the relationship between multi-DAEM and
DTA profile to explain the thermodynamic
properties of the involved pseudo
components has never been performed.
This paper aims to determine the number
and shape of the best DAEM that can
accurately describe the decomposition
process in bagasse pyrolysis and, at the

same time, discuss the thermodynamic
properties of each pseudo component
based on the relationship between multi-
DAEM and DTA profile.

2. METHODS
2.1. Materials

Bagasse was obtained from PT
Madukismo Yogyakarta. Samples were

washed to remove the impurities, then oven
dried for 24 h. After drying, the sample was
crushed and sieved to get a grain size of 60
mesh. Table 1 lists the results of the
proximate, ultimate, and compositional
analyses.

2.2. Thermogravimetric Pyrolysis

Pyrolysis was carried out using a
simultaneous TG-DTA Hitachi STA-200RV at
atmospheric pressure in an inert nitrogen
atmosphere. The sample is weighed as much
as 6-10 mg and placed in a platinum pan, a
small sample weight (6-10 mg) is taken to
reduce mass and heat transfer barriers ( Y.-
C. Lin et al., 2009; Varhegyi et al., 2011).
Constant heating rates of 10, 30, and 50
°C/min were utilized to heat the sample
from 30 to 900°C. N; gas with high purity
(99.99%) is flown at 100 mL/min to obtain an
inert condition. In TG-DTA, thereis a thermal
lag at high heating rates between the
thermocouple reading and the sample's
actual temperature. Therefore 10 °C/min
heating rate was selected to evaluate the
thermodynamic properties based on the
DTA profile to minimize the occurrence of
thermal lag (Jr & Grgnli, 2003).

Table 1. Proximate and elemental analysis of bagasse.

Ultimate Value Proximate Value (wt.%) Composition Value
analysis (wt.%) analysis ) analysis (wt.%)
C 42.50 Moisture 3.83 Cellulose 45.82
H 6.17 Volatile matter 21.95 Hemicellulose 20.20
O 51.00 Fixed carbon 71.60 Lignin 21.32
N 0.23 Ash 2.60
S 0.10
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2.3. Kinetic Modeling

Kinetic modeling is important to
determine the optimal kinetic parameters,
pre-exponential factor (A), and activation
energy (E). In this study, the n"-order
reaction model and DAEM were used. The
nt-order reaction model is shown by
Equation [1].
a(T)=1- [1 -(1-n) f.l:r()%exp (— :—T) dT]m (1)
where B is the heating rate, T is the
temperature at time t, Tp is the initial
temperature, R is the universal gas constant,
and n is the reaction order. Moreover, the
degree of conversion is formulated by
Equation [2].
m;—mr

a(T) ==

mi—mf

(2)

where mjis the initial mass of the sample, mr
is the mass of the sample at temperature T,
and my is the final mass of the sample. The
equation for single-DAEM is shown in
Equation [3].

a(T) =1~ [ exp |~ [ exp (= ) dT| F(EYAE

(3)

Biomass is a complex chemical material
consisting of multiple pseudo components
that do not interact with each other during
the thermal decomposition process; hence,
multi-DAEM is needed to accurately
describe the decomposition process

(Vyazovkin et al., 2011). To explain the
contribution of each pseudo component,
weighting; or contribution factor; ¢; was
introduced (Kristanto et al., 2021), and the

equation for multi-DAEM is shown in
Equation [4].
a(M=1-3 ¢ fom exp [— f:o%exp (— %) dT]fj(E)dE (4)

Here Nd is the number of distributions,
and f;(E) is the distribution function or the
shape of DAEM. In this study, seven shapes
of DAEM were used: Gaussian, Logistic,
Gumbel, Cauchy, Weibull, Gamma, and
Rayleigh. Table 2 shows the distribution
function of each DAEM. There is no exact
analytical solution to the problem since it
has double integrals, inner integrals dT, and
outer integrals dE. (Mcguinness et al., 1999;
Orfdo, 2007; Tran et al., 2016). In this study,
the temperature integral estimation
suggested by Cai et al. (2006) was applied to
solve the inner integral dT and the
trapezoidal integration rule to solve the
outer integral dE. The pre-exponential factor
(Aj) was determined by setting the initial
optimization value close to the values in the
literature, namely 10%+13, 101371, 1013-°% and
1.67x10%3/s for hemicellulose, cellulose,
lignin, and unknown components,
respectively (Varhegyi et al.,, 2011). The
upper limit of outer integral dE is 500 kJ/mol
(Glnes & Glines, 1999).

