ISSN. 1412-0100 VOL 15,NO 1, APRIL 2014

STUDI EMPIRIS HUBUNGAN METRIK KOHESI DENGAN
KECENDERUNGAN KESALAHAN PADA APLIKASI
BERORIENTASI OBJEK

Roni Yunisl, Arwin Halim?

STMIK Mikroskil
J1. Thamrin no 112, 124, 140 Medan 20212

. : . 12
roni@mikroskil.ac.id , arwin@mikroskil.ac.id

Abstrak

Salah satu faktor penting dari suatu perangkat lunak adalah kualitas. Kualitas perangkat lunak
yang baik ditunjukkan dengan minimalnya kesalahan-kesalahan yang ditemukan pada saat
implementasi. Kesalahan yang ditemukan di awal pengembangan dapat mengurangi biaya,
usaha dan waktu untuk perbaikan. Pada penelitian ini, akan diuji pengaruh antara salah satu
metrik kualitas internal yaitu kohesi dan kecenderungan kesalahan pada perangkat lunak
berorientasi objek. Data yang digunakan dalam penelitian berupa perangkat lunak berkode
bebas yang dikembangkan dengan bahasa pemrograman Java. Pengukuran metrik kohesi
dilakukan pada tahap desain dan implementasi. Hasil penelitian menunjukkan adanya korelasi
positif antara metrik kualitas kohesi terutama pada kode sumber dengan kecenderungan
kesalahan perangkat lunak berorientasi objek.

Kata kunci : kecenderungan kesalahan, metrik kohesi, objek oriented

1. Pendahuluan

Aspek kualitas merupakan salah satu aspek penting dalam pengembangan perangkat
lunak. Penilaian kualitas perangkat lunak biasanya dinilai secara subjektif dan sangat
dipengaruhi oleh pengetahuan perancang sistem. Salah satu cara mengukur kualitas perangkat
lunak adalah dengan menghitung metrik kualitas. Metrik merupakan suatu prosedur yang
memasangkan karakteristik tertentu pada entitas yang diamati menjadi sebuah nilai numerik
[1]. Salah satu aspek kualitas internal yang penting pada perangkat lunak adalah nilai kohesi.
Semakin tinggi nilai kohesi pada sebuah modul, maka semakin baik kualitas perangkat lunak
yang dihasilkan Briand, Bunse dan Daly [2]. Metrik kualitas dapat digunakan untuk
membantu perancang dalam mengukur kualitas perangkat lunak secara objektif. Salah satu
penggunaan metrik kualitas adalah mendeteksi kecenderungan kesalahan seperti yang
dilakukan oleh Nagappan dan Ball [3] dan Olague dkk [4]. Berdasarkan penelitian Boehm
(1981) dan Jones (1996), kesalahan telah ada secara alamiah pada setiap tahap pengembangan
perangkat lunak [5]. Kesalahan-kesalahan yang ditemukan pada setiap tahap pengembangan
harus diperbaiki sebelum didistribusikan kepada pengguna akhir. Kesalahan yang ditemukan
pada akhir pengembangan dapat meningkatkan biaya, usaha, dan waktu perbaikan. Oleh
karena itu, diperlukan model yang dapat digunakan untuk mendeteksi kecenderungan
kesalahan perangkat lunak.

Berbagai metrik kohesi telah diusulkan dalam menilai kualitas perangkat lunak. Metrik
kohesi yang paling populer diperkenalkan oleh Chidamber dan Kemerer yang disebut metrik
Lack of Cohesion Metric (LCOM). Metrik kohesi lain yang dimodifikasi dari metrik LCOM
adalah LCOM2, dan LCOM3. Selain diukur dari kode program, nilai kohesi dapat dihitung
berdasarkan desain perangkat lunak. J. A. Dallal telah mengusulkan metrik yang mengukur

