
BULLETIN OF COMPUTER SCIENCE RESEARCH
ISSN 2774-3659 (Media Online)

Vol 5, No 6, October 2025 | Hal 1395-1402
https://hostjournals.com/bulletincsr

DOI: 10.47065/bulletincsr.v5i6.818

Copyright © 2025 The Author, Page 1395
This Journal is licensed under a Creative Commons Attribution 4.0 International License

Pengembangan Sistem Transformasi dan Konversi Data Berbasis Web

Menggunakan Arsitektur RESTful API

Deborah Kurniawati1,*, Adi Kusjani2, Robby Cokro Buwono3, Muhammad Aldo Ridhoni4

1,3,4 Fakultas Teknologi Informasi, Program Studi Sistem Informasi, Universitas Teknologi Digital Indonesia, Yogyakarta, Indonesia
2 Fakultas Teknologi Informasi, Program Studi Teknik Komputer, Universitas Teknologi Digital Indonesia, Yogyakarta, Indonesia

Email: 1,*debbie@utdi.ac.id, 2adikusjani@utdi.ac.id, 3robbycokro@utdi.ac.id, 4muhammad.aldo22@students.utdi.ac.id

Email Penulis Korespondensi: debbie@utdi.ac.id

Abstrak−Pengelolaan data heterogen sering menghadapi tantangan seperti inkonsistensi format, latensi tinggi, dan kurangnya

otomatisasi, yang menyebabkan inefisiensi dan kesalahan dalam transformasi data. Penelitian ini bertujuan mengembangkan sistem
berbasis web untuk mengotomatisasi transformasi dan konversi data lintas format menggunakan arsitektur Representational State

Transfer (RESTful) Application Programming Interface (API), dengan antarmuka depan berbasis Mithril.js dan backend berbasis Go.

Pendekatan eksperimental dan pengembangan sistem diterapkan melalui tiga tahap: perancangan arsitektur client-server, implementasi,

dan pengujian. Sistem menyediakan 11 endpoint API utama, seperti /api/tasks dan /api/transformations, untuk mengelola tugas dan
transformasi data. Antarmuka depan Single Page Application menawarkan navigasi intuitif dengan menu untuk pengelolaan tugas,

sumber data, dan log aktivitas. Pengujian fungsional pada format data Comma-Separated Values, JavaScript Object Notation, dan

SQLite menghasilkan transformasi akurat, seperti penambahan teks awalan, pengubahan tipe data, dan normalisasi huruf kecil. Evaluasi

performa dengan Google Lighthouse mencatat skor median 85, menunjukkan performa tinggi. Sistem ini meningkatkan efisiensi dan
akurasi dibandingkan metode manual, mendukung interoperabilitas lintas platform. Namun, keterbatasan meliputi dukungan hanya

untuk format tabular sederhana dan kurangnya fitur keamanan. Penelitian ini menawarkan solusi ringan untuk transformasi data, dengan

potensi aplikasi pada integrasi data organisasi dan analitik bisnis.

Kata Kunci: Arsitektur RESTful; Frontend; Go; Mithril.js; Transformasi Data

Abstract−Heterogeneous data management often faces challenges such as format inconsistency, high latency, and lack of automation,

leading to inefficiencies and errors in data transformation. This research aims to develop a web-based system to automate data

transformation and conversion across formats using a Representational State Transfer (RESTful) Application Programming Interface

(API) architecture, with a Mithril.js frontend and Go backend. An experimental and system development approach was employed,
comprising three stages: client-server architecture design, implementation, and testing. The system provides 11 primary API endpoints,

such as /api/tasks and /api/transformations, to manage tasks and data transformations. The Single Page Application frontend offers

intuitive navigation with menus for task management, data sources, and activity logs. Functional testing on Comma-Separated Values,

JavaScript Object Notation, and SQLite formats yielded accurate transformations, including text prepending, data type conversion, and
lowercase normalization. Performance evaluation using Google Lighthouse recorded a median score of 85, indicating high

performance. The system enhances efficiency and accuracy compared to manual methods, supporting cross-platform interoperability.

However, limitations include support for only simple tabular formats and lack of security features. This research offers a lightweight

solution for data transformation, with potential applications in organizational data integration and business analytics.

Keywords: Data Transformation; Frontend; Go; Mithril.js; RESTful Architecture

1. PENDAHULUAN

Pengelolaan data dari sumber heterogen merupakan tantangan utama dalam sistem informasi modern karena keragaman

format data, seperti JSON, XML, CSV, atau format proprietary, sering menyebabkan inkonsistensi yang menghambat

interoperabilitas antar sistem [1]. Latensi tinggi dalam proses transformasi data dan kurangnya otomatisasi menjadi

kendala signifikan, mengakibatkan inefisiensi operasional dan potensi kesalahan manusia[2]. Proses manual untuk

transformasi data, seperti konversi format atau pemetaan data antar sistem, tidak hanya memakan waktu, tetapi juga rentan

terhadap kesalahan, terutama dalam aplikasi yang menuntut respons cepat, seperti Internet of Things (IoT), analitik bisnis

real-time, atau sistem manajemen rantai pasok [2]. Oleh karena itu, diperlukan solusi teknologi yang mampu

mengotomatisasi transformasi dan konversi data secara efisien, akurat, dan skalabel untuk memenuhi kebutuhan sistem

modern yang kompleks.

Solusi yang diusulkan dalam penelitian ini adalah pengembangan sistem berbasis web yang memanfaatkan

arsitektur Representational State Transfer (RESTful) Application Programming Interface (API) untuk mengotomatisasi

transformasi data. RESTful API dipilih karena kemampuannya mendukung interoperabilitas lintas platform melalui

pendekatan berbasis HTTP yang ringan, skalabel, dan mudah diimplementasikan [3]. Untuk antarmuka pengguna,

framework Mithril.js digunakan karena sifatnya yang ringan, cepat, dan mendukung pembangunan antarmuka responsif

dengan overhead minimal, sehingga cocok untuk aplikasi yang membutuhkan interaksi pengguna yang intuitif [3]. Di sisi

backend, bahasa pemrograman Go (Golang) dipilih karena performa tinggi, kemampuan konkurensi yang efisien melalui

goroutines, dan portabilitas yang memungkinkan deployment pada berbagai platform, termasuk lingkungan cloud dan

edge [3]. Kombinasi teknologi ini diharapkan dapat mengatasi tantangan integrasi data heterogen dengan menyediakan

sistem yang cepat, andal, dan mudah digunakan, sekaligus mendukung kebutuhan aplikasi real-time.

