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Abstract 

Rainfall forecasts are essential for human activities enabling communities to anticipate any impacts. Rainfall events correlate with other natural 
and hydro-meteorological phenomena, which can be used in modeling and prediction. This study used daily CHIRPS for the Gajahwong 
watershed in Yogyakarta, Indonesia as the precipitation data. It also used Sea Surface Temperature, Land Surface Temperature (Day and Night), 
Minimum and Maximum Temperatures, Solar Radiation, Wind Speed (U and V components), Cloud Pressure (Top and Base), and Cloud Height 
(Top and Base) as the parameters. Further, data processing was performed by means of the Google Earth Engine (GEE) platform. Machine 
learning methods, including Support Vector Regression, Gradient Boosting Regression, Random Forest, and Deep Neural Networks, were 
applied. The correlation analysis revealed that only the Wind Speed V-component showed significant correlation with rainfall, other seven 
parameters showed moderate and four showed weak ones. Meanwhile, accuracy assessments indicated that Support Vector Regression had the 
most accurate predictions accompanied by Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Squared Error (MSE), R2, 
and Coefficient Correlation (CC) at 1.366, 0.947, 1.866, 0.948 and 0.982 respectively. This study demonstrated that utilizing openly accessible 
atmospheric datasets processed through the GEE could yield reliable rainfall predictions, facilitating informed decisions on a wide scale. The 
methodology is adaptable and can be reproduced for any comparable research or operational purposes. 
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1. Introduction  

Rainfall is a primary factor of the hydrological cycle, 

essential for sustaining ecosystems and maintaining 

environmental balance on Earth [1]. The process begins with 

evaporation, followed by condensation, cloud formation, and 

precipitation [2]. Water, once on the ground, undergoes 

interception, infiltration, transpiration, and evaporation, 

completing a hydrological cycle [3,4]. 

Rainfall distribution in a specific area is determined by 

various atmospheric factors, including surface temperature, 

humidity, air pressure, wind speed, cloud cover, and solar 

radiation [5,6]. In such condition, satellite imagery serves as a 

reliable tool for detecting and documenting atmospheric 

phenomena and conditions [7]. As a tropical country, Indonesia 

experiences substantial rainfall with some equatorial regions 

receiving it year-round, while others have distinct seasonal 

patterns [8,9]. 

Weather conditions significantly impact human activities 

such as in agriculture (e.g. planting, seedling, maintenance, and 

harvesting) [10], transportation (land and air), tourism (outdoor 

and natural attractions) [6], flood mitigation [11], and water 

resource management [12]. For this, accurate short-term and 

long-term weather forecasts become vital across multiple 

sectors [13]. 

Accurate weather forecasting is deemed vital for 

anticipating any events that can disrupt daily activities [10]. 

Climate change has further altered rainfall patterns, making 

precise prediction increasingly important [13]. Beyond mere 

delays in human activities, extreme weather events such as 

prolonged droughts, flash floods, infrastructure damage, and 

landslides pose serious threats to many regions [14]. 

To mitigate these negative impacts, reliable rainfall 
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prediction and modeling are crucial. Advanced forecasting 

models provide early warnings [5], helping to minimize any 

risks to life, property, infrastructure, and land [6]. While 

communities have historically relied on local knowledge and 

wisdom to predict rainfall [15], the growing impact of climate 

change on weather conditions [9] necessitates more precise and 

technologically advanced approaches. 

Accurate rainfall predictions benefit various sectors by 

enabling efficient water resource management and effective 

disaster mitigation. Leveraging big data from diverse weather 

parameters and applying machine learning algorithms can 

significantly enhance prediction models [16,17,18]. 

Techniques such as classification and regression allow for the 

analysis of historical data to forecast future rainfall patterns 

[16]. 

Various methods for rainfall prediction have been 

developed, including both statistical and machine learning-

based approaches [17]. Statistical modeling derives equation 

models based on existing data (data-driven), utilizing 

techniques such as Simple Regression Analysis (SRA), 

Decomposition, Exponential Smoothing (ES), Autoregressive 

Integrated Moving Average (ARIMA) [17], and Least Squares 

Adjustment (LA) [19]. Meanwhile, machine learning-based 

rainfall models such as Neural Networks (NN), Random Forest 

(RF), Gradient Boosting (GB), Support Vector Machines 

(SVM) [17], K-Nearest Neighbors (KNN), and Genetic 

Programming (GP) [18] are considered highly accurate in 

identifying patterns in existing data.  