Roni Yunis, Arwin Halim | JSM STMIK Mikroskil

ISSN. 1412-0100 VOL 15,NO 1, APRIL 2014

nilai kohesivitas berdasarkan informasi yang terdapat pada tahap desain [6]. Metrik yang
diusulkan telah memenuhi kriteria metrik kohesi yang baik yang telah dikembangkan oleh
Briand dkk [7]. Pada penelitian ini, Penulis akan meneliti hubungan antara metrik kohesi
dengan kecenderungan kesalahan perangkat lunak. Perhitungan nilai kohesi pada tahap desain
dan implementasi akan dilakukan untuk setiap kelas yang terdapat pada perangkat lunak
berorientasi objek. Nilai kohesi pada tahap desain diperoleh dari metrik SCC [6]. Nilai kohesi
pada tahap implementasi diperoleh dari metrik LCOM dan LCOM3 (LCOM*). Hasil
perhitungan nilai metrik kualitas akan diuji hubungannya dengan informasi kelas-kelas yang
terdeteksi memiliki kesalahan. Pengujian hubungan antara kelas dan metrik kohesi
menggunakan univariate dan multivariate regresi logistik.

2. Kajian Pustaka
2.1 Konsep Berorientasi Objek

Pendekatan berorientasi objek mulai berkembang karena adanya kesulitan untuk
menghasilkan sistem yang berkualitas sesuai dengan waktu dan biaya, khususnya pada sistem
skala besar yang dikembangkan banyak pengembang. Pendekatan ini memiliki perbedaan
dengan pendekatan terstuktur. Pendekatan berorientasi objek menggabungkan data dan proses
secara bersamaan dalam bentuk paket, sehingga sangat memudahkan pengembang dalam
mengelola paket tersebut. Hal ini juga yang menjadi kelebihan dari pendekatan ini, yaitu kode
program menjadi lebih mudah untuk digunakan kembali. Pendekatan berorientasi objek
memperkenalkan beberapa istilah baru yaitu kelas, objek, hubungan antar kelas, dan lain-lain.

Kelas merupakan gambaran dari kumpulan objek yang memiliki spesifikasi fitur,
batasan, dan semantik yang sama. Objek merupakan entitas pada program komputer yang
memiliki tiga karakteristik dasar, yaitu keadaan, perilaku, dan identitas. Setiap objek pada
kelas memiliki identitas yang unik, sehingga objek dapat memiliki perilaku yang berbeda-
beda sesuai dengan keadaan. Unified Modeling Language (UML) digunakan untuk memo-
delkan sistem berorientasi objek seperti data, keadaan, waktu, perilaku sistem, dan lain-lain.

2.2 Metrik Kualitas

Metrik merupakan suatu prosedur yang memasangkan karakteristik tertentu pada entitas
yang diamati menjadi sebuah nilai numerik [1]. Karakteristik dan entitas yang ingin diamati
bersifat bebas. Oleh karena itu, manfaat metrik sangat tergantung pada apa yang akan dicapai
dari hasil pengukuran yang telah dilakukan. Nilai numerik pada metrik akan memberikan
pengetahuan pengamat mengenai nilai yang terlalu tinggi atau terlalu rendah, terlalu banyak
atau terlalu sedikit. Dengan kata lain, metrik merupakan suatu point reference yang
menunjukkan makna semantik yang berguna pada suatu nilai.

2.3 Metrik Kohesi

Nilai kohesi pada sebuah kelas menunjukkan hubungan dan interaksi antar elemen
dalam kelas. Semakin tinggi nilai kohesi pada suatu kelas berarti kelas tersebut tidak dapat
dipecah lagi dan memiliki sebuah fungsi yang jelas [2]. Berdasarkan penelitian dari Chen [§],
nilai kohesi pada kelas akan mempengaruhi kualitas eksternal perangkat lunak seperti
understandable, modifiable, dan maintainable. Class Cohesion digunakan sebagai indikator
awal adanya kesalahan pada desain kelas. Metrik kohesi telah diusulkan oleh berbagai
peneliti, seperti LCOM, LCOM3, dan lain-lain.

Roni Yunis, Arwin Halim | JSM STMIK Mikroskil

ISSN. 1412-0100 VOL 15,NO 1, APRIL 2014

2.3.1 Lack of Cohesion (LCOM)

Misalnya sebuah kelas memiliki n operasi yaitu M;, My, M3, .., M,. Dimana {I;}
merupakan kumpulan variabel instan yang digunakan oleh method Mi, maka terdapat n buah
himpunan, yaitu {I,}, {I,}, {Is},..{I,}. Dimana P = {(II;)) | L N = O } dan Q = {(I,I;) | i N
O }. Jika semua n himpunan {I;}, {I,}, {I5},..{I,} adalah ©, maka P = ©. Nilai LCOM
dapat dihitung dengan menggunakan Persamaan 1.