Table 2. Type of distribution function used in this research.

s e s e . Mean ..
Distributions Distribution Function, f(E) value of E Standard deviation of E
Gaussian f(E) = - 12n exp [_ (52‘:;)2] E, o
Logistic F(E) = isech (Ez—:o) Ey "
I e e I :
21— 1
0= [i+ (5] 3 :

k-1 k 2
wemi @ =3() Teo[-G)] ar(e) #fr(e)-r(e)]
G E) = B _E ko ko2

amma f(E) raoeexP (=5
) = B (-22) o ()0
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The objective function in Equation (5) was
minimized to achieve the kinetic
parameters. The objective function was
determined by summing the square errors
between the experimental and the DAEM
simulation data. The objective function was
minimized using the Matlab software
package, i.e., the fmincon function using the
sequential quadratic programming (SQP)
algorithm. This optimization wused a
maximum iteration of 1000 and a maximum
function evaluation of 5000 for all
distributed activation energy models
(DAEM). The range of values used in the
literature is the basis for the optimization's
constraints (Varhegyi et al., 2011). The value
of the Ep was taken from 100 to 350 kJ/mol,
the standard deviation (o) was taken from 0
to 70 kJ/mol, the pre-exponential factor (4))
was selected from 10%° to 10%%/s, and the

contribution factor (c;) was selected from 0
to 1.

expi (T) = @moder (T)]Z (5)

Qexpi and  Omode,i are the degree of
conversion of the experimental data and the
model, respectively, and np is the number of
data points. The quality of fitting was
evaluated using the relative root mean of
the square error (RRMSE) and the coefficient
of determination (R?), as shown in Equations
[6] and [7] (Feng et al., 2022).

SSE—Z

L5 6 i (D= CrmoderiT)]
RRMSE = Y22z e % 100% (6)

Qexp,i

Zin:pl[aexp,i(T)_amodel,i(T)]2 (7)

RZ=1-
Z?zpl[“exp,i('r)_aexp,i(T)]Z

where @, ;(T) is the average value of the
experimental data. Figure 1 shows the
optimization algorithm to determine the
optimal kinetic parameters.

L 2

/
Input /
TO, 8 fﬁ’

/ Trial /
/ Aj, Eoj, aj, ¢

|

Calculating degree of conversion
of the experiment aexp(T),
Equation [2]

Solvmg inner |ntegra| dT (using temperature integral approximation)

fﬁex" RT

A[RT?E + 0.66691RT (E)
Bl E E+26494-3RTEP RT

Solving outer integral dE (usmg trapezoidal integration rule)

T
A
Aoder(T) =1 = f expl fﬁ —ﬁ dT] (E)dE

500

v
N . Minimizingsse, |~~~

Constraints: Equation [5] no
100 < Eg; <350
0<g; <70 | ves
0< (& <1 Calculating RRMSE,
1010 < Aj < 1020 Equation [6]
MaxFunEvals = 5000 |
MaxIter = 1000 Calculating RZ,

Equation [7]

|

Figure 1. Kinetic parameters calculation algorithm.
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3. RESULTS AND DISCUSSION
3.1. TG-DTA of Bagasse

Figure 2 presents the results of the TG-
DTA analysis of bagasse at a heating rate of
10, 30, and 50 °C/min. The heating rate
dramatically affects the decomposition
characteristics. Considering the TGA's
characteristics, the high heating rate
reduced the time needed for decomposition
from 48.27 min at a heating rate of 10
°C/min to 17.98 and 12.09 min at 30 and 50
°C/min, respectively. On the other hand, a
high heating rate reduced the total solids
conversion from 97.14% at a heating rate of
10 °C/min to 89.83 and 91.48% at a heating
rate of 30 and 50 °C/min, respectively. This
is likely because the high heating rate
triggers a secondary decomposition reaction
that converts volatile materials into char
(Guedes et al., 2018). Based on the
characteristics of DTG (Figure 2a), the peak
temperature was moved to the right by

