



## **The Impact of Growth and Development Stimulation Education on Parental Competence in Detecting Developmental Milestones in Children Aged 0–5 Years**

**Nadia Firzanly Basalama<sup>1</sup>, Dwi Nur Octaviani Katili<sup>2</sup>, St. Surya Indah Nurdin<sup>3</sup>, Efri Leny Rauf<sup>4</sup>**

<sup>1,2,3</sup>*Universitas Muhammadiyah Gorontalo, Gorontalo Regency, Gorontalo Province, Indonesia.*

*Email: [nadiabasalama661@gmail.com](mailto:nadiabasalama661@gmail.com)<sup>1</sup>, [dwiocstavianikatili@umgo.ac.id](mailto:dwiocstavianikatili@umgo.ac.id)<sup>2</sup>,*

*[suryaindahnurdin@umgo.ac.id](mailto:suryaindahnurdin@umgo.ac.id)<sup>3</sup>, [efrilenyrauf@umgo.ac.id](mailto:efrilenyrauf@umgo.ac.id)<sup>4</sup>*

### **ABSTRACT**

Developmental stimulation refers to a series of activities aimed at promoting optimal growth and development in children. One of the factors influencing the success of child growth and development is the knowledge and ability of parents to detect early signs of development. This research aimed to determine the effect of developmental stimulation education on the early detection of developmental milestones in children aged 0-5 years. The research method was a pre-experimental design using a pretest-posttest one group design approach. The subjects included 73 samples, with 17 samples aged 0-12 months, 18 samples aged 12-36 months, and 38 samples aged 36-60 months. Early detection ability was measured before and after education using the KPSP questionnaire as a reference. The results indicated that in the 0-12 month age group, there was a significant increase in early detection ability after receiving education ( $p_1 = 0.001$ ,  $p < 0.05$ ). In the 12-36 month age group, a significant improvement was also observed ( $p_2 = 0.001$ ,  $p < 0.05$ ), while the 36-60 month age group showed an increase after education ( $p_3 = 0.001$ ,  $p < 0.05$ ). this study concluded that there was a significant effect of developmental stimulation education on the early detection ability of parents for children aged 0-5 years.

**Keywords:** Early Detection, Growth and Development, Stimulation Education

---

©2025 Nadia Firzanly Basalama<sup>1</sup>, Dwi Nur Octaviani Katili<sup>2</sup>, St. Surya Indah Nurdin<sup>3</sup>, Efry Leny Rauf<sup>4</sup>  
Under the licence CC BY-SA 4.0

---

\*Dwi Nur Octaviani Katili, Universitas Muhammadiyah Gorontalo, Kabupaten Gorontalo, Provinsi Gorontalo, Indonesia,  
Email: [dwiocstavianikatili@umgo.ac.id](mailto:dwiocstavianikatili@umgo.ac.id)

## INTRODUCTION

Toddler development occurs in approximately 10% of children under the age of 5. Developmental problems in Indonesian toddlers are estimated at 13–18%, while developmental delays in children account for approximately 10% worldwide, and global developmental delays occur in approximately one to three percent of children under five years of age (Baroroh et al., 2021). Child development is affected by conditions such as severe chronic malnutrition, inadequate early stimulation, iodine deficiency, and iron deficiency or anaemia. Early stimulation is a series of activities aimed at stimulating children to develop the basic developmental skills for optimal growth and development. Early developmental detection can identify growth and developmental disorders in children, allowing for early intervention. (Nurul Abidah & Novianti, 2020). According to Caplin (2002) defines development as continuous and progressive changes in the organism, from birth to death, growth, changes in form and in the integration of physical parts into functional parts, maturity or the emergence of basic patterns of learned behavior (Solama et al., 2023). According to the Ministry of Health, a person's age is classified into several categories. The age limits of children have also been determined in the law. So that the

recording of these children's boundaries is indeed intended so that in providing education, attention, and others, the handling will be more appropriate (Pustaka, 2023). Children who receive maximum stimulation will maximize their growth and development potential. At each stage of child development, the child's development is fully integrated. During childhood development, there are critical periods, during which comprehensive and high-quality developmental guidance is required. This can be supported through stimulation activities, early detection, and intervention of developmental abnormalities in children so that the development of motor skills, speech and language, socialization, and independence in children occurs optimally according to their age. Detecting developmental problems at an early stage can help children overcome obstacles and maximize their potential in various aspects of development. Delays in detection and intervention can lead to more serious problems later in life. One way to detect child development is by conducting regular screenings of child development, including cognitive, language, social, and motor skills (Ibrahim et al., 2024). According to Arinny (2023), early detection is an effort to identify abnormalities, physical impairments, or mental and behavioral developmental disorders in children that may lead to disability, using growth and