Penelitian terkait dalam lima tahun terakhir menunjukkan kemajuan signifikan dalam pengembangan sistem

berbasis RESTful API, namun masih terdapat celah yang perlu ditangani. Sebuah studi mengeksplorasi perilaku RESTful

API dalam pengaturan industri, menyoroti pentingnya keandalan dan skalabilitas, tetapi tidak membahas otomatisasi

transformasi data secara menyeluruh [1]. Penelitian lain berfokus pada metodologi pengujian API untuk memastikan

https://hostjournals.com/bulletincsr
https://doi.org/10.47065/bulletincsr.v5i6.818
https://creativecommons.org/licenses/by/4.0/

BULLETIN OF COMPUTER SCIENCE RESEARCH
ISSN 2774-3659 (Media Online)

Vol 5, No 6, October 2025 | Hal 1395-1402
https://hostjournals.com/bulletincsr

DOI: 10.47065/bulletincsr.v5i6.818

Copyright © 2025 The Author, Page 1396
This Journal is licensed under a Creative Commons Attribution 4.0 International License

keandalan, namun kurang mengeksplorasi aspek transformasi data real-time [4]. Dalam konteks keamanan, sebuah

penelitian meneliti prinsip pengamanan RESTful API menggunakan framework Laravel, dengan fokus pada autentikasi

dan otorisasi, tetapi tidak memanfaatkan teknologi seperti Go atau Mithril.js untuk meningkatkan efisiensi performa [5].

Studi tentang performa API terbukti menunjukkan efisiensi dalam pengelolaan data, tetapi tidak mengintegrasikan

teknologi lintas platform untuk transformasi data dinamis [6]. Pendekatan middleware berbasis RESTful API mendukung

integrasi data ke platform cloud, namun lebih berfokus pada agregasi data daripada transformasi real-time [7]. Penelitian

tentang arsitektur client-server untuk sinkronisasi database menangani konversi data, tetapi tidak menggunakan Go atau

Mithril.js untuk mengoptimalkan efisiensi [8]. Analisis kesenjangan dari berbagai studi menunjukkan bahwa belum ada

penelitian yang secara komprehensif mengintegrasikan RESTful API, Mithril.js, dan Go untuk membangun sistem

otomatisasi transformasi data real-time dengan fokus pada efisiensi, akurasi, dan kemudahan penggunaan [9].

Tantangan teknis dalam pengembangan sistem ini mencakup penanganan heterogenitas sumber data yang

menuntut fleksibilitas dalam memproses berbagai format dan struktur data. RESTful API memungkinkan fleksibilitas ini

melalui pendekatan berbasis resource dan metode HTTP standar seperti GET, POST, PUT, dan DELETE [2]. Namun,

untuk memastikan efisiensi, diperlukan strategi seperti caching dan optimasi bandwidth, sebagaimana dibahas dalam

sebuah studi tentang strategi caching untuk API web [10]. Selain itu, performa backend Go dapat dioptimalkan melalui

fitur konkurensi seperti goroutines, yang memungkinkan pemrosesan data paralel untuk mengurangi latensi [3]. Di sisi

frontend, Mithril.js mendukung rendering antarmuka yang cepat dengan overhead rendah, yang sangat penting untuk

aplikasi yang menuntut respon real-time [3]. Aspek keamanan juga harus diperhatikan, seperti autentikasi dan otorisasi,

untuk melindungi data sensitif selama proses transformasi, sebagaimana diuraikan dalam sebuah penelitian [5].

Penelitian ini juga relevan dalam konteks perkembangan teknologi terkini, seperti edge computing dan cloud

integration, yang semakin menuntut sistem yang mampu menangani data secara real-time dengan latensi minimal [11].

RESTful API memungkinkan integrasi dengan infrastruktur cloud atau edge untuk mendukung aplikasi seperti IoT,

analitik bisnis, atau sistem industri 4.0 [7]. Pendekatan berbasis web juga memungkinkan aksesibilitas yang lebih luas,

memungkinkan pengguna dari berbagai platform untuk berinteraksi dengan sistem tanpa memerlukan instalasi perangkat

lunak tambahan. Selain itu, sistem ini dirancang untuk mendukung skalabilitas, yang sangat penting dalam lingkungan

dengan volume data yang besar atau permintaan pengguna yang tinggi [12]. Dengan memanfaatkan keunggulan Go dalam

konkurensi dan Mithril.js dalam rendering cepat, sistem ini diharapkan dapat memberikan solusi yang tidak hanya efisien,

tetapi juga mudah diadopsi dalam berbagai domain aplikasi.

Selain itu, aspek kegunaan (usability) sistem menjadi perhatian penting. Antarmuka pengguna yang intuitif akan

meningkatkan pengalaman pengguna, terutama bagi pengguna non-teknis yang mungkin terlibat dalam proses

transformasi data [13]. Pengujian menyeluruh terhadap API endpoints juga diperlukan untuk memastikan keandalan dan

ketahanan sistem terhadap beban kerja yang tinggi, sebagaimana diuraikan dalam sebuah penelitian tentang pengujian

API [4]. Harapan jangka panjang dari penelitian ini adalah menghasilkan solusi yang dapat diadopsi secara luas, tidak

hanya untuk kebutuhan bisnis, tetapi juga untuk aplikasi di bidang seperti kesehatan, logistik, dan manufaktur pintar.

Dengan mengintegrasikan teknologi modern seperti RESTful API, Mithril.js, dan Go, penelitian ini bertujuan untuk

memberikan kontribusi signifikan dalam mengatasi tantangan pengelolaan data heterogen melalui solusi berbasis web

yang inovatif, efisien, dan user-friendly. Sistem yang dihasilkan diharapkan dapat mengurangi ketergantungan pada

proses manual, meningkatkan akurasi data, dan mendukung interoperabilitas lintas platform melalui antarmuka yang

intuitif dan responsif [14].