LCOM = { f' ~ll '?ta :i: z :g:
§ jika =
(1)
2.3.2 Lack of Cohesion 3 (LCOM¥)

Hitz dan Montazeri [9] mengusulkan sebuah metrik kohesi (LCOM3). LCOM3
melakukan modifikasi yang radikal terhadap LCOM. LCOM3 menyajikan hubungan antar
metode pada kelas dalam bentuk graph. Metode pada kelas akan menjadi simpul. Jika dua
metode menggunakan setidaknya satu atribut yang sama, maka akan ada tepi antara dua
simpul yang bersesuaian. Nilai LCOM3 berada pada range 0 sampai 2. Nilai 1 sampai 2 akan
memberikan peringatan rendahnya nilai kohesi pada kelas. Nilai LCOM3 dihitung
berdasarkan Persamaan 2.

LCOM* = (m - sum(mA)/a) / (m-1))
Dimana:
m : jumlah metode dalam kelas
a : jumlah variabel dalam kelas
mA : jumlah metode yang mengakses variabel
sum (mA) : jumlah dari mA

2.3.3 Metrik Kohesi Desain UML

Metrik Similarity-based Class Cohesion (SCC) dikembangkan oleh Dallal [6]. Metrik
SCC mengukur nilai cohesion berdasarkan interaksi antara atributatribut, metode-metode, dan
atribut-metode secara langsung dan transitif. Untuk menghitung nilai metrik kohesi, informasi
pada level desain akan dibentuk menjadi empat matriks interaksi, yaitu:

1. Direct Method Invocation matrix (DMI)
Matrik ini menggambarkan interaksi langsung pemanggilan metode pada suatu kelas.
Matrik DMI merupakan matriks persegi dengan dimensi kxk, dimana k merupakan jumlah
metode pada kelas tersebut. Untuk setiap baris i dan kolom j pada matrik DMI akan
dihitung berdasarkan Persamaan 3.

1 jika metode / memanggil metode ; secara langsung
DMI;j = .
: 0 jika tidak
3)
2. Method Invocation Matrix (MI)
Matrik ini menggambarkan interaksi langsung dan tidak langsung terjadinya pemanggilan
metode pada kelas. Informasi ini akan diperoleh dari matriks DMI. Matrik MI merupakan
matriks persegi dengan dimensi kxk, dimana k merupakan jumlah metode pada kelas
tersebut. Untuk setiap baris i dan kolom j pada matrik MI akan dihitung berdasarkan
Persamaan 4.

Roni Yunis, Arwin Halim | JSM STMIK Mikroskil

ISSN. 1412-0100 VOL 15,NO 1, APRIL 2014

MI;; = { 1 jika metode / memanggil metode j secara langsung ataupun transitif
0 jika tidak @)
3. Direct Attribute Type Matrix (DAT)
Matrik ini menggambarkan interaksi langsung antara metode-metode, atribut-atribut, dan
metode-atribut. Matrik DAT memiliki dimensi kxl dimana k merupakan jumlah metode
pada sebuah kelas dan | merupakan jumlah tipe data atribut yang berbeda pada kelas. Nilai
matrik dibentuk berdasarkan asumsi bahwa set himpunan tipe data yang diakses oleh
metode merupakan irisan dari set himpunan dari tipe data pada parameter metode dan
atribut kelas. Untuk setiap baris k dan kolom 1 pada matriks DAT akan dihitung
berdasarkan Persamaan 5.

DAT { 1 jika tipe data i merupakan tipe data dari parameter atau return dari metode j
L= = .
0 jika tidak
)
4. Attribute Type Matrix (AT)
Matriks ini menggambarkan interaksi langsung atau transitif sesuai dengan matriks DAT
dan matriks MI. Nilai 1 pada matrik AT menunjukkan adanya kesesuaian antara tipe data
atribut kelas dengan tipe data pada parameter metode yang dipanggil secara langsung atau
transitif. Matriks AT memiliki dimensi yang sama dengan matriks AT yang dibentuk
dengan algoritma yang seperti berikut.