increasing the heating rate from 332.58°C at
a heating rate of 10°C/min to 350.87 and
360.17°C at heating rates of 30 and 50
°C/min, respectively. Based on the
characteristics of the DTA, the high heating
rate causes the loss of the peak appearance
on the DTA curve. This is probably brought
on by the thermal delay between the sample
temperature and thermocouple measuring
(Jr & Grgnli, 2003). This suggests the use of
low heating rates in studying biomass
decomposition kinetics to avoid the loss of
peaks on the DTA or DTG curves. The DTG
curve shows a peak at 332.58 °C, a shoulder
at 300 °C, and tailings at a temperature
range of 365-550 °C. The peak is associated
with cellulose decomposition, the shoulder
is associated with hemicellulose
decomposition, and the tailings at the end of
the pyrolysis temperature are associated
with lignin decomposition.

10'Cmn

Figure 2. The curve of several parameters: (a) DTG at different temperatures, (b) TG-DTA at a
heating rate of 10 °C/min, (c) TG-DTA at a heating rate of 20 °C/min, and (d) TG-DTA at a
heating rate of 30 °C/min.
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3.2. Determination Number of Distribution

Figure 3 depicts how the number of
distributions has an impact on fitting quality
using five distribution numbers Gaussian.
One Gaussian shows the most significant
deviation among the five distribution
numbers, and this is because of the
limitations of one Gaussian in describing the
multiple reactions that occur in biomass
decomposition. Figure 3a shows that two,
three, four, and five Gaussian provide
overlapping data fittings. From Figure 3b, it
can be seen clearly that the five Gaussians
show the lowest RRMSE.

Table 3 shows that using five Gaussian
gives one distribution (the 3™ pseudo
component) with a reasonably low
contribution factor. Using a distribution
number of more than five will result in
several pseudo components with a relatively
low contribution factor, which has no
significant role in the reaction, and instead
results in high computational complexity.
Thus, it is not optimal. From the figure,
moreover, it can be seen that the number of
peaks on the DTG curve can indicate the
number of distributions which can be used
in the DAEM (Kristanto et al., 2021).

3.3. Determination
Distribution

Shape of The

The evaluation was performed on various
shapes of DAEM such as Gaussian, Logistic,
Gumbel, Cauchy, Weibull, Gamma, Rayleigh,
and Reaction orders (non-DAEM) to obtain
optimal conditions (providing a total RRMSE
is minimum).

Figure 4 shows that the Gamma,
Rayleigh, and Reaction order models
provide a high value of total RRMSE.

Meanwhile, the Gaussian, Logistic, Gumbel,
Cauchy, and Weibull models provide
accurate results, as shown by the overlap of
the graphs in Figure 4a and the low total
RRMSE in Figure 4b.

Table 3 shows a good fitting quality of the
five models with a coefficient of
determination > 0.9998. Weibull best fits the
five models (Kuo-Chao et al.,, 2009),
characterized by the lowest RRMSE value.
The reason is that the actual energy
distribution in the biomass' thermal
decomposition is asymmetrical, especially
during the initial and final stages. Weibull
model is an asymmetrical distribution
model, so it can provide good fitting,
especially at the beginning and end of the
thermal decomposition (Cai & Liu, 2007
Kuo-Chao et al., 2009), as shown in Figure 6.
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Figure 3. Identification of different numbers of Gaussian DAEM: (a) fitting data model and
(b) calculated RRMSE.
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Table 3. Kinetic and statistic parameters for bagasse pyrolysis.

Shape of Kinetics Pseudo component
DAEM parameter 1% 2 3« 4t 5th
c 0.2029 0.4791 0.0101 0.1375 0.1705
Eo 189.6090 176.0650 145.6006 180.6271 152.2513
Weibull o 16.7104 0.8478 6.0524 60.3042 1.1902
RRMSE (%) 0.6162
R? 1.0000
c 0.1870 0.5143 0.0465 0.1344 0.1534
Eo 190.3440 164.6107 150.0123 195.8034 162.4114
Gaussian o 3.0611 0.3026 22.0800 7.6443 0.2139
RRMSE (%) 0.6610
R? 0.9999
c 0.1758 0.4990 0.0660 0.1098 0.1524
Eo 190.1544 164.7257 184.1894 184.3085 162.4515
Logistic o 1.1206 0.1005 16.7588 3.2011 0.7639
RRMSE (%) 0.7384
R? 0.9999
c 0.1688 0.3754 0.0322 0.2439 0.1753
Eo 189.2224 164.0643 196.3672 169.5746 161.4599
Gumbel o 0.2932 0.5308 16.4970 10.5493 4.4010
RRMSE (%) 1.2104
R? 0.9998
c 0.1821 0.4434 0.0000 0.1805 0.1510
Eo 188.8274 164.2228 199.0293 180.0004 162.3227
Cauchy o 0.2869 0.2958 17.4544 6.0263 0.0653
RRMSE (%) 1.1249
R? 0.9998
(a) (b)
| .