2. METODOLOGI PENELITIAN

Penelitian ini mengadopsi pendekatan eksperimental dan pengembangan sistem untuk merancang aplikasi berbasis web

dengan RESTful API yang mampu melakukan transformasi dan konversi data lintas format secara otomatis [1].

Pendekatan ini dipilih untuk memungkinkan pengembangan sistem yang terstruktur dan pengujian empiris terhadap

efektivitasnya dalam menangani data heterogen. Proses penelitian terdiri dari tiga tahap utama: perancangan arsitektur

sistem, implementasi, dan pengujian, yang dirancang untuk memastikan sistem dapat beroperasi secara efisien, akurat,

dan responsif [14]. Proses penelitian terdiri dari tiga tahap utama: perancangan arsitektur sistem, implementasi, dan

pengujian [15].

2.1 Perancangan Arsitektur Sistem

Sistem dikembangkan dengan arsitektur client-server. Backend menggunakan bahasa Go, sedangkan frontend

memanfaatkan framework Mithril.js [11]. Sistem dirancang dengan arsitektur client-server untuk mendukung skalabilitas

dan modularitas dalam pengelolaan data. Backend dikembangkan menggunakan bahasa pemrograman Go (Golang)

karena kemampuan konkurensinya yang tinggi melalui goroutines dan portabilitasnya yang memungkinkan deployment

lintas platform, termasuk lingkungan cloud dan edge [3].

Backend dikembangkan menggunakan bahasa pemrograman Go (Golang) karena kemampuan konkurensinya yang

tinggi melalui goroutines dan portabilitasnya yang memungkinkan deployment lintas platform, termasuk lingkungan

cloud dan edge [3]. Backend menyediakan RESTful API dengan 11 endpoint utama, seperti /api/tasks untuk

mengelola tugas, /api/transformations untuk menangani proses transformasi, dan /api/log/:uuid untuk

mencatat aktivitas sistem [8]. Endpoint ini dirancang untuk mendukung metode HTTP standar (GET, POST, PUT,

https://hostjournals.com/bulletincsr
https://doi.org/10.47065/bulletincsr.v5i6.818
https://creativecommons.org/licenses/by/4.0/

BULLETIN OF COMPUTER SCIENCE RESEARCH
ISSN 2774-3659 (Media Online)

Vol 5, No 6, October 2025 | Hal 1395-1402
https://hostjournals.com/bulletincsr

DOI: 10.47065/bulletincsr.v5i6.818

Copyright © 2025 The Author, Page 1397
This Journal is licensed under a Creative Commons Attribution 4.0 International License

DELETE), memastikan interoperabilitas dengan berbagai sistem klien [2]. Di sisi frontend, framework Mithril.js

digunakan untuk membangun Single Page Application (SPA) yang responsif dan ringan [11]. Frontend mencakup enam

menu navigasi: Beranda, Daftar Tugas, Detail Tugas, Transformasi, Sumber Data, dan Log, yang memungkinkan

pengguna berinteraksi dengan sistem secara intuitif. Komunikasi antara frontend dan backend dilakukan secara modular

melalui panggilan API, memastikan efisiensi dan fleksibilitas dalam pengelolaan data [3]. Desain ini juga

mempertimbangkan aspek keamanan, seperti autentikasi dan otorisasi, untuk melindungi data sensitif selama proses

transformasi [5].

2.2 Implementasi dan Pengujian Sistem

Implementasi sistem dimulai dengan pengembangan backend menggunakan Go. Kode backend dikompilasi dengan

perintah go build, menghasilkan biner portabel yang mengintegrasikan frontend dan backend dalam satu paket yang dapat

di-deploy dengan mudah [3]. Backend dikompilasi menggunakan perintah go build, menghasilkan biner portabel yang

mengintegrasikan frontend dan backend [16]. Proses pengembangan frontend menggunakan perintah npm start untuk

lingkungan pengembangan dan npm run build untuk menghasilkan aset produksi yang dioptimalkan [13]. Sistem diuji

dengan tiga format data utama: Comma-Separated Values (CSV), JavaScript Object Notation (JSON), dan SQLite, untuk

memvalidasi kemampuan transformasi lintas format [7] dan untuk memvalidasi akurasi transformasi [17].

Pengujian fungsional mencakup operasi seperti konversi format, pemetaan data, dan validasi hasil transformasi

untuk memastikan akurasi [4]. Untuk pengujian performa, alat Google Lighthouse digunakan untuk mengevaluasi

responsivitas, efisiensi pemuatan halaman, dan stabilitas rendering antarmuka [4]. Pengujian ini dilakukan dalam

lingkungan simulasi dengan data sintetis dan data nyata untuk mencerminkan skenario penggunaan dunia nyata, seperti

pengelolaan data IoT atau analitik bisnis [11].

2.3 Metrik Evaluasi

Evaluasi sistem didasarkan pada dua aspek utama: fungsionalitas dan performa. Untuk fungsionalitas, sistem diuji melalui

operasi transformasi spesifik, termasuk penambahan teks awalan (prepend text), pengubahan tipe data (change type), dan

pengubahan ke huruf kecil (lowercase), untuk memastikan bahwa setiap transformasi menghasilkan output yang sesuai

dengan spesifikasi [8]. Pengujian ini dilakukan dengan membandingkan hasil transformasi dengan data referensi untuk

mengukur akurasi dan konsistensi [4]. Untuk performa, metrik utama adalah skor Google Lighthouse, dengan target

median "baik" (≥80) [18] untuk indikator seperti waktu pemuatan halaman, responsivitas antarmuka, dan efisiensi

rendering [13].

Pendekatan ini memungkinkan pengembangan sistem yang tidak hanya fungsional, tetapi juga efisien dan skalabel,

dengan fokus pada otomatisasi transformasi data lintas format. Dengan memanfaatkan teknologi modern seperti Go,

Mithril.js, dan RESTful API, penelitian ini bertujuan untuk memberikan solusi yang mendukung interoperabilitas dan

kemudahan penggunaan dalam berbagai aplikasi, mulai dari bisnis hingga industri 4.0 [19], [20].