Input : Matrik DAT dan MI
Output : Matrik AT
Langkah:
For i = 1 to jlhRowDAT
For j = 1 to jlhColumnDAT
AT[irj] <= DAT[irj]
For i = 1 to jlhRowDAT
For j = 1 to jlhColumnDAT
If 1 <> j and MI[i,3] = 1 then
For k = 1 to jlhColumnDAT
AT[i,k] <= DAT[i,k] OR DATI[j,k]

Metrik kohesi yang diusulkan Dallal dan Briand akan dihitung berdasarkan informasi
matriks yang telah dihitung sebelumnya, yaitu

1. Method-Method through Attributes Cohesion (MMAC)

0 jikak=0atau /=0

MMAC(C)=¢{ 1 jikak=1

I o A
LoD jika tidak
(k—1) - (6)
2. Atribute-Atribute Cohesion (AAC)
0 jikak=0ataul=0
AAC(C)=({] jikal=1

27%;?}‘_-“;']’ U jika tidak ™

Roni Yunis, Arwin Halim | JSM STMIK Mikroskil

ISSN. 1412-0100 VOL 15,NO 1, APRIL 2014

3. Atribute-Method Cohesion (AMC)

AMC(C) 0 jlkak=0ataul/=0
)= kool
ol ik tidak
(®)
4. Method-Method Invocation Cohesion (MMIC)
0 jikak =0
MMIC(C)=¢ 1 jika k=1
£ ok
= ,ﬁ;ﬂﬁ" % jika tidak o
5. Similarity-based Class Cohesion (SCC)
0 jikak=0and! =1
| jikak=1land /=0
SCC(C) = k
MMIC(C) jikak>1landl=0
k(k—1 }[MMAC[C'J—jzlétiﬁlﬁﬁi?—j[l.’;g MAC(CHHUAMCE) ey o (10)

2.4 Kecenderungan Kesalahan Perangkat Lunak

Berdasarkan penelitian Boehm (1981) dan Jones (1996) [5], kesalahan telah ada secara
alamiah pada setiap tahap pengembangan perangkat lunak. Para pakar pengembangan
perangkat lunak percaya bahwa pola distribusi kesalahan pada setiap tahap tidak akan berubah
selama dua dekade. Kesalahan yang ditemukan pada tahap coding memiliki nilai paling
tinggi. Hal ini dikarenakan adanya kemungkinan kesalahan saat mengimplementasikan
desain. Desain yang kurang baik akan menghasilkan perangkat lunak yang kurang baik
walaupun diimplementasikan dengan baik

3. Metode Penelitian

Penelitian akan dimulai dari proses mengumpulkan bahan penelitian berupa jurnal,
conference, buku, dan website yang mendukung penelitian. Langkah-langkah yang dilakukan
pada penelitian adalah:

1. Studi Literatur.
Tahapan ini dimulai dengan pengumpulan bahan penelitian berupa referensi dari jurnal,
conference, buku dan library yang berhubungan dengan metrik kualitas.

2. Pengembangan alat bantu ukur.
Tahapan ini menghasilkan aplikasi alat bantu ukur nilai metrik kualitas dengan
menggunakan bahasa pemrograman Java. Penulis juga memanfaatkan library ckjm yang
dapat digunakan untuk membantu perhitungan nilai metrik.

3. Pengumpulan data
Data penelitian berasal dari aplikasi berkode bebas yaitu Apache Xalan versi 2.4.0 dan
2.5.0 yang dapat diakses dari http://xml.apache.org/xalan-j/. Statistik deskriptif dari
Apache Xalan 2.4 dan 2.5 ditunjukkan pada Tabel 1.

Roni Yunis, Arwin Halim | JSM STMIK Mikroskil

ISSN. 1412-0100 VOL 15,NO 1, APRIL 2014

Tabel 1 Statistik Deskriptif Apache Xalan 2.4 dan Xalan 2.5

Xalan 2.4 Xalan 2.5
Jumlah kelas yang diamati 628 697
Jumlah metode yang diamati 7018 7732
Total baris kode program 217120 297574
Rata-rata baris kode per kelas 345 426
Jumlah Kelas yang memiliki kesalahan 108 368

4. Pengujian hipotesa

Tahapan ini akan menguji hubungan hasil perhitungan metrik nilai kohesi berdasarkan
kode program dan desain UML dengan informasi kesalahan yang terdapat pada perangkat
lunak tersebut. Hipotesa diuji dengan alat bantu SPSS untuk uji statistik non-parametric
yaitu spearman rank correlation dengan tingkat kepercayaan 95%.