Machine learning algorithms are able to effectively identify 

rainfall patterns from historical event data, enabling prediction 

and regression. These approaches are categorized as univariate 

forecasting, which relies on patterns in historical data involving 

a single variable [20,21]. Univariate forecasting is 

advantageous in consideration to its simplicity in interpretation 

and computational efficiency [22,23]. In contrast, multivariate 

time series forecasting incorporates multiple variables as the 

inputs for predicting future rainfall [20]. This approach is 

believed to enhance accuracy, capture complex 

interrelationships among variables, address external factors, 

and improve robustness [22,23].  

Machine learning in this context analyzes correlations 

between various hydrological and hydro-meteorological 

phenomena and rainfall occurrences. These correlations can 

then be used as parameters that influence modeling and 

prediction [5]. Atmospheric hydro-meteorological conditions 

correlated with rainfall include evaporation, sunshine, wind 

speed, humidity, cloud properties, temperature [18], dew point, 

wind direction, visibility [5], Southern Oscillation Index, 

NINO 3.4 Index [24], Madden-Julian Oscillation (MJO), 

Northern Oscillation Index (NOI), and Quasi-Biennial 

Oscillation (QBO) [13]. 

Hydro-meteorological data used as covariates are recorded 

by various sensors attached on satellite platforms. This is an 

effective alternative to address the limitations of ground station 

observation data in terms of quantity and accessibility [25]. The 

quality of satellite data, however, is significantly determined by 

the resolution of the recording sensor [26], including spatial 

resolution (detail of coverage) [16,5], temporal resolution 

(frequency of observations) [16,5], and spectral resolution 

(sensor capabilities) [27]. With the decades of recorded 

observations, historical events can be analyzed to uncover 

patterns and trends [28,25,29]. This wealth of satellite data can 

be considered "big remote sensing data," ready for processing 

and analysis to address various challenges [25]. 

Relevant institutions provide a wide range of hydroclimatic 

data freely accessible to public. These datasets are collected 

through continuous observations by satellites, ground stations, 

or a combination of both [25]. Moreover, these data can be 

accessed and processed through free platforms such as Google 

Earth Engine (GEE) [29,30,31]. Many researchers are widely 

using GEE, which offers multivariate data with strong 

correlations to rainfall patterns [5,18]. 

Based on the current conditions and existing literature, the 

integrated use of complex atmospheric variables and 

multivariate approaches in rainfall modeling, so far, remains 

significantly underexplored. Similarly, the application of the 

Google Earth Engine platform for both univariate and 

multivariate rainfall prediction using machine learning 

techniques seems still limited. These gaps highlight a valuable 

opportunity to investigate the importance of accurate rainfall 

forecasting and the potential of leveraging publicly available 

hydro-meteorological data. This study, in turn, aims to forecast 

rainfall over the next five epochs using machine learning-based 

univariate and multivariate models.  

The novelty of this study lies in the use of complex 

atmospheric parameters such as Sea Surface Temperature, 

Land Surface Temperature (Day and Night), Minimum and 

Maximum Temperatures, Solar Radiation, Wind Speed (U and 

V components), Cloud Pressure (Top and Base), and Cloud 

Height (Top and Base) in rainfall modeling and prediction via 

the GEE platform. Each parameter underwent a correlation 

analysis to determine its influence on rainfall and alignment 

with rainfall patterns. Additionally, multiple machine learning 

methods were evaluated and compared to identify which 

approach delivered the most accurate predictions. 

2. Materials and Methods 

2.1. Area study 

This research was conducted in the Gajahwong River 

watershed, which spans from the peak of Mount Merapi to 

Bantul Regency in the Special Region of Yogyakarta, 

Indonesia. The area is located between coordinates 

(7°32'26.72"S, 110°26'45.52"E) at the upper part of Mount 

Merapi and (7°50'21.41"S, 110°23'47.35"E) in the downstream 

region. The watershed features a steep river channel with 

significant topographic changes in the northern area, 

transitioning to low-lying, nearly flat land in the southern area 

that gradually slopes downward. The low-lying areas have a 

slope of 10%-15% and are the most vulnerable to flooding [32]. 