Figure 4. Identification of different shapes of multi-DAEM: (a) fitting data model and (b)

calculated RRMSE.

3.4. Sensitivity Analysis of DAEM Kinetic
Parameter

Figure 5 reveals the local sensitivity
analysis of the parameters obtained from
DAEM. Local sensitivity analysis is evaluated
on specific parameters (Sciacovelli & Verda,

2012). Sensitivity analysis is applied to
assess the parameters' robustness in
different input data. The x-axis shows
deviations from optimal parameters, the y-
axis shows the kinetic parameters of DAEM,
and the different colors in contours show
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the RRMSE values. At the same value of x,
the closer to the yellow area the higher the
RRMSE value and the more sensitive. It can
be seen from Figure 5 that the standard
deviation (o) is the most sensitive parameter
among the existing parameters, marked by
the number of contour areas with the yellow
color. Meanwhile, the activation energy (Eo)
and pre-exponential factor (A) have
relatively excellent robustness. The Ep and A
not sensitive when deviated from the
optimal value indicated by the low value of
RRMSE.

3.5. Kinetic Study of Bagasse Pyrolysis

Figure 6 shows the DTG curve formed
from the differentiation of experimental
TGA data and the DAEM simulation using
five pseudo components. Matching the
number and shape of peaks between the
DTG experiment and the DAEM simulation is
needed to accurately describe the kinetics of
the decomposition reaction (Kristanto et al.,
2021). It can be seen from Figure 6 that all

DAEMs exhibit four major pseudo
components (the 1%, 2", 4t and 5™ pseudo
components) and one minor pseudo

component (the 3 pseudo component).
Based on the Weibull model, at a
temperature range of less than 250 °C, a
minor pseudo component (3™ pseudo
component) was decomposed with an Ep of
145.60 kJ/mol and a contributing factor of
0.0101, which probably represents the
decomposition of bound moisture and light
volatiles.

In the range of 215-325°C, the 5% pseudo
component decomposition occurred with an
Eo of 152.25 kl/mol, a standard deviation of
1.19 kJ/mol, and a contributing factor of
0.17, which probably represents the
hemicellulose decomposition. In the range
of 245-370°C, the 2" pseudo component
decomposition occurred with an Ep of
176.06 ki/mol, a standard deviation of 0.85

kJ/mol, and a contributing factor of 0.48,
which probably represents the cellulose
decomposition.

In the range of 280-525 °C, the 1%t and 4t
pseudo component decomposition occurred
with Eo of 189.61 and 181.16 kJ/mol,
standard deviations (o) of 26.72 and 60.30
kJ/mol, and contributing factors of 0.2029
and 0.1375, respectively. This represents the
decomposition of lignin and char. The
appearance of several pseudo components
in lignin decomposition was also reported in
a previous study (Kristanto et al., 2021).

Figure 7 shows the activation energy
distribution of the five pseudo components
during bagasse pyrolysis. The order of
appearance of the peaks in the figure
corresponds to the appearance of the
pseudo components on the DTG curve. From
the figure, the narrowest activation energy
distribution range is seen in the 2" pseudo
component as reported by Huber et al., with
an activation energy of 172-178 kJ/mol and
a standard deviation of 0.85 ki/mol. This
range is included in cellulose's activation
energy distribution range (Quan et al,
2016).

The distribution of the 5™ pseudo
component’s activation energy is more
comprehensive than that of the 2" pseudo
component, with an activation energy
distribution of 146-155 kJ/mol and a
standard deviation of 1.19 kJ/mol, belonging
to the hemicellulose distribution range (J.
Zhang et al., 2014).