Hipotesa yang akan diuji antara lain:

H1 : Nilai metrik kohesi pada kode program berkorelasi positif dalam mendeteksi
kecenderungan kesalahan perangkat lunak berorientasi objek.

H2

kecenderungan kesalahan perangkat lunak.

5. Penarikan kesimpulan

4. Hasil dan Pembahasan
4.1 Hasil Pengukuran Metrik LCOM

: Nilai metrik kohesi pada desain UML berkorelasi positif dalam mendeteksi

Metrik LCOM merupakan nilai yang diperoleh dari kode program. Perhitungan nilai
metrik LCOM dilakukan untuk semua kelas pada Apache Xalan 2.4 dan 2.5 seperti terlihat

pada Gambar 1.

5007 Wean =137 61
Std. Dev. =605 56
=628
500

4004

3004

Frekuensi

2004

1009 A

mem
T
0 2000

B
4000 6000

(a)

Gambar 1 Distribusi Nilai LCOM pada (a) Xalan 2.4 (b) Xalan 2.5

4.2 Hasil Pengukuran Metrik LCOM*

Frekuensi

600

4004

2004

k)

gl 5B AR

il nme
T

0 2000

T
4000 6000

(b)

T
8000

Mean =139.37
Std. Dev. =623 856
N =697

Metrik LCOM* juga merupakan nilai yang diperoleh dari kode program. Perhitungan
nilai metrik LCOM* dilakukan untuk semua kelas pada Apache Xalan 2.4 dan 2.5 seperti

terlihat pada Gambar 2.

Roni Yunis, Arwin Halim | JSM STMIK Mikroskil

ISSN. 1412-0100 VOL 15,NO 1, APRIL 2014

200

ig]
=1

2509 Mean
d

2009
1504

100+

Frekuensi
Frekuensi

(a) (b)
Gambar 2 Distribusi Nilai LCOM* pada (a) Xalan 2.4 (b) Xalan 2.5

o T T T T o T T
0.0000 0.5000 1.0000 1.5000 2.0000 2.5000 0.0000 0.5000

4.3 Hasil Pengukuran Metrik SCC

Metrik SCC merupakan nilai yang diperoleh dari diagram UML. Perhitungan nilai
metrik SCC dilakukan untuk semua informasi UML pada Apache Xalan 2.4 dan 2.5 seperti
terlihat pada Gambar 3.

250 Mean =0. 250
d

]
1§
=0
4
1|
=
=93
5

200+ 200+

o
2
1
o
]
1

Frekuensi
Frekuensi

2
s
3
3

50

(a) (b)
Gambar 3 Distribusi Nilai SCC pada (a) Xalan 2.4 (b) Xalan 2.5
4.4 Pembahasan
Hasil perhitungan metrik pada aplikasi Apache Xalan versi 2.4.0 dan versi 2.5.0 baik
melalui kode sumber (LCOM dan LCOM*) dan desain UML (SCC), diuji korelasi dengan

kecenderungan kesalahan pada kelas perangkat lunak menggunakan uji hipotesis non-
parametric Spearman dengan tingkat kepercayaan 99% (1-tailed).

4.4.1 Pengujian Hipotesa Metrik Kode Program dan Kecenderungan Kesalahan

H1 : Nilai metrik kohesi pada kode program berkorelasi positif dalam mendeteksi
kecenderungan kesalahan perangkat lunak berorientasi objek.

Korelasi LCOM dan kecenderungan kesalahan pada Xalan 2.4 dapat dilihat pada Tabel 2.

Roni Yunis, Arwin Halim | JSM STMIK Mikroskil

ISSN. 1412-0100 VOL 15,NO 1, APRIL 2014

Tabel 2 Korelasi Nilai LCOM dan Kecenderungan Kesalahan pada Xalan 2.4

isBug lcom
Spearman's rho isBug Correlation Coefficient 1.000 25771
Sig. (1-tailed) . .000}
N 628 628
lecom Correlation Coefficient 257" 1.000f
Sig. (1-tailed) .000
N 628 62 8'

*#_Correlation is significant at the 0.01 level (1-tailed).