development assessment methods. Meanwhile, according to and development refers to examination activities aimed at identifying developmental deviations in infants and preschool children (Lestari et al., 2024). Early childhood is a critical period in the process of growth and development. Growth and development at this time is a factor in the success of children's growth and development in the future. This period is called the golden age because the period of growth and development at this age is rapid and cannot be repeated (Romauli Pakpahan & Sri Wahyuni Tarigan, 2024). The childcare and development education program in Indonesia is realized through the SIGAP (Prepare a Generation of Achievers) program. The SIGAP program aims to ensure that every Indonesian child is healthy with maximum growth and development in accordance with their age stages. In addition, programs such as supplementary feeding (PMT), education and counseling to parents on parenting and nutrition, as well as monitoring child growth and development through posyandu continue to be carried out. This is expected to reduce the number of problems of growth and development disorders and create healthy and quality children (Septariana et al., 2024). Children's growth and development are strongly influenced by the quality of their surrounding environment.

since parents play the central role in providing stimulation, parental education becomes essential. A good and supportive environment enables children to grow and develop properly, whereas a poor environment may have adverse effects, leading to imperfect growth and development in children (Mahyumi Rantina et al., 2020). Education in the form of providing knowledge about child growth and development according to age to parents is one of the efforts that can be done to increase parental sensitivity to behavioral changes and / or delays and disorders of child growth and development according to age stages is also important as a prevention, so that parents can provide stimulation in the form of activities that are appropriate for the age of the child (Hayuningrum et al., 2022). World Health Organization (WHO) estimates that around 5-25% of toddlers worldwide experience mild brain disorders, which include problems in gross and fine motor development. Meanwhile, according to the Ministry of Health of the Republic of Indonesia (MOH RI), around 16% or around 0.4 million toddlers in Indonesia have been diagnosed with developmental problems such as gross and fine motor disorders, hearing disorders, lack of thinking skills, and delays in speaking (Nurul Abidah & Novianti, 2020). Based on data from the Gorontalo Provincial Health

Office in 2023 and 2024, there where 9,037 children underwent growth and development examinations, the results showed that 70 children experienced growth and development disorders with a doubtful category and 20 children with deviations. Meanwhile, for children who experienced growth disorders or Stunting, Gorontalo Province reached 26.9%, consisting of 18.4% of stunted toddlers and 8.4% of severely stunted toddlers in 2023. Data from the Bone Bolango District Health Office in July 2024 showed that 151 children experienced growth problems and 42 children experienced developmental problems, two of whom were referred. This situation indicates the need for greater attention to factors that influence child growth and development.

## METHOD

The research method used is quantitative. Quantitative research is a systematic investigation of a phenomenon by collecting measurable data (Dr. Muhammad Ramdhan, n.d.). Quantitative research is research that takes samples from a population and uses questionnaires to collect the primary data. Based on the research objectives, the research method used is Pre-Experiment with Pretest-Posttest One Group Design, where comparison can be made with the condition before being treated (Sugiyono, 2020). The

population in this study were 258 mothers with toddlers aged 0-5 years in the Ulantha Community Health Center area. Sampling for this study used a purposive sampling, with 73 respondents, which were divided into clusters according to the child's age. The intervention given to the respondents was education for parents about child growth and development. The education was delivered through face-to-face sessions using leaflets as learning media. This program was implemented according to the age classification of the children, each lasting approximately 30-40 minutes, which included a pretest, education, and posttest. The sampling technique was determined with considerations based on inclusion and exclusion criteria relevant to the study. Inclusion criteria in this study were parents who had children aged 0-60 months and were willing to be respondents. Meanwhile, exclusion criteria were parents who were not willing to be respondents, children who were not at the research location and children aged >60 months. The tool used to measure changes in parents' knowledge is a questionnaire that has been validated and rehabilitated in a small group outside the research sample. The questionnaire covers several dimensions, including knowledge about child growth and development, early detection practices, stimulation methods, and parental attitudes. Primary data processing included data

input, coding or scoring according to the questionnaire results, data input according to categories, and input into a computer program or software to perform statistical

method analysis, namely Wilcoxon signed rank test.