At last, the 1% and 4™ pseudo
components have the widest distribution of
the activation energy, in the range of 155-
200 kJ/mol, and standard deviations of
16.71 and 60.30 kl/mol . This indicates that
the two components have a complex
structure, and the decomposition arises
over a broad temperature range, as in lignin
decomposition (Jiang et al., 2010; Wang et
al., 2015).
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Figure 5. The local sensitivity analysis of multi-DAEM.
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Figure 6. Experimental and simulation DTG of bagasse with multi-DAEM at heating rate of 10
°C/min using: (a) Gaussian, (b) Logistic, (c) Gumbel, (d) Cauchy, (e) Weibull, and (f) Weibull
distribution at 30 °C/min.
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Figure 7. Activation energy distribution of multi-DAEM for pyrolysis of bagasse.
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3.6. Thermodynamic characterization

The DTA instrument can determine heat
flow in the reaction based on the
temperature difference between the sample
and reference for a fixed amount of heat
input (Zhang et al., 2008). The sample
temperature remains constant for the
endothermic reaction, so the heat flow
(DTA) value is higher, whereas, in the
exothermic reaction, the heat flow (DTA)
value is lower. Using the relationship
between DTA and the distribution of pseudo
components in DTG, it is possible to
understand the thermodynamic properties

002 12 T
0.018
0.016

0.014

0.012 |-

0.008

dx/dT (C)
s
2
T
Degree of Conversion

0.006

0.004

0.002

' " n W v v

of each pseudo component and biomass
decomposition behavior.

Figure 8 shows the relationship between
TGA, DTA, and multi-DAEM simulation, as
also several stages for thermodynamic
characterization. Each stage shows different
temperature ranges, conversions, pseudo-
component contributions, heat flow, and
thermodynamic properties, as shown in
Table 4. At the temperature of 200-250 °C or
stage | of 3.7 uV, a slight increase in the DTG
curve is accompanied by a slight increase in
DTA value, representing the decomposition
reaction of the 3™ pseudo component.

——Model 80
Pseudo 1

= = =Pseudo 2
Pseudo3 |70

- = -Pseudo 4

- = =Pseudo 5

—DTA

——Conversion

DTA(uV)

Temperature (°C)

Figure 8. Comparison of TGA, DTA, and calculated DTG.

Table 4. Thermodynamic characterization of bagasse pyrolysis.

Pseudo component

Thermodynamic

° nversion (¢ Heat flow (uVv
Stage Temperature (°C) Conversion (%) Contribution (%)** eat flow (nVv) properties
2" pseudo: 11.44 )
I 200-250 2.59 5% pseudo: 88.56 31-58-35.28 endothermic
2" pseudo: 29.08 )
Il 250-285 13.33 5t pseudo: 70.92 35.28-43.01 endothermic
2" pseudo: 74.41
[ 285-305 26.28 5% pseudo: 22.46 43.01-51.76 endothermic
4t pseudo: 3.13
2" pseudo: 95.11 )
v 305-330 47.64 4% pseudo: 4.89 51.76-68.31 endothermic
2" pseudo: 76.63 .
\Y 330-352 66.73 4% pseudo: 23.37 68.31-91.31 More endothermic
2" pseudo: 90.93 Less endothermic/
* - -
v 345-347.6 65.32 4% pseudo: 9.07 83.11-81.92 possibly exothermic
1%t pseudo: 5.04 Less endothermic/
v 352-368 71.08 4t pseudo: 94.96 91.31-72.88 possibly exothermic
1t pseudo: 73.02 )
Vi 368-430 82.80 4% pseudo: 26.98 72.88-65.05 Exothermic
VIl 430-465 91.10 1% pseudo: 100.00 65.05-72.47 Endothermic
IX 465-550 100.00 1%t pseudo: 100.00 72.47-27.86 o5 endothermic/

possibly exothermic

Note: **At the final temperature of each stage
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This reaction may be related to the
dehydration of active cellulose or bound
moisture, which is endothermic. A sharp
increase in DTA value of 56.03 uV occurred
at a temperature range of 250-330 °C or
stage II-IV, after the presence of the 2"
pseudo component. This indicates an
endothermic reaction during the
decomposition of the 2" and 5% pseudo
components representing cellulose and
hemicellulose, respectively. The higher 2"
pseudo component contribution than the 5t
reveals the more endothermicity of the 2"
pseudo component. The endothermicity of
the 2" pseudo component is related to the
depolymerization of cellulose. There is a
fluctuation in the DTA value between 352-
550 °C or stages VI-IX. This indicates that the
decomposition of the 1%t and 4™ pseudo

components,  which represent  the
decomposition of lignin, involves
exothermic and endothermic reactions