The elevation ranges from 2,905 meters sea level height (SLH) 

at the peak to 118 meters SLH in the southern part, covering a 

total area of approximately 44.40 km². Fig. 1 illustrates the 

study area. 

This study area was selected with a consideration that the 

river serves as a vital source of irrigation for rice fields and 

traverses several key landmarks, including state and private 

universities, as well as a zoo. Additionally, the area along the 

river is prone to frequent flooding, particularly during the 



 Cahyono et al. / Communications in Science and Technology 10(1) (2025) 135–147 137 

 

period of heavy and high-intensity rainfall [32]. These flooding 

events are attributed to the river's proximity to a fault zone 

(geomorphological factor), rapid land use changes, and 

inadequate water management practices. The study area lies 

within a tropical climate zone, characterized by unpredictable 

rainfall with high annual variability and an average air 

temperature ranging from 23°C to 26°C. 

 

 

Fig. 1. Overview of the Gajahwong River watershed study area 

2.2. Data 

Table 1. Detailed information about the dataset  

(sources, spatial resolution, and units of measurement) 

Data Data sources 
Spatial 

Resolution 
Units  

Precipit

ation 

CHIRPS 

https://developers.google.com/earth-

engine/datasets/catalog/ UCSB-

CHG_CHIRPS_DAILY 

5 KM 
mm/d

ay 

SST 

NOAA Optimum Interpolation Sea 

Surface Temperature (OISST) 

https://developers.google.com/earth-

engine/datasets/catalog/NOAA_CD

R_OISST_V2_1  

0,25 Arc 

Degree 
°C 

WSU European Centre for Medium-Range 

Weather Forecasts (ECMWF) 

https://developers.google.com/earth-

engine/datasets/catalog/ECMWF_E

RA5_DAILY  

11 KM m/s 

WSV 11 KM m/s 

STMin 11 KM °C 

STMax 11 KM °C 

SSR 11 KM J/m^2 

LSTD MODIS 

https://developers.google.com/earth-

engine/datasets/catalog/modis   

1 KM °C 

LSTN 1KM °C 

CTP 
Sentinel 5P 

https://developers.google.com/earth-

engine/datasets/catalog/sentinel-5p  

1 KM Pa 

CTH 1 KM m 

CBP 1 KM Pa 

CBH 1 KM m 

This study used daily rainfall data from the Climate Hazards 

Group Infrared Precipitation with Station (CHIRPS) dataset, 

spanning the period from 2018 to 2023 [33]. For accuracy, the 

CHIRPS rainfall data have been calibrated against ground 

station observations within the study area. Twelve additional 

datasets with daily temporal resolution were incorporated for 

modeling and prediction, recorded concurrently with the 

rainfall data. These datasets included sea surface temperature 

(SST) [34], wind speed component-u (WSU), wind speed 

component-v (WSV), minimum temperature (STMin), 

maximum temperature (STMax), surface net solar radiation 

(SSR) [35], land surface temperature during the day (LSTD), 

land surface temperature at night (LSTN), cloud top pressure 

(CTP), cloud top height (CTH), cloud base pressure (CBP), and 

cloud base height (CBH) [27]. Table 1 depicts the detailed 

information about the data sources, spatial units, and value 

units for each dataset.   

2.3. Method 

This study employed four machine learning algorithms 

across basic learning, ensemble learning, and deep learning 

categories for multivariate rainfall prediction modeling. The 

selected algorithms included support vector regression (SVR) 

representing basic learning, random forest (RF) and gradient 

boosting regressor (GBR) representing ensemble learning, and 

deep neural network (DNN) representing deep learning. The 

research was carried out in three key stages: data preprocessing, 

multivariate rainfall prediction modeling and evaluation, and 

future rainfall prediction across upcoming epochs. 

2.3.1. Preprocessing data 

In this stage, several preprocessing steps were performed, 

including feature selection, dataset generation, data scaling, 

and rainfall data filtering. Feature selection aimed to identify 

variables significantly correlated with rainfall. The Pearson 

correlation coefficient, as defined in Eq. (1) [36], was utilized 

to measure the relationship between each variable and rainfall. 