Tabel 2 menunjukkan adanya korelasi positif antara nilai metrik kohesi LCOM dan
kecenderungan kesalahan dan bersifat signifikan yang terlihat dari nilai Sig. (1-tailed) < 0.01.

Korelasi LCOM dan kecenderungan kesalahan pada Xalan 2.5 dapat dilihat pada Tabel 3.
Tabel 3 Korelasi Nilai LCOM dan Kecenderungan Kesalahan pada Xalan 2.5

lcom hasBug
Spearman's rho lcom Correlation Coefficient 1.000 160"
Sig. (1-tailed) 000)
N 697 697
hasBug Correlation Coefficient 160" 1.000f
Sig. (1-tailed) .000
N 697 697

**_ Correlation is significant at the 0.01 level (1-tailed).

Tabel 3 menunjukkan adanya korelasi positif antara nilai metrik kohesi LCOM dengan
kecenderungan kesalahan dan bersifat signifikan yang terlihat dari nilai Sig. (1-tailed) < 0.01.

Korelasi LCOM* dan kecenderungan kesalahan pada Xalan 2.4 dapat dilihat pada Tabel 4.
Tabel 4 Korelasi Nilai LCOM* dan Kecenderungan Kesalahan pada Xalan 2.4

isBug leom*
Spearman's rtho isBug Correlation Coefficient 1.000)] -.006]
Sig. (1-tailed) . 444
N 628 628]
lcom* Correlation Coefficient -.006 1.000]
Sig. (1-tailed) 444
N 628 628

Tabel 4 menunjukkan adanya korelasi negatif antara nilai metrik kohesi LCOM* dan
kecenderungan kesalahan tetapi tidak signifikan yang terlihat dari nilai Sig. (1-tailed) > 0.01

Korelasi LCOM* dan kecenderungan kesalahan pada Xalan 2.5 dapat dilihat pada Tabel 5.

Roni Yunis, Arwin Halim | JSM STMIK Mikroskil

ISSN. 1412-0100 VOL 15,NO 1, APRIL 2014

Tabel 5 Korelasi Nilai LCOM* dan Kecenderungan Kesalahan pada Xalan 2.5

hasBug leom™
Spearman's tho hasBug Correlation Coefficient 1.000] .009|
Sig. (1-tailed) 403|
N 697 697
lcom* Correlation Coefficient .009 1.000f
Sig. (1-tailed) 403
N 697 697

Tabel 5 menunjukkan adanya korelasi positif antara nilai metrik kohesi LCOM* dan
kecenderungan kesalahan tetapi tidak signifikan yang terlihat dari nilai Sig. (1-tailed) > 0.01.

Jadi, dapat ditarik kesimpulan nilai metrik LCOM memiliki korelasi positif dengan
kecenderungan kesalahan dan bersifat signifikan, sedangkan nilai metrik LCOM* hampir
tidak memiliki hubungan korelasi dengan kecenderungan kesalahan perangkat lunak. Jadi
hipotesa H1 dapat diterima dengan catatan hanya metrik kohesi LCOM yang memiliki
korelasi positif dan signifikan dengan kecenderungan kesalahan perangkat lunak.

4.4.2 Pengujian Hipotesa Metrik Desain dan Kecenderungan Kesalahan

H2 : Nilai metrik kohesi pada desain UML berkorelasi positif dalam mendeteksi
kecenderungan kesalahan perangkat lunak

Korelasi SCC dan kecenderungan kesalahan pada Xalan 2.4 dapat dilihat pada Tabel 6.
Tabel 6 Korelasi Nilai SCC dan Kecenderungan Kesalahan pada Xalan 2.4

1sBug sSccC
Spearman's tho isBug Correlation Coefficient 1.000] -.051
Sig. (1-tailed) . 101
N 628 628
scc Correlation Coefficient -.051 1.000)
Sig. (1-tailed) 101
N 628 62 8'

Tabel 6 menunjukkan adanya korelasi negatif antara nilai metrik kohesi SCC dan
kecenderungan kesalahan tetapi tidak signifikan yang terlihat dari nilai Sig. (1-tailed) > 0.01