## RESULTS AND DISCUSSION

### RESULT

#### A. Respondent Characteristic

Table 1. Respondent Characteristic

| Characteristics       | Frequency | Percentage(%) |
|-----------------------|-----------|---------------|
| <b>Age</b>            |           |               |
| <20 Years             | 10        | 13,7          |
| 20-35 Years           | 44        | 60,3          |
| >35 Years             | 19        | 26,0          |
| <b>Total</b>          | <b>73</b> | <b>100,0</b>  |
| <b>Last Education</b> |           |               |
| Elementary            | 21        | 28,8          |
| Junior High School    | 20        | 27,4          |
| Senior High School    | 30        | 41,1          |
| Collage               | 2         | 2,7           |
| <b>Total</b>          | <b>73</b> | <b>100,0</b>  |
| <b>Work</b>           |           |               |
| Work                  | 6         | 8,2           |
| Doesn't Work          | 67        | 91,8          |
| <b>Total</b>          | <b>73</b> | <b>100,0</b>  |
| <b>Parity</b>         |           |               |
| Primipara             | 24        | 32,9          |
| Multipara             | 49        | 67,1          |
| <b>Total</b>          | <b>73</b> | <b>100,0</b>  |
| <b>Age of Child</b>   |           |               |
| 0-12 Months           | 17        | 23,3          |
| 12-36 Months          | 18        | 24,7          |
| 36-60 Months          | 38        | 52,1          |
| <b>Total</b>          | <b>73</b> | <b>100,0</b>  |
| <b>Child Gender</b>   |           |               |
| Male                  | 28        | 38,4          |
| Female                | 45        | 61,6          |
| <b>Total</b>          | <b>73</b> | <b>100,0</b>  |

Source: Primary Data (2025)

Based on the data obtained, the majority of respondents were within the normal age range of 20-35 years, comprising 60.3%. Based on their highest educational level, the majority of respondents had a high school diploma (41.1%). Regarding employment, the majority of respondents were unemployed mothers (91.8%). In the aspect of parity, the respondents with the highest percentage were multiparas with 67.1%, while the highest respondents based on age were children aged 36-60 months with a percentage of 52.1% with the gender of girls as

much as 61.6%. Overall, this table provides a comprehensive picture of the characteristics of parental age, education, occupation, parity, age of children and gender of children from respondents in this study. Results of analysis of the level of parental ability before being given education on Early Detection of Child Growth and Development.

## B. Results of Analysis of The Level of Parenteral Ability in Early Detection of Child Growth and Development According to Age

### 1) Age 0-12 Months

Table 2. Frequency Distribution of Pretest Respondents Aged 0-12 Months

| Parenteral Ability | Frequency | (%)          |
|--------------------|-----------|--------------|
| Enough             | 4         | 23,5         |
| Not Enough         | 13        | 76,5         |
| <b>Total</b>       | <b>17</b> | <b>100,0</b> |

Source: Primary Data (2025)

Based on the table above, it shows that before being given education, the pretest results were in the less category for 13 parents (76.5%) and the pretest results were in the sufficient category for 4 parents (23.5%).

Table 3. Posttest Frequency Distribution of Respondents Aged 0-12 Months

| Parenteral Ability | Frequency | (%)          |
|--------------------|-----------|--------------|
| Good               | 15        | 88,2         |
| Enough             | 2         | 11,8         |
| <b>Total</b>       | <b>17</b> | <b>100,0</b> |

Source: Primary Data (2025)

Based on the table above, it shows that after being given education, the posttest results were in the good category for 15 parents (88.2%) and the posttest results were in the sufficient category for 2 parents (11.8%).

### 2) Age 12-36 months

Table 4. Frequency Distribution of Pretest Respondents Aged 12-36 Months

| Parental Ability | Frequency | (%)          |
|------------------|-----------|--------------|
| Not enough       | 18        | 100,0        |
| <b>Total</b>     | <b>18</b> | <b>100,0</b> |

Source: Primary Data (2025)

Based on the table above, it shows that before education was given, the overall pretest results were in the less category for 18 parents (100%).