Variables with an absolute correlation value greater than 0.4, 

indicating a moderate to strong relationship [37,38], were 

selected for inclusion in the rainfall prediction process. The 

parameters description includes 𝑟 as the correlation; ݔ௜ as the 

value of dataset 1 at point ݅; ̅ݔ as the mean of dataset 1; ݕ௜  as 

the value of dataset 2 at point ݅; and ̅ݕ as the mean of dataset 2.  

 ࢘ =  ૛  (1)(̅࢟−࢏࢟)∑√૛(̅࢞−࢏࢞)∑√(̅࢟−࢏࢟)(̅࢞−࢏࢞)∑ 

Dataset generation involved defining the model's predictor 

variables (x) and target labels (y). For each variable at a given 

epoch ݔ௧, the predictor variables used in this study included 

data from the five preceding epochs, denoted as ݔ௧−1, ,௧−2ݔ ,௧−3ݔ ,௧−4ݔ  ௧−5 . All variables with aݔ ݀݊ܽ

correlation greater than 0.4 with precipitation, including 

precipitation itself, were included as the predicting variables. 

Thus, the total number of predicting variables in this study was ݊ × 5, where ݊ is the number of variables with a correlation 

exceeding 0.4. The target label (y) is defined as the 

precipitation at a specific epoch, represented as ݕ௧. 

Each variable in the dataset had a different range or scale of 

values, spanning from single units to thousands. To reduce 

potential biases arising from these differences in value 

dimensions, this study then applied the Min-Max Scaler 

normalization technique, rescaling the values of all variables to 

a uniform range between 0 and 1 [39]. The Min-Max scaling 

https://developers.google.com/earth-engine/datasets/catalog/%20UCSB-CHG_CHIRPS_DAILY
https://developers.google.com/earth-engine/datasets/catalog/%20UCSB-CHG_CHIRPS_DAILY
https://developers.google.com/earth-engine/datasets/catalog/%20UCSB-CHG_CHIRPS_DAILY
https://developers.google.com/earth-engine/datasets/catalog/NOAA_CDR_OISST_V2_1
https://developers.google.com/earth-engine/datasets/catalog/NOAA_CDR_OISST_V2_1
https://developers.google.com/earth-engine/datasets/catalog/NOAA_CDR_OISST_V2_1
https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_DAILY
https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_DAILY
https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_DAILY
https://developers.google.com/earth-engine/datasets/catalog/modis
https://developers.google.com/earth-engine/datasets/catalog/modis
https://developers.google.com/earth-engine/datasets/catalog/sentinel-5p
https://developers.google.com/earth-engine/datasets/catalog/sentinel-5p
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process is represented in Eq. (2), where ݔ௜′ is the scaled value 

of the i-th data point, ݔ௜ is the original value, ݔ௠௜௡ is the 

minimum value of the variable, and ݔ௠௔௫ is the maximum 

value [40]. ࢞࢏′ =  (2)    ࢔࢏࢓࢞ −࢞ࢇ࢓࢞࢔࢏࢓࢞−࢏࢞ 

In addition to preprocessing the prediction variables, this 

study applied the label data preprocessing. It involved filtering 

the data to ensure a clean time-series, and reduce the 

uncertainty. To achieve these purposes, the Butterworth filter, 

a widely utilized technique in digital signal processing, was 

employed. The Butterworth filter is known for its maximally 

flat passband response and is used to remove any undesired 

frequencies and noise [41]. The filtering process involved data 

transformation from the time domain to the frequency domain 

and the application of the Butterworth transfer function. The 

transfer function is defined in Eq. (3), where ݂ represents the 

frequency at the ݅-th data point, ௖݂  is the cut-off frequency, and ܰ is the filter order [42]. For this study, a low-pass Butterworth 

filter was applied with a cut-off frequency of 0.5 and a filter 

order of 5. The filtering process was implemented using the 

NumPy library, specifically utilizing the butter function. ࢎ࢚࢘࢕࢝࢘ࢋ࢚࢚࢛࡮ =  ૚૚+(ࢉࢌ/ࢌ)૛(3)   ࡺ 

 

Fig. 2. Filtering results using the Butterworth filter 

(data source: CHIRPS accessed and processed using GEE, by the authors) 

 

 

 

 

 

 

 

Fig. 3. Residual values from rainfall filtering compared to the original data 

(data source: CHIRPS accessed and processed using GEE, by the researchers) 

Fig. 2. presents the results of rainfall data filtering using the 

Butterworth filter. Visually, the differences between the 

original and filtered data were minimal, with only slight 

deviations observed. The filtering process successfully reduced 

a number of outliers, resulting in cleaner data better suited for 

modeling in subsequent steps.  