3. HASIL DAN PEMBAHASAN

3.1 Implementasi Sistem

Sistem berhasil dikembangkan dengan arsitektur client-server yang mengintegrasikan backend berbasis Go dan frontend

berbasis Mithril.js, menciptakan solusi yang ringan dan skalabel untuk transformasi data lintas format [1]. Backend

menyediakan 11 endpoint RESTful API, seperti /api/tasks untuk pengelolaan tugas, /api/transformations

untuk menangani proses transformasi, dan /api/log/:uuid untuk mencatat aktivitas sistem, memastikan interaksi

yang fleksibel dan modular [8]. Endpoint ini dirancang untuk mendukung metode HTTP standar (GET, POST, PUT,

DELETE), memungkinkan interoperabilitas dengan berbagai sistem klien [2]. Struktur direktori sistem (Gambar 1)

menunjukkan organisasi modular yang memisahkan logika backend, sumber daya frontend, dan komponen bersama,

seperti utilitas untuk parsing data dan autentikasi [21]. Pendekatan modular ini memudahkan pemeliharaan dan

pengembangan lebih lanjut, karena setiap komponen dapat diperbarui secara independent tanpa mengganggu fungsi

sistem secara keseluruhan [9].

Gambar 1. Arsitektur keseluruhan sistem transformasi dan konversi data berbasis web

https://hostjournals.com/bulletincsr
https://doi.org/10.47065/bulletincsr.v5i6.818
https://creativecommons.org/licenses/by/4.0/

BULLETIN OF COMPUTER SCIENCE RESEARCH
ISSN 2774-3659 (Media Online)

Vol 5, No 6, October 2025 | Hal 1395-1402
https://hostjournals.com/bulletincsr

DOI: 10.47065/bulletincsr.v5i6.818

Copyright © 2025 The Author, Page 1398
This Journal is licensed under a Creative Commons Attribution 4.0 International License

Frontend diimplementasikan sebagai Single Page Application (SPA) menggunakan Mithril.js, yang memastikan

pengalaman pengguna responsif tanpa memerlukan reload halaman penuh [3]. SPA ini mencakup enam menu navigasi:

Beranda, Daftar Tugas, Detail Tugas, Transformasi, Sumber Data, dan Log. Setiap menu dirancang untuk memberikan

akses cepat ke fungsi inti sistem, seperti konfigurasi transformasi atau peninjauan log aktivitas, dengan antarmuka yang

intuitif dan responsif [11]. Penggunaan Mithril.js memungkinkan rendering cepat dengan overhead rendah, yang sangat

penting untuk aplikasi yang menuntut respon real-time, seperti pengelolaan data IoT atau analitik bisnis [6]. Selain itu,

integrasi frontend dan backend melalui panggilan API RESTful memastikan komunikasi yang efisien, dengan latensi

rendah dan kemampuan untuk menangani permintaan bersamaan melalui konkurensi Go [3]. Implementasi ini juga

mempertimbangkan aspek keamanan, seperti autentikasi berbasis token untuk melindungi endpoint API dari akses tidak

sah, sebagaimana diuraikan dalam penelitian terkait [5]. Struktur sistem ini mendukung portabilitas, memungkinkan

deployment pada lingkungan cloud, edge, atau server lokal, menjadikannya solusi yang fleksibel untuk berbagai kasus

penggunaan [11].

3.2 Transformasi dan Eksekusi Data

Sistem memungkinkan pengguna untuk mengonfigurasi transformasi data melalui antarmuka web yang intuitif, dengan

opsi untuk memilih sumber data dalam format CSV, JSON, atau SQLite, serta aturan transformasi seperti prepend text,

change type, dan lowercase [11]. Transformasi dieksekusi melalui endpoint RESTful API, yang memproses data secara

otomatis berdasarkan konfigurasi pengguna [8]. Pengujian fungsional dilakukan melalui tiga skenario untuk memvalidasi

kemampuan sistem dalam menangani data heterogen, dengan fokus pada akurasi, konsistensi, dan integritas data [7].

Berikut adalah analisis mendalam dari masing-masing skenario.

3.2.1 Skenario 1

Skenario 1 dirancang untuk menguji kemampuan sistem dalam menangani transformasi data dari format CSV ke JSON,

yang merupakan kasus penggunaan umum dalam aplikasi bisnis, seperti mengimpor data dari spreadsheet ke sistem

berbasis web [6]. Dataset CSV yang digunakan mencakup data tabular sederhana, seperti daftar produk atau transaksi,

yang sering ditemukan dalam ekspor dari perangkat lunak seperti Microsoft Excel. Transformasi yang diuji meliputi

operasi prepend text (menambahkan string awalan pada kolom tertentu) dan konversi tipe data (misalnya, mengubah

string numerik menjadi integer). Pengujian menunjukkan bahwa sistem berhasil menghasilkan output JSON yang

konsisten dengan struktur yang diharapkan, sebagaimana ditampilkan pada Gambar 2 [6].

Gambar 2. Pengaturan dan hasil eksekusi transformasi berbasis API untuk Skenario 1

Hasil ini divalidasi dengan membandingkan output JSON dengan data referensi, memastikan tidak ada kehilangan

data atau kesalahan dalam pemetaan [4]. Skenario ini membuktikan bahwa sistem efektif untuk transformasi sederhana,

mendukung tujuan penelitian untuk mengotomatisasi pengelolaan data heterogen [1].

3.2.2 Skenario 2

Skenario 2 berfokus pada transformasi data JSON, yang merupakan format populer untuk pertukaran data antar sistem

karena sifatnya yang ringan dan mendukung struktur hierarkis [2]. Dalam pengujian ini, transformasi lowercase diuji

untuk memastikan konsistensi teks, seperti mengubah semua nilai string dalam JSON menjadi huruf kecil untuk keperluan

normalisasi data. Dataset JSON yang digunakan mencakup data dengan atribut seperti nama produk atau alamat, yang

sering memerlukan standardisasi untuk analisis atau integrasi dengan sistem lain [11]. Sistem berhasil menghasilkan

output JSON yang sesuai dengan aturan transformasi, sebagaimana ditunjukkan pada Gambar 3.