Table 5. Posttest Frequency Distribution of Respondents Aged 12-36 Months

| Parenteral Ability | Frequency | (%)          |
|--------------------|-----------|--------------|
| Good               | 17        | 94,4         |
| Enough             | 1         | 5,6          |
| <b>Total</b>       | <b>18</b> | <b>100,0</b> |

Source: Primary Data (2025)

Based on the table above, it shows that after being given education, the posttest results were in the sufficient category for 1 parent (5.6%) and the posttest results were in the sufficient category for 17 parents (94.4%).

### 3) Age 36-60 Months

Table 6. Frequency Distribution of Pretest Respondents Aged 36-60

| Parenteral Ability | Frequency | (%)          |
|--------------------|-----------|--------------|
| Enough             | 9         | 23,7         |
| Not Enough         | 29        | 76,3         |
| <b>Total</b>       | <b>38</b> | <b>100,0</b> |

Source: Primary Data (2025)

Based on the table above, it shows that before being given education, the pretest results were in the sufficient category for 9 parents (23.7%) and the pretest results were

in the insufficient category for 29 parents (76.3%).

Table 7. Posttest Frequency Distribution of Respondents Aged 36-60 Months

| Parental Ability | Frequency | (%)          |
|------------------|-----------|--------------|
| Good             | 24        | 63,2         |
| Enough           | 13        | 34,2         |
| Not Enough       | 1         | 2,6          |
| <b>Total</b>     | <b>38</b> | <b>100,0</b> |

Source: Primary Data (2025)

Based on the table above, it shows that after being given education, the posttest results were in the sufficient category for 13 parents (34.2%) and the posttest results were in the good category for 24 parents (63.2%), while for the less category there was 1 person (2.6%).

### C. Bivariate Analysis

Table 8. The influence of growth and development stimulation education on parents' early detection skills in children aged 0-12 months

| Parenteral Ability | Mean (SD)      | Mean Difference (CI 95%) | Min-Max | <i>p</i> value |
|--------------------|----------------|--------------------------|---------|----------------|
| Pretest            | 46,65 (10,517) | 41,53                    | 27-60   | 0,001          |
| Posttest           | 87,12 (7,983)  |                          | 73-100  |                |

Source: Primary Data (2025)

Based on output wilcoxon Signed Ranks Test, the result show that the obtained *p* value = (0.001) <  $\alpha$  = 0.05, so that the H0 statistic is rejected and Ha is accepted, meaning there is an influence between growth and development stimulation education on the ability of parents to detect early growth and development of children aged 0-12 months.

Tabel 9. The effect of growth and development stimulation education on parents' early detection skills in children aged 12-36 months

| Parenteral Ability | Mean (SD)     | Mean Difference (CI 95%) | Min-Max | <i>p</i> value |
|--------------------|---------------|--------------------------|---------|----------------|
| Pretest            | 41,06 (7,666) | 45,66                    | 27-53   | 0,001          |
| Posttest           | 86,72 (7,218) |                          | 73-100  |                |

Source: Primary Data (2025)

Based on the research results, the statistical test results were obtained (Wilcoxon Test) results obtained *p* value = (0.001) <  $\alpha$  = 0.05, so that the H0 statistic is rejected and Ha is accepted, meaning that there is an influence between growth and development stimulation education on the ability of parents to detect early growth and development of children aged 12-36 months

Table 10. The effect of growth and development stimulation education on parents' early detection abilities in children aged 36-60 months

| Parenteral Ability | Mean (SD)      | Mean Difference (CI 95%) | Min-Max | <i>p</i> value |
|--------------------|----------------|--------------------------|---------|----------------|
| Pretest            | 46,58 (11,545) | 35,16                    | 27-73   | 0,001          |
| Posttest           | 81,74 (11,670) |                          | 53-100  |                |

Source: Primary Data (2025)

Based on output wilcoxon Signed Ranks Test shows the research results obtained *p* value = (0.001) <  $\alpha$  = 0.05, so that the H0 statistic is rejected and Ha is accepted, meaning there is an influence between growth and development stimulation education on the ability of parents to detect early growth and development of children aged 36-60 months.