Fig. 3 depicts the residual values, representing the 

differences between the original and filtered data. These 

residuals ranged from -21.71 mm/day to 22.51 mm/day. Most 

residuals clustered close to zero with an average value of -0.08 

± 3.62 mm/day. When expressed in absolute terms, the mean 

residual became 2.24 ± 2.85 mm/day, indicating that the 

filtering process effectively preserved the primary data trends 

while smoothing out noise. The pattern of daily rainfall 

fluctuations was still observed, but the seasonal pattern was 

refined by applying Butterworth filtering. Under these 

conditions, the prediction algorithm was able to learn the time-

series pattern well [43]. 

2.3.2. Multivariate rainfall prediction modeling and evaluation 

The prediction dataset was divided using a sequential 

splitting method with an 80:20 ratio. This meant that 80% of 

the data were allocated for training, while the remaining 20% 

was reserved for testing. The training dataset was used to 

develop the prediction model, and the testing dataset was 

utilized to evaluate the model's performance. In this paper, the 

multivariate prediction model was constructed using four 

machine learning algorithms: SVR, RF, GBR, and DNN. 

Support Vector Regression (SVR) refers to a regression 

variant of the Support Vector Machine (SVM) algorithm. SVR 

was developed by Vapnik (2000) [44], and is based on 

statistical and mathematical principles establishing 

relationships between a set of independent variables and a 

dependent variable [44]. In SVR, non-linear relationships are 

addressed by projecting the data into a higher-dimensional 

feature space where a linear function is used to approximate the 

relationships. This function, represented as a vector, includes 

an epsilon value to account for uncertainty within the vector 

space. SVR employs a deterministic optimization approach to 

minimize errors. The general formulation of SVR is shown in 

Eq. (4), where w is the weight vector in the feature space, φ is 
the transformation function that linearizes the input data in the 

new feature space, and b is the bias term [45]. SVR offers 

several advantages, including its effective handling of multi-

dimensional data and relatively low computational 

requirements [46]. ࢟ = ࢀࢃ  ∙ ࣒(࢞) + ,࢈ ࢞ ∈ ,ࢊࡾ ࣒(࢞)  ∈ ,ࢊࡾ ∋ ࢈  (4) ࡾ

Random Forest (RF), introduced by Breiman in 2001 [47], 

is an ensemble machine learning model designed for both 

classification and regression tasks [47,48]. It operates by 

constructing multiple decision trees (DTs) and utilizing a 

bagging technique, or bootstrap aggregation, to generate 

diverse datasets through randomization strategies [49]. Since 

RF consists of numerous DTs, the final prediction is obtained 

by averaging the outputs of all individual trees, as described in 

Eq. (5). Here, ݕ represents the final output, ݕ஽்೔  is the output 

of the i-th decision tree, and ܰ is the total number of decision 

trees generated [50]. The primary strengths of RF include its 
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non-parametric nature, high predictive accuracy, and 

robustness against noisy or overfitting data [51,52]. ࢟ =  ૚ࡺ ∑ ૚=࢏ࡺ࢏ࢀࡰ࢟        (5) 

Gradient Boosting Regression (GBR), introduced by 

Friedman in 2001 [53], is an ensemble learning model that 

builds multiple decision trees (DTs) iteratively and sequentially 

[53]. Each subsequent DT is trained to minimize the residual 

errors of the previous ones. The predicted value of GBR using 

n decision trees is expressed in Eq. (6), where ܦ ௠ܶ represents 

a weak learner, typically a single decision tree with low 

individual performance, and ߛ௠ is a scaling factor applied to 

the tree to minimize residuals. To achieve this, GBR employs 

gradient descent to adjust the model by updating the predictions 

based on the residuals of prior estimates [54]. The final model 

combines the initial estimate with appropriately weighted 

corrections from subsequent trees. GBR offers notable 

advantages, including the ability to model complex, non-linear 

relationships and a relatively robust resistance to overfitting 

(࢏࢞)ࢌ .[55] =  ∑ ૚=࢏࢔(࢏࢞)࢓ࢀࡰ࢓ࢽ   (6) 