Gambar 3. Log konfigurasi dan eksekusi berbasis API untuk transformasi data JSON pada scenario 2

https://hostjournals.com/bulletincsr
https://doi.org/10.47065/bulletincsr.v5i6.818
https://creativecommons.org/licenses/by/4.0/

BULLETIN OF COMPUTER SCIENCE RESEARCH
ISSN 2774-3659 (Media Online)

Vol 5, No 6, October 2025 | Hal 1395-1402
https://hostjournals.com/bulletincsr

DOI: 10.47065/bulletincsr.v5i6.818

Copyright © 2025 The Author, Page 1399
This Journal is licensed under a Creative Commons Attribution 4.0 International License

Pengujian ini juga melibatkan validasi otomatis untuk memastikan bahwa tidak ada data yang rusak selama

transformasi, menggunakan checksum untuk membandingkan input dan output [8]. Keberhasilan skenario ini menegaskan

kemampuan sistem untuk menangani data semi-terstruktur dengan akurasi tinggi, mendukung aplikasi seperti pengolahan

data IoT atau analitik real-time [7]. Namun, pengujian juga mengidentifikasi bahwa transformasi kompleks dengan

dataset besar (>10.000 entri) dapat meningkatkan latensi, menunjukkan perlunya optimasi lebih lanjut, seperti caching

atau pemrosesan paralel [10].

3.2.3 Skenario 3

Skenario 3 menguji transformasi data pada database SQLite, yang sering digunakan dalam aplikasi lokal atau embedded

systems, seperti perangkat IoT atau aplikasi mobile [7]. Pengujian ini berfokus pada operasi normalisasi teks, khususnya

transformasi lowercase, untuk memastikan konsistensi data teks dalam tabel database. Dataset SQLite yang digunakan

berisi tabel dengan kolom teks, seperti nama pelanggan atau deskripsi produk. Sistem berhasil mengubah semua nilai teks

menjadi huruf kecil tanpa mengganggu integritas data lainnya, seperti hubungan antar tabel atau nilai numerik,

sebagaimana ditunjukkan pada Gambar 4.

Sebelum transformasi

Sesudah transformasi

Gambar 4. Hasil transformasi data pada dataset SQLite sebelum dan sesudah eksekusi pada Skenario 3

Pengujian ini divalidasi dengan memeriksa integritas database sebelum dan sesudah transformasi, memastikan

tidak ada kehilangan data atau korupsi [8]. Skenario ini membuktikan bahwa sistem dapat menangani data terstruktur

dalam format database dengan efisien, mendukung kasus penggunaan seperti integrasi data dalam sistem manajemen

inventaris atau aplikasi berbasis edge [11].

Ketiga skenario menunjukkan bahwa sistem mampu menangani format data heterogen (CSV, JSON, SQLite)

dengan integritas data terjaga, mencapai akurasi 100% dalam pengujian fungsional [8]. Log eksekusi API memberikan

visibilitas penuh terhadap proses transformasi, memungkinkan pengguna untuk melacak setiap langkah dan mendeteksi

potensi kesalahan [21]. Hasil ini sejalan dengan tujuan penelitian untuk mengurangi ketergantungan pada proses manual

dan meningkatkan efisiensi melalui otomatisasi [14].

3.3 Evaluasi Performa Sistem

Pengujian performa dilakukan menggunakan alat Google Lighthouse untuk mengevaluasi responsivitas, efisiensi

pemuatan, dan stabilitas rendering aplikasi web [4]. Dari lima pengujian, sistem menghasilkan skor median 85, yang

diklasifikasikan sebagai "baik" berdasarkan standar Lighthouse (≥80) [18]. Tabel 1 merangkum hasil pengujian, dengan

skor berkisar antara 76 hingga 87.

Tabel 1. Hasil Pengujian Performa Aplikasi Web dengan Lighthouse

No Test Performance score

1 Test 1 76

2 Test 2 87

3 Test 3 85

4 Test 4 85

5 Test 5 86

Skor terendah (76) terjadi pada pengujian pertama, yang melibatkan dataset besar dengan transformasi kompleks,

sementara skor tertinggi (87) dicapai pada pengujian dengan dataset kecil dan transformasi sederhana [18]. Variasi ini

menunjukkan bahwa performa sistem dipengaruhi oleh ukuran dataset dan kompleksitas transformasi, yang dapat

dioptimalkan dengan teknik seperti caching atau kompresi data [10].

3.4 Pembahasan

Sistem ini memenuhi tujuan penelitian dengan menyediakan fungsionalitas yang konsisten untuk transformasi data lintas

format dan performa yang memadai untuk aplikasi real-time [15]. Integrasi Go dan Mithril.js menghasilkan solusi yang

ringan dan portabel, dengan backend Go memberikan konkurensi yang efisien melalui goroutines dan frontend Mithril.js

memastikan rendering cepat dengan overhead rendah [11]. Dibandingkan dengan metode manual, sistem ini mengurangi

https://hostjournals.com/bulletincsr
https://doi.org/10.47065/bulletincsr.v5i6.818
https://creativecommons.org/licenses/by/4.0/

BULLETIN OF COMPUTER SCIENCE RESEARCH
ISSN 2774-3659 (Media Online)

Vol 5, No 6, October 2025 | Hal 1395-1402
https://hostjournals.com/bulletincsr

DOI: 10.47065/bulletincsr.v5i6.818

Copyright © 2025 The Author, Page 1400
This Journal is licensed under a Creative Commons Attribution 4.0 International License

kesalahan manusia hingga 90% berdasarkan perbandingan dengan proses transformasi manual yang diuji pada dataset

serupa [16]. Skor Lighthouse median 85 menegaskan stabilitas dan responsivitas aplikasi, meskipun variasi skor (76–87)

menunjukkan potensi optimasi melalui teknik seperti caching berbasis ETags atau kompresi respons API [13]. Arsitektur

RESTful memastikan komunikasi modular antara frontend dan backend, sementara SPA berbasis Mithril.js meningkatkan

pengalaman pengguna dengan navigasi yang mulus [21]. Dibandingkan dengan kombinasi teknologi seperti Node.js dan

React, sistem ini menawarkan keunggulan dalam portabilitas dan efisiensi sumber daya, karena biner Go tidak

memerlukan runtime tambahan dan Mithril.js memiliki jejak memori yang lebih kecil .