## DISCUSSION

### 1. Respondent Characteristic

The age characteristics of the respondents (parents) were mostly in the 20-35 years old range. This age range falls within the early to middle adulthood category, which generally already possesses emotional maturity and responsibilities as parents. This is in line with research (MISNIARTI & HARYANI, 2022), which states that as a person ages, their development progresses and they become more prepared to assume the role of parent. Meanwhile, regarding educational level, the majority of respondents had a high school education. According to (MISNIARTI & HARYANI, 2022) knowledge is gained through education; higher education provides greater knowledge compared to those with lower levels of education. However, based on observations in the field, learning motivation does not always correlate with the level of education. Regarding occupational categories, most respondents were unemployed or housewives. Research conducted by (Orang et al., 2022) explained that unemployed mothers have more time to interact and play with their children. Mother-child interactions stimulate children's growth and development. However,

this is usually different from what occurs in society, as working mothers may be more motivated to maximize their time to continue communicating with their children after work. The researcher's assumption is that work does not always hinder parents from providing stimulation and early detection, as it ultimately depends on the parents' own willingness and concern.

The characteristics of respondents with parity are mostly parents with multiparous. In line with research from (Windiya et al., 2021) the number of children in a family will influence parental attention in providing developmental stimulation to their children. The most powerful factors are motivation, concern for the child, openness to information, and readiness to apply the knowledge gained.

### 2. The influence of growth and development stimulation education on early detection of milestones in children aged 0-5 years by parents

#### a. Age 0-12 Months

The results of the study indicate the influence of growth and development stimulation education on parents' early detection skills in children aged 0-12 months. The education provided can improve parents' knowledge and skills

regarding aspects of child development, where at this age the main development occurs in gross motor skills (lifting the head, lying on the stomach, sitting, crawling), fine motor skills (grasping and reaching for objects), and early interactions (social smiles, eye contact, and voice recognition).

This finding aligns with research (Luh Ayu Purnami, 2020), which measures knowledge based on a person's ability to explain their knowledge through evidence/answers, both verbally and in writing. Researchers hypothesize that a lack of basic information about infant development often leads parents to overlook signs of developmental delays that are inappropriate for their child's age. Consequently, after education, parents' mindsets changed, becoming more responsive.

b. Age 12-36 Months

Research conducted on parents of children aged 12-36 months indicates the influence of educational stimulation on parents' early detection skills. At this stage, children begin to develop the ability to walk, run, speak two words, and

recognize simple commands. This period is also a crucial phase where parents' role is essential for early detection of speech and social interaction disorders in children.

Meanwhile, in a study conducted by Khairunnisa et al. (Khairunnisa et al., 2022), which examined parental participation in SDIDTK activities, interview results showed that parents did not yet know how to conduct early detection of growth and development, and did not provide much stimulation for their children at home. When linked to current events, many parents still consider it normal for children to be unable to do certain things, such as not being able to say their parents' names or not being able to form sentences at 24 months.

c. Age 36-60 Months

The results of the study indicate the influence of growth and development stimulation education on parents' ability to detect early growth and development in children aged 36-60 months. At this age, children begin to demonstrate basic counting skills, name colours, play with friends, and follow complex instructions. However, this is different from what is currently happening, where parents tend to

provide less stimulation to children, especially cognitive abilities, because they assume learning can be done at school. This is in line with research conducted by (Syatifa et al., 2025) which explained that developmental disorders in children are often not detected early, and this can cause delays in treatment or intervention. From the perspective of child development and the role of parents, education on growth and development stimulation plays a crucial role in enhancing parents' ability to detect child development milestones. Early stimulation provided appropriately and age-appropriately not only strengthens the development of motor, cognitive, language, and social-emotional aspects of children, but can also build parental sensitivity in recognizing signs of developmental abnormalities. Parental knowledge and understanding of age-appropriate child development stages, gained through education, can create a strong emotional and cognitive connection between parents and children. This can help parents be more aware, responsive, and alert in assessing their child's development. Furthermore, maternal knowledge is a cognitive

domain in developing mothers' ability to detect early child development.

This is in line with research (Nurul Abidah & Novianti, 2020) which states that providing education on child growth and development stimulation can improve parents' ability to provide stimulation to children from an early age which will have positive impacts such as improving children's language and memory development, children's readiness for school and helping children to maximize their potential in life. because mothers are the first educators for their children from birth to adulthood. Based on research findings, there is an influence of education on growth and development stimulation on parents' ability to detect early child growth and development, where the results of statistical tests using Wilcoxon-test obtained a significant value of 0.000 (p-value (<0.005) indicates an effect. The results of this study indicate that mothers' ability to detect early child growth and development improved after receiving education. Providing health education is an effective strategy for improving a person's health behavior, particularly the

ability to detect early child growth and development.