Furthermore, a Deep Neural Network (DNN) structure 

consists of an input layer, hidden layers, and an output layer, 

each of which comprises a set of neurons. Unlike Artificial 

Neural Networks (ANN), which typically have one or two 

hidden layers, DNNs feature a more significant number of 

hidden layers. This increased depth then enhances the network 

ability to generalize complex non-linear relationships between 

inputs and outputs [56]. The output of a DNN is expressed in 

Eq. (7), where ݔ௡ represents the input, ݓ௜  denotes the weights, ௜ܾ is the bias, and ݂(∎) is the activation function applied to the 

neurons. A key advantage of the DNN architecture lies in its 

capacity to capture and model intricate relationships between 

inputs and outputs [57].  ࢟࢏ = ∑ ࢏࢝)ࢌ × ࢔࢞ + ,(࢏࢈ ࢔ ∈ [૚, ૚=࢔ࡺ[ࡺ  (7) 

This research employed the tree-parzen structured estimator 

(TPE) technique for hyperparameter tuning. Optimal 

hyperparameter determination is able to provide a better 

prediction model compared to default settings [58]. The TPE 

technique is an enhancement of conventional Bayesian 

methods. In conventional Bayesian methods, the surrogate 

function for determining hyperparameters uses a Gaussian 

function, whereas TPE employs probability density function 

(PDF) modelling to separate good and bad hyperparameter sets 

using kernel density estimation (KDE) [59]. The process begins 

with the random initialization of hyperparameter combinations, 

which are then evaluated by an objective function—in this 

study, the root means square error (RMSE). Subsequently, the 

set of good and bad hyperparameters is determined using 

threshold estimation with KDE. A new configuration of the set 

of good hyperparameters is then found, and re-evaluated using 

the objective function. This process is performed iteratively n 

times [60].  

This research involved three to four hyperparameters 

optimized. In the SVR algorithm, three hyperparameters were 

optimized: regularization parameter (C), kernel, and kernel 

coefficient (gamma). For the kernel, a single option was used: 

the radial basis function (RBF). Meanwhile, for C and gamma, 

a normal distribution was used with a range of 0.1 to 1000 for 

C, and 0.0001 to 1 for gamma. In the DNN algorithm, there 

were four hyperparameters optimized: number of layers, 

number of neurons each layer, activation function, and 

optimizer. The search space for the activation function was 

SoftMax and rectified linear unit (relu), as seen in Eq. (8) and 

Eq. (9), where x is the input vector. ݔܽ݉ݐ݂݋ݏ(ݔ௜) = max ( ௘ೣ೔∑ ௘ೣೕ೙ೕ=1 ) (8) 

𝑟݈݁(ݔ) ݑ = ݔܽ݉  (0, ݔ < ,ݔ0 ݔ ≥ 0) (9) 

The search spaces for the DNN hyperparameter optimizer 

are adaptive moment estimation (Adam) and Adamax (a 

variation of Adam for large parameters). There were four 

hyperparameters optimized in the GBR algorithm: the 

maximum number of trees for iteration (max_estimators), the 

maximum depth of each decision tree (max_depth), learning 

rate, and subsample. In the RF algorithm, four hyperparameters 

were optimized: the number of decision trees 

(max_estimators), the maximum depth of each decision tree 

(max_depth), the minimum number of samples for a data set to 

be split again (min_samples_split), and the maximum number 

of parameters used to build each DT (max_features). The 

max_features hyperparameter had three options: “sqrt”, 
meaning that the number is the square root of the number of 

features; “log2”, meaning that the maximum number of 

features is log2(x); and None, meaning that all features are 

used. Table 2 presents the search spaces for each 

hyperparameter and algorithm.   