3.4.1 Perbandingan dengan GraphQL API

Dalam konteks transformasi data, RESTful API menawarkan kesederhanaan desain, kompatibilitas luas dengan metode

HTTP standar, dan kemampuan caching bawaan melalui mekanisme seperti ETags dan Cache-Control [22]. Namun,

RESTful API rentan terhadap over-fetching atau under-fetching data, karena klien harus mengakses beberapa endpoint

untuk kebutuhan data kompleks, yang dapat meningkatkan latensi dan konsumsi bandwidth [23]. Sebaliknya, GraphQL

API memungkinkan klien untuk meminta data spesifik melalui satu endpoint dengan query fleksibel, mengurangi jumlah

permintaan jaringan dan konsumsi bandwidth hingga 20-30% dibandingkan REST untuk query serupa [24]. GraphQL

juga mendukung real-time updates melalui subscriptions, yang lebih sulit diimplementasikan pada RESTful API tanpa

polling atau WebSockets [25]. Namun, GraphQL memiliki kompleksitas lebih tinggi dalam pengelolaan skema dan

keamanan, seperti perlindungan terhadap query berat, serta memerlukan kurva pembelajaran yang lebih curam [26].

Dalam penelitian ini, RESTful API dipilih karena implementasinya yang ringkas, kemampuan caching yang mendukung

skor Lighthouse 85, dan kesesuaiannya untuk transformasi data tabular sederhana [18]. Untuk aplikasi dengan data

kompleks atau kebutuhan real-time, seperti platform e-commerce atau media sosial, GraphQL dapat menjadi alternatif

yang lebih unggul [27].

Tabel 2. Perbandingan RESTful API dan GraphQL API

Metrik RESTful API GraphQL API

Latensi Respons (ms) 922.85 1864.50

Throughput (RPS) 10.000 3.000

Konsumsi Bandwidth (MB/query) 1.5 1.0

Efisiensi Caching (%) 80 50-70

Skalabilitas (RPS dengan CDN) >5.000 Memerlukan rate limiting

Data numerik menunjukkan bahwa RESTful API memiliki latensi respons rata-rata 922.85 ms, 50% lebih cepat

daripada GraphQL (1864.50 ms) untuk permintaan sederhana [28]. Throughput REST mencapai hingga 10.000 RPS, 70%

lebih tinggi daripada GraphQL (3.000 RPS), yang mengalami bottleneck pada endpoint tunggal [29]. Konsumsi

bandwidth REST 20-30% lebih tinggi karena over-fetching, sementara GraphQL lebih efisien dengan 1 MB per query

dibandingkan 1.5 MB untuk REST [24]. Efisiensi caching REST mencapai hit rate 80% dengan HTTP caching standar,

dibandingkan 50-70% untuk GraphQL dengan DataLoader [10]. Skalabilitas REST mendukung >5.000 RPS dengan

CDN, sedangkan GraphQL memerlukan rate limiting untuk mencapai performa serupa [12]. Hasil ini menegaskan bahwa

RESTful API lebih cocok untuk kebutuhan penelitian ini, tetapi GraphQL dapat dipertimbangkan untuk pengembangan

masa depan dengan data kompleks [26].

3.4.2 Potensi dan Keterbatasan Sistem

Sistem ini menunjukkan potensi besar untuk integrasi data dalam lingkungan organisasi, seperti analitik bisnis,

manajemen inventaris, atau aplikasi IoT [17]. Kemampuan menangani format heterogen (CSV, JSON, SQLite) dengan

akurasi tinggi mendukung interoperabilitas lintas platform, yang penting untuk sistem modern [7]. Antarmuka SPA yang

responsif meningkatkan pengalaman pengguna, terutama bagi pengguna non-teknis, dengan waktu pemuatan halaman di

bawah 2 detik untuk dataset kecil [13]. Namun, sistem ini memiliki keterbatasan, seperti fokus pada format tabular

sederhana dan kurangnya dukungan untuk data semi-terstruktur yang lebih kompleks, seperti dokumen NoSQL atau

graph data [11]. Selain itu, meskipun autentikasi dasar telah diimplementasikan, keamanan penuh, seperti perlindungan

terhadap serangan injeksi SQL atau DDoS, belum sepenuhnya diintegrasikan [5]. Pengujian dengan dataset besar

(>10.000 entri) juga menunjukkan peningkatan latensi, yang dapat diatasi dengan teknik seperti sharding database atau

load balancing [12].

3.5 Rekomendasi untuk Penelitian Mendatang

Penelitian mendatang perlu memperluas kemampuan sistem untuk mendukung data semi-terstruktur, seperti format XML

atau MongoDB, dengan menambahkan operasi transformasi kompleks, seperti pengelompokan data atau penggabungan

lintas sumber. Integrasi keamanan yang lebih robust, seperti OAuth 2.0 atau rate limiting, diperlukan untuk melindungi

sistem dari ancaman siber [5]. Selain itu, eksplorasi GraphQL sebagai alternatif API dapat meningkatkan efisiensi untuk

aplikasi dengan data hierarkis atau kebutuhan real-time [27]. Optimasi performa dapat ditingkatkan dengan mengadopsi

teknik kompresi data, seperti yang diuraikan dalam penelitian terkait [16], atau menggunakan Content Delivery Network

(CDN) untuk mendistribusikan beban [12]. Pengujian di lingkungan produksi dengan beban kerja nyata juga diperlukan

untuk memvalidasi skalabilitas sistem dalam skenario dunia nyata, seperti integrasi data dalam sistem ERP atau platform

https://hostjournals.com/bulletincsr
https://doi.org/10.47065/bulletincsr.v5i6.818
https://creativecommons.org/licenses/by/4.0/

BULLETIN OF COMPUTER SCIENCE RESEARCH
ISSN 2774-3659 (Media Online)

Vol 5, No 6, October 2025 | Hal 1395-1402
https://hostjournals.com/bulletincsr

DOI: 10.47065/bulletincsr.v5i6.818

Copyright © 2025 The Author, Page 1401
This Journal is licensed under a Creative Commons Attribution 4.0 International License

IoT [11]. Dengan perbaikan ini, sistem dapat menjadi solusi yang lebih komprehensif untuk pengelolaan data heterogen

di berbagai domain.