Korelasi LCOM dan kecenderungan kesalahan pada Xalan 2.5 dapat dilihat pada Tabel 7.
Tabel 7 Korelasi Nilai SCC dan Kecenderungan Kesalahan pada Xalan 2.5

hasBug SCC
Spearman's tho hasBug Correlation Coefficient 1.000) 155"
Sig. (1-tailed) . .000)
N 697 697
sccC Correlation Coefficient 1557 1.000f
Sig. (1-tailed) .000)
N 697 697

Roni Yunis, Arwin Halim | JSM STMIK Mikroskil

ISSN. 1412-0100 VOL 15,NO 1, APRIL 2014

Tabel 7 menunjukkan adanya korelasi positif antara nilai metrik kohesi SCC dan
kecenderungan kesalahan dan bersifat signifikan yang terlihat dari nilai Sig. (1-tailed) <0.01

Jadi, dapat disimpulkan bahwa nilai metrik SCC dapat digunakan sebagai salah satu prediktor
kecenderungan kesalahan perangkat lunak. Hal ini terlihat dari adanya korelasi positif yang
signifikan antara nilai kohesi SCC dan kecenderungan kesalahan.

5. Kesimpulan

Berdasarkan hasil penelitian, dapat ditarik kesimpulan sebagai berikut:

1.

2.

Pengukuran kualitas dapat dilakukan pada tahapan awal pengembangan perangkat lunak
dengan menggunakan desain Unified Modeling Language dan kode program.

Nilai metrik kohesi yang diukur pada kode program mampu mendeteksi kecenderungan
kesalahan perangkat lunak berorientasi objek. Nilai metrik yang diukur pada kode
program khususnya metrik kohesi LCOM memiliki korelasi positif yang signifikan
terhadap kecenderungan kesalahan perangkat lunak. Pada penelitian ini, metrik kualitas
LCOM?* yang diukur pada dua versi aplikasi open-source Apache Xalan, belum mampu
menunjukkan korelasi yang signifikan.

Nilai metrik kualitas yang diukur menggunakan desain UML memiliki hasil yang beragam
dalam mendeteksi kecenderungan kesalahan perangkat lunak. Pada Apache Xalan 2.5.0
terlihat adanya korelasi positif yang signifikan tetapi hal ini tidak didukung oleh hasil
korelasi pada versi 2.4.0

Referensi

[1]

Lanza, M., & Marinescu, R. 2006. Object-Oriented Metrics in Practice. Germany:
Springer-Verlag Berlin Heidelberg

Briand, L. C., Bunse, C., & Daly, J.W. A Controlled Experiment for Evaluating Quality
Guidelines on the Maintainability of Object-Oriented Designs. IEEE Transactions on
Software Engineering, 27(6), 513-530, 2001.

Nagappan, N., Ball, T., Use of Relative Code Churn Measures to Predict System Defect
Density, Proceedings of the International Conference on Software Engineering, 2005

H. M. Olague, L. H. Etzkorn, S. Gholston, and S. Quattlebaum. Empirical validation of
three software metric suites to predict fault-proneness of object-oriented classes
developed using highly iterative or agile software development processes. IEEE
Transactions on Software Engineering, 33(6):402-419, 2007.

Galin, D. 2004. Software Quality Assurance: From Theory to Implementation. United
States of America: Addison-Wesley Professional.

Dallal, J. A. Mathematical Validation of Object-Oriented Class Cohesion Metrics.
International Journal of Computers, 4(2), 45-52, 2010.

Briand, L. C., Daly, J. W., & Wust, J. A Unified Framework for Cohesion Measurement
in Object-Oriented Systems. Proceedings Fourth International Software Metrics
Symposium, 43-53, 1997.

Chen, Z., Zhou Y., Xu, B., A Novel Approach to Measuring Class Cohesion Based on
Dependence Analysis. Conference on Software Maintenance, pp. 377-383, 2002.

Hitz, M., Montazeri, B., Measuring Coupling and Cohesion In Object-Oriented Systems.
Proceedings of the International Symposium on Applied Corporate Computing, 25-34,
1997.

Roni Yunis, Arwin Halim | JSM STMIK Mikroskil