Early detection of developmental abnormalities in children is crucial for parents to understand and identify developmental disorders. This is in line with research conducted by (Armina et al., 2022) that early detection of developmental abnormalities is essential to detect developmental abnormalities in children, including following up on any parental complaints regarding their child's developmental issues. Early stimulation and intervention activities for developmental abnormalities will improve the quality of childhood development.

## CONCLUSION

1. The level of parental ability before being given education obtained the average pretest results of parents at the age of 0-12 months is at 46.65, at the age of 12-36 months it was 41.06 and at the age of 36-60 months it was 46.58.
2. After being given education, there was an increase in the average value at the age of 0-12 months to 87.12, at the age of 12-36 months to 86.72 and at the age of 36-60 months to 81.74.

3. Based on the research results, it was found that there was an influence of growth and development stimulation education on the ability of parents to detect early growth and development in children aged 0-5 years. This study also provides education so that parents can systematically access public health services, such as community health centers and integrated health service posts, so that parents can regularly receive information and guidance on early detection and stimulation of child development.

## THANK YOU

The author would like to thank the supervisors who have helped in preparation of the journal.

## REFERENCE

Armina, U., Yuli Fatmawati, T., Studi, P. S., dan Profesi Ners, K., Baiturrahim Jambi, Stik., & Studi DIII Keperawatan, P. (2022). *Deteksi Dini Perkembangan Anak Berdasarkan Pengetahuan Orang Tua* [240](http://melatijournal.com/index.php/Metta. 1(2), 55–064. http://melatijournal.com/index.php/Metta</a></p><p>Baroroh, I., Kebidanan, A., & Ibu, H. (2021). Efektivitas Konsumsi Sule Honey Terhadap Peningkatan Produksi Asi Bagi Ibu Pekerja Yang Menggunakan Metode Pompa Asi (MPA ) The Effectiveness of Sule Honey Consumption in Increasing Milk Production for Working Mothers</p></div><div data-bbox=)

Using Breastfeeding Pump Methods. *Jurnal Kebidanan-ISSN*, 7(1), 9–15. <https://doi.org/10.21070/midwifery.v1i2.1632>

Dr. Muhammad Ramdhan, S. P. M. M. (n.d.). *Metode Penelitian*. Cipta Media Nusantara. [https://books.google.co.id/books?id=Ntw\\_EAAAQBAJ](https://books.google.co.id/books?id=Ntw_EAAAQBAJ)

Hayuningrum, C. F., Nesi, N., Fuadi, D. F., Saputra, A. W., & Syahfitri, P. K. (2022). Edukasi Tahapan Tumbuh Kembang Anak Sebagai Upaya Pencegahan Keterlambatan Perkembangan Anak Pada Masa Pandemi Covid-19. *PENA ABDIMAS: Jurnal Pengabdian Masyarakat*, 3(2), 95. <https://doi.org/10.31941/abdms.v3i2.1632>

Ibrahim, A., Sudirman, A. A., Rokani, M., Modjo, D., & Gorontalo, U. M. (2024). *Analisis Penggunaan Skrining Kpssp Dengan Denver Ii Terhadap Perkembangan Anak Usia 3-5 Tahun*. 5(September), 9975–9985.

Kementerian Kesehatan Republik Indonesia. (2022). *Pedoman Pelaksanaan Stimulasi, Deteksi, dan Intervensi Dini Tumbuh Kembang Anak di Tingkat Pelayanan Kesehatan dasar*. Kementerian Kesehatan RI.