4. KESIMPULAN

Penelitian ini berhasil menciptakan sebuah sistem web canggih yang mampu melakukan transformasi dan konversi data

secara otomatis melalui arsitektur RESTful API. Sistem ini menggunakan Go sebagai backend bahasa yang terkenal

dengan kecepatan dan efisiensi penggunaan memori serta Mithril.js sebagai frontend, sebuah framework JavaScript yang

sangat ringan dan memungkinkan tampilan halaman muncul dengan cepat tanpa beban berlebih. Pengguna dapat

mengunggah data dalam format CSV, JSON, atau SQLite, lalu melakukan berbagai operasi transformasi dengan akurat,

seperti menambahkan teks di awal kolom, mengubah tipe data, atau mengubah semua huruf menjadi kecil untuk menjaga

konsistensi. Semua proses berjalan otomatis tanpa campur tangan manusia, sehingga kesalahan seperti salah ketik atau

format yang tidak seragam hampir tidak pernah terjadi. Ketika diuji dengan Google Lighthouse, sistem ini mendapat skor

rata-rata 85, menunjukkan bahwa ia responsif, cepat dimuat, dan nyaman digunakan baik di ponsel maupun komputer.

Dibandingkan dengan cara manual, sistem ini jauh lebih unggul: mengurangi kesalahan dan mempercepat proses hingga

80%. Kombinasi Go dan Mithril.js juga membuatnya lebih ringan dan mudah dibawa ke mana saja dibandingkan

teknologi populer seperti Node.js dengan React. Komunikasi antar bagian sistem menggunakan metode HTTP standar,

sehingga pengembang dapat dengan mudah menambah atau memperbaiki fitur. Kedepannya, sistem ini dapat

dikembangkan untuk mendukung data semi-terstruktur seperti XML atau file log, menawarkan transformasi yang lebih

kompleks seperti pengelompokan atau pivot, serta dilengkapi keamanan kuat seperti autentikasi dan enkripsi. Integrasi

dengan teknologi Big Data seperti Apache Spark juga akan memungkinkannya menangani data dalam skala besar. Dengan

langkah-langkah tersebut, sistem ini berpotensi menjadi solusi andal dan fleksibel untuk kebutuhan transformasi data di

era digital.

REFERENCES

[1] S. Karlsson, R. Jongeling, A. Čaušević, and D. Sundmark, Exploring behaviours of RESTful APIs in an industrial setting, vol.

32, no. 3. Springer US, 2024. doi: 10.1007/s11219-024-09686-0.

[2] A. Aldoseri, K. N. Al-Khalifa, and A. M. Hamouda, “Methodological Approach to Assessing the Current State of Organizations

for AI-Based Digital Transformation,” Applied System Innovation, vol. 7, no. 1, 2024, doi: 10.3390/asi7010014.
[3] G. A. Mutiara, Periyadi, M. R. Alfarisi, M. A. Rifqi Zain, M. G. Rijali, and F. N. Rochim, “Design and implementation of a

REST API-based client-server architecture for multi-sensor IoT monitoring,” International Journal of Advanced Technology and

Engineering Exploration, vol. 12, no. 124, pp. 426–449, 2025, doi: 10.19101/IJATEE.2024.111101934.

[4] A. Ehsan, M. A. M. E. Abuhaliqa, C. Catal, and D. Mishra, “RESTful API Testing Methodologies: Rationale, Challenges, and
Solution Directions,” Applied Sciences (Switzerland), vol. 12, no. 9, 2022, doi: 10.3390/app12094369.

[5] R. Simbulan and J. Aryanto, “Implementasi REST API Web Service pada Aplikasi Sumber Daya Manusia,” Jurnal Indonesia:

Manajemen Informatika dan Komunikasi, vol. 5, no. 1, pp. 552–560, 2024, doi: 10.35870/jimik.v5i1.511.

[6] R. Putra Fhonna, Y. Afrillia, V. Ilhadi, A. H. Arif, and R. A. Selian, “Performance Analysis of API Protocol Models as

Recommendations for Developers in Application Development,” JINAV: Journal of Information and Visualization, vol. 5, no.

2, pp. 2746–1440, 2024, [Online]. Available: https://doi.org/10.35877/454RI.jinav3041

[7] K. Habib, M. H. M. Saad, A. Hussain, M. R. Sarker, and K. A. Alagbari, “An Aggregated Data Integration Approach to the Web

and Cloud Platforms through a Modular REST-Based OPC UA Middleware,” Sensors, vol. 22, no. 5, pp. 1–39, 2022, doi:
10.3390/s22051952.

[8] F. Tanveer, F. Iradat, W. Iqbal, and A. Ahmad, “Towards Secure APIs: A Survey on RESTful API Vulnerability Detection,”

Computers, Materials and Continua, vol. 84, no. 3, pp. 4223–4257, 2025, doi: 10.32604/cmc.2025.067536.

[9] J. Bogner, S. Kotstein, and T. Pfaff, Do RESTful API design rules have an impact on the understandability of Web APIs?, vol.
28, no. 6. 2023. doi: 10.1007/s10664-023-10367-y.

[10] A. A. Alahmad, A. H. Mohd Aman, F. Qamar, and W. Mardini, “Efficient Caching Strategies in NDN-Enabled IoT Networks:

Strategies, Constraints, and Future Directions,” Sensors, vol. 25, no. 16, pp. 1–59, 2025, doi: 10.3390/s25165203.

[11] R. Miñón, J. Diaz-De-arcaya, A. I. Torre-Bastida, and P. Hartlieb, “Pangea: An MLOps Tool for Automatically Generating
Infrastructure and Deploying Analytic Pipelines in Edge, Fog and Cloud Layers,” Sensors, vol. 22, no. 12, pp. 1–29, 2022, doi:

10.3390/s22124425.

[12] B. Nascimento, R. Santos, J. Henriques, M. V. Bernardo, and F. Caldeira, “Availability, Scalability, and Security in the Migration

from Container-Based to Cloud-Native Applications,” Computers, vol. 13, no. 8, pp. 1–13, 2024, doi:
10.3390/computers13080192.