(Kristanto et al., 2021; Yang et al., 2007),
with the exothermic tendency of the 4t
pseudo component.

Thermodynamic parameters such as A,
Eo, enthalpy (AH°), entropy (4S°), and Gibbs
free energy (AG°) are important for
understanding the behavior of a chemical or
physical process (Khajehzadeh et al., 2020).
The thermodynamic parameter is obtained
using the equation provided by Kim et al.
(Kim et al., 2010) at the peak temperature of
each pseudo component because that
temperature gives the highest reaction rate

(Aameretal.,2017). A high Avalue improves
both the reaction rate and the frequency of
molecular collisions. The Ep and AH® values
indicate the minimum energy needed for a
reaction and the low Ep and AH° values
increase the reaction rate. A high AS°
indicates a high degree of disorder which
has implications for increasing spontaneous
reactions, high reactivity, and increasing
reaction rates. Meanwhile, the high AG®
decreases the spontaneous reaction.
Thermodynamic parameters of the bagasse
pyrolysis are summarized in Table 5.

Based on Table 5, the 3™ pseudo
component has the lowest Ey, AH®, and AG®
values and the highest A and AS° values;
hence, it has a high tendency for the
reaction to occur spontaneously. The 5t
pseudo component, which represents
hemicellulose, has relatively low Ep, AH®, and
AG° values and relatively high A and AS®
values. Therefore, it has a relatively high
tendency for spontaneous reactions to
occur but is still weaker than the 3™ pseudo
component. The 2" pseudo component,
which represents cellulose, has relatively
low Eg, AH®, and AG° values, while A and AS®
values are relatively high. Hence, it has a
fairly high tendency for spontaneous
reactions to occur but is still weaker than the
3" and 5" pseudo components. Meanwhile,
the 1%t and 4% pseudo components, which
represent lignin, have high Eo, AH®, and AG®
values but low A and AS° values, so
spontaneous reactions have a low tendency
to occur (Xu & Chen, 2013).

Table 5. Thermodynamic parameters for bagasse pyrolysis.

Pseudo 4 o o o
Eo (kJ/mol) A(s?) AH’ (kJ/mol) AS° (kJ/mol) AG” (kJ/mol)
component
1t 189.609 1.09594E+13 183.472 -0.011 191.689
2nd 176.065 1.03117E+15 171.050 0.028 153.964
3rd 145.600 1.30756E+15 141.459 0.032 125.571
4th 180.6271 1.08759E+14 175.155 0.009 169.296
5th 152.251 1.04291E+14 147.611 0.01 142.072
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4. CONCLUSION

TG-DTA pyrolysis of bagasse has been
investigated using a DAEM to determine the
optimal number and shape of DAEM. The
combination of DAEM and DTA can be used
to study the thermodynamic properties of
bagasse pyrolysis. The results show that the
multi-DAEM with five pseudo components
gave the lowest RRMSE of 0.66%. Based on
the shape of the multi-DAEM, the Weibull
distribution gives the lowest average RRSME
value of 0.41%. Based on the kinetic and
thermodynamic studies, the 1t and 4t
pseudo components have Ep of 189.6 and
180.6 kI/mol and AG° of 191.7 and 169.3
kJ/mol, representing lignin decomposition.
The 2" pseudo component represents
cellulose with an Eg of 176.1 kiJ/mol and AG*
of 153.9 kJ/mol. The 5™ pseudo component
represents hemicellulose with an Ep of 152.2
klJ/mol and AG° of 142.1 kJ/mol. The 3™
pseudo component represents the bound
moisture or light volatile with an Ep of 145.6
kl/mol and AG° of 125.6 ki/mol. The
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combination of multi-DAEM and DTA
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possibly exothermic.
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