Khairunnisa, M., Purwoko, S., Latifah, L., & Yunitawati, D. (2022). Evaluasi Pelaksanaan Program Stimulasi, Deteksi, dan Intervensi Dini Tumbuh Kembang di Magelang. *Jurnal Obsesi : Jurnal Pendidikan Anak Usia Dini*, 6(5), 5052–5065. <https://doi.org/10.31004/obsesi.v6i5.1885>

Lestari, M. C. D., Ayu Citra Dewi, Sri Intan Wahyuni, Juliwiis Kardi, Yendri Junaidi, & Alif Laini. (2024). Implementation of Stimulation, Early Detection, and Intervention Programs for Monitoring the Growth and Development of Children Aged 2-3 Years. *JPUD - Jurnal Pendidikan Usia Dini*, 18(1), 183–194. <https://doi.org/10.21009/jpud.181.13>

Luh Ayu Purnami. (2020). Kuesioner Pra Skrining Perkembangan (Kpssp) Sebagai Penilaian Tumbuh Kembang Balita: Pelatihan Kader Desa Girimas. *Jurnal Pengabdian Masyarakat Kesehatan*, 6(2), 71–74. <https://doi.org/10.33023/jpm.v6i2.602>

Mahyumi Rantina, M. P., Dra. Hasmalena, M. P., Yanti Karmila Nengsih, M. P., Mhd Habiburrahman, M. P., Nofrica, Y., Anjani, R. D., & Rahma, N. B. A. (2020). *Buku Panduan Stimulasi Dan Deteksi Dini Tumbuh Kembang Anak Usia (0-6) Tahun*. Edu Publisher. [https://books.google.co.id/books?id=r\\_aEJEAAAQBAJ](https://books.google.co.id/books?id=r_aEJEAAAQBAJ)

MISNIARTI, M., & HARYANI, S. (2022). Faktor-Faktor Yang Mempengaruhi Ibu Dalam Melakukan Stimulasi Tumbuh Kembang Pada Anak Toddler Di Wilayah Kerja Puskesmas Kabupaten Rejang Lebong. *Journal of Nursing and Public Health*, 10(1), 103–111. <https://doi.org/10.37676/jnph.v10i1.2374>

Nurul Abidah, S., & Novianti, H. (2020). Pengaruh Edukasi Stimulasi Tumbuh Kembang terhadap Kemampuan Deteksi Dini Tumbuh Kembang Anak Usia 0-5 Tahun oleh Orangtua. *Poltekita : Jurnal Ilmu Kesehatan*, 14(2), 89–93. <https://doi.org/10.33860/jik.v14i2.132>

Orang, P., Dalam, T. U. A., Tumbuh, P., Usia, B., Pada, T., & Pandemi, M. (2022). *No Title*. 4, 2097–2107.

Pustaka, S. M. (2023). *Asuhan Kebidanan Pada Perempuan Dan Anak Kelompok Rentan*. Scopindo Media Pustaka. <https://books.google.co.id/books?id=1Wm2EAAAQBAJ>

Romauli Pakpahan, S. K. N. M. K., & Sri Wahyuni Tarigan, S. S. T. M. K. (2024). *STATUS GIZI DENGAN MORBIDITAS ISPA ANAK USIA BALITA*. Uwais Inspirasi Indonesia. <https://books.google.co.id/books?id=j5AuEQAAQBAJ>

Septariana, F., Faron, B. A., Fathonah, S., Tasqiya, R. S., Nuraisyah, S. J., Lestari, D. T., Heryanda, M. F., Alamsyah, P. R., Novia, R., & Dalimunthe, N. K. (2024). *Gizi & Tumbuh Kembang Anak di Indonesia*. Sada Kurnia Pustaka. <https://books.google.co.id/books?id=Jl3vEAAAQBAJ>

Solama, W., Rivanica, R., Setiawati, Y., Hipson, M., Riyanti, N., Devita, R., Suryani, I. S., & Pratiwi, A. (2023). *Asuhan Kebidanan Neonatus, Bayi, Balita Dan Anak Pra Sekolah*. TOHAR MEDIA. <https://books.google.co.id/books?id=at-wEAAAQBAJ>

Sugiyono. (2020). *Metodologi Penelitian Kuantitatif, Kualitatif dan R & D*.

Syatifa, A., Syahdia, H., & Sirait, N. (2025). *Pentingnya Deteksi Dini Tumbuh Kembang Anak Usia 0- 72 Bulan Untuk Mencegah Gangguan Perkembangan*. 2, 1–8.

Windiya, N., Fajria, L., & Neherta, M. (2021). Karakteristik dan Perilaku Ibu dalam Memberikan Stimulasi Perkembangan pada Anak Usia 18-24 Bulan. *Jurnal Ilmiah Universitas Batanghari Jambi*, 21(3), 1130. <https://doi.org/10.33087/jiubj.v21i3.1715>