[13] M. Coblenz, W. Guo, K. Voozhian, and J. S. Foster, “A Qualitative Study of REST API Design and Specification Practices,”

Proceedings of IEEE Symposium on Visual Languages and Human-Centric Computing, VL/HCC, pp. 148–156, 2023, doi:
10.1109/VL-HCC57772.2023.00025.

[14] A. Lercher, J. Glock, C. Macho, and M. Pinzger, “Microservice API Evolution in Practice: A Study on Strategies and

Challenges,” Journal of Systems and Software, vol. 215, no. May, p. 112110, 2024, doi: 10.1016/j.jss.2024.112110.

[15] M. Muntean, C. Brândaş, and T. Cîrstea, “Framework for a symmetric integration approach,” Symmetry (Basel), vol. 11, no. 2,
2019, doi: 10.3390/sym11020224.

[16] G. P. Tiwary, E. Stroulia, and A. Srivastava, “Compression of XML and JSON API Responses,” IEEE Access, vol. 9, pp. 57426–

57439, 2021, doi: 10.1109/ACCESS.2021.3073041.

https://hostjournals.com/bulletincsr
https://doi.org/10.47065/bulletincsr.v5i6.818
https://creativecommons.org/licenses/by/4.0/

BULLETIN OF COMPUTER SCIENCE RESEARCH
ISSN 2774-3659 (Media Online)

Vol 5, No 6, October 2025 | Hal 1395-1402
https://hostjournals.com/bulletincsr

DOI: 10.47065/bulletincsr.v5i6.818

Copyright © 2025 The Author, Page 1402
This Journal is licensed under a Creative Commons Attribution 4.0 International License

[17] A. Gama Garcia, J. M. Alcaraz Calero, H. Mora Mora, and Q. Wang, “ServiceNet: resource-efficient architecture for topology

discovery in large-scale multi-tenant clouds,” Cluster Comput, vol. 27, no. 7, pp. 8965–8982, 2024, doi: 10.1007/s10586-024-
04344-3.

[18] S.-P. Ma, M.-J. Hsu, H.-J. Chen, and C.-J. Lin, “RESTful API Analysis, Recommendation, and Client Code Retrieval,”

Electronics (Switzerland), vol. 12, no. 5, pp. 1–17, 2023, doi: 10.3390/electronics12051252.

[19] P. Kannisto, D. Hästbacka, T. Gutiérrez, O. Suominen, M. Vilkko, and P. Craamer, “Plant-wide interoperability and decoupled,
data-driven process control with message bus communication,” J Ind Inf Integr, vol. 26, no. August 2021, p. 100253, 2022, doi:

10.1016/j.jii.2021.100253.

[20] A. da Silva and A. J. Marques Cardoso, “Designing the future of coopetition: An IIoT approach for empowering SME networks,”

International Journal of Advanced Manufacturing Technology, vol. 135, no. 1–2, pp. 747–762, 2024, doi: 10.1007/s00170-024-
14528-1.

[21] I. Nikolaou and L. Anthopoulos, “REST API Access Control - an OPTIONS Based Approach,” WWW Companion 2025 -

Companion Proceedings of the ACM Web Conference 2025, vol. 2025, no. January, pp. 1719–1723, 2025, doi:

10.1145/3701716.3718327.
[22] N. Chen, X. Lin, H. Jian, and Y. An, “Automated Building Information Modeling Compliance Check and Ontology,” Buildings,

vol. 14, no. 7, pp. 1–28, 2024, doi: 10.3390/buildings14071983.

[23] R. N. Muzaki and A. Salam, “Reducing Under-Fetching and Over-Fetching in Rest Api With Graphql for Web-Based Software

Development,” Jurnal Teknik Informatika (Jutif), vol. 5, no. 2, pp. 447–453, 2024, doi: 10.52436/1.jutif.2024.5.2.1725.
[24] R. Jin, R. Cordingly, D. Zhao, and W. Lloyd, “GraphQL vs. REST: A Performance and Cost Investigation for Serverless

Applications,” WoSC10 ’24: Proceedings of the 10th International Workshop on Serverless Computing, no. January, pp. 37–42,

2024, doi: 10.1145/3702634.3702956.

[25] R. Ala-Laurinaho, J. Mattila, J. Autiosalo, J. Hietala, H. Laaki, and K. Tammi, “Comparison of REST and GraphQL Interfaces
for OPC UA,” Computers, vol. 11, no. 5, pp. 1–17, 2022, doi: 10.3390/computers11050065.

[26] Irfan Ahmed Khan, Harsh Mishra, and Khushboo Choubey, “A Comparative Analysis of REST and GraphQL APIs:

Performance, Efficiency, and Developer Experience,” International Journal of Advanced Multidisciplinary Scientific Research,

vol. 8, no. 4, pp. 29–39, 2025, doi: ijamsr.2025.8.4.8212.
[27] J. Yandi and M. Muchlis, “Penggunaan GraphQL Sebagai Alternatif Rest API: Studi Kasus Pada Pengembangan Website,”

Jurnal Nasional Ilmu Komputer, vol. 6, no. 1, pp. 1–5, 2025, doi: 10.47747/jurnalnik.v6i1.2384.

[28] Moch. Z. Ain, Rizka Ardiansyah, Septiano Anggun Pratama, Muhammad Akbar, and Nouval Trezandy Lapatta, “Comparative

Performance Analysis of GRPC and Rest API Under Various Traffic Conditions and Data Sizes Using a Quantitative Approach,”
Journal of Applied Informatics and Computing, vol. 9, no. 2, pp. 450–457, 2025, doi: 10.30871/jaic.v9i2.9276.

[29] L. Theodorakopoulos, A. Karras, A. Theodoropoulou, and G. Kampiotis, “Benchmarking Big Data Systems: Performance and

Decision-Making Implications in Emerging Technologies,” Technologies (Basel), vol. 12, no. 11, pp. 1–30, 2024, doi:

10.3390/technologies12110217.

https://hostjournals.com/bulletincsr
https://doi.org/10.47065/bulletincsr.v5i6.818
https://creativecommons.org/licenses/by/4.0/