The prediction model was evaluated by comparing the 

predicted values with the actual ones and quantifying the results 

using five evaluation metrics, including correlation coefficient 

(CC), coefficient of determination (R²), root mean square error 

(RMSE), mean square error (MSE), and mean absolute error 

(MAE). The equations, value ranges, and optimal values for 

each metric are presented in Table 2, where ݕ௔௜ represents the 

i-th actual data point, ݕ௣௜ is the i-th predicted data point, ݕ௣̅̅ ̅ is 

the mean of the predicted data, and ݕ௔̅̅ ̅ is the mean of the actual 

data [61]. 

Table 2. Model evaluation metrics 

Metric Formula Range Best value 

CC ∑(ݕ௔௜ − ௣௜ݕ)(௔̅̅̅ݕ − ௔௜ݕ)∑√(௣̅̅̅ݕ − ௔̅̅̅)2ݕ ௣௜ݕ)∑√ −  ௣̅̅̅)2 -1,1 1ݕ

R2 1 − ∑ ௣௜ݕ) − ∑௔௜)2ே௜=1ݕ ௔௜ݕ) − ௔ప̅̅ݕ ̅̅ )2ே௜=1  0,1 1 

MSE 1ܰ ௣௜ݕ)∑ − ௔௜)2ேݕ
௜=1  0, ∞ 0 

RMSE √0 ∞ ,0 ܧܵܯ 

MAE 1ܰ ௣௜ݕ|∑ − ௔௜|ேݕ
௜=1  0, ∞ 0 
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2.3.3. Future epoch prediction 

The evaluated prediction model was then utilized to predict 

future epochs. Since the dataset generation process used data 

from the previous five epochs to predict a specific epoch, the 

future epoch prediction process also followed a stepwise 

approach using five epochs beyond the last observed data. The 

future prediction operated iteratively: the previous five epochs 

of data were used to predict one epoch ahead (ݕ௧೗ೌೞ೟+1). 

Subsequently, to predict ݕ௧೗ೌೞ೟+2, the predicted ݕ௧೗ೌೞ೟+1 was 

incorporated as ݔ௧−1. This process continued iteratively until ݕ௧೗ೌೞ೟+5 was obtained. 

3. Results and Discussion 

3.1. Predicted data characteristics 

Precipitation prediction in this study involved thirteen 

parameters obtained from time series observation data. The 

prediction was naturally based on previous time series rainfall 

observations, allowing for the identification of its 

characteristics and behavioral patterns. The characteristics and 

behavior of rainfall can be analyzed in great detail based on 

historical daily precipitation data. In contrast, the analysis of 

global rainfall characteristics can be identified based on 

monthly and annual rainfall data. Fig. 4 shows the monthly 

precipitation characteristics from 2018 to 2023. The 

visualization shows that precipitation in the study area tended 

to be highest from December to March with the peak average 

occurred in February at 13.75 ± 8.68 mm/day. Conversely, the 

lowest average precipitation was observed in July at 0.79 ± 2.80 

mm/day. 

 

Fig. 4. Monthly Precipitation Characteristics 

(data source: CHIRPS accessed and processed using GEE, by the authors) 

Fig. 5 shows that the overall distribution of rainfall values 

remained relatively consistent across the years, with only slight 

variations in rainfall trends between them. The annual rainfall 

distribution revealed that 2022 experienced the highest average 

rainfall at 7.80 ± 7.92 mm/day and the highest maximum yearly 

rainfall at 48.09 mm/day. Conversely, 2023 recorded the lowest 

average annual rainfall at 4.79 ± 6.69 mm/day and the lowest 

maximum yearly rainfall at 31.45 mm/day. These variations 

were associated to the ENSO phenomenon. In 2022, the ENSO 

index was predominantly positive, indicating a La Niña event 

that increased rainfall intensity in the equatorial region, 

including the study area. In contrast, the ENSO index in 2023 

shifted negative, signifying an El Niño event, reducing rainfall 

intensity in the region. These results are consistent with 

previous research, which linked local rainfall phenomena with 

the global phenomena of El Niño and La Niña [13,6]. 

 

Fig. 5. Characteristics of annual rainfall  

(data source: CHIRPS accessed and processed using GEE, by the authors) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Prediction data variables 

The time-series behavior of each variable is depicted in 

Fig. 6. To determine the relationship between each variable 

and rainfall in the study area, correlation analysis was 
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performed. The results are presented as a correlation heatmap 

in Fig. 7. The first row of the heatmap illustrates the correlation 

between rainfall values and other variables [62]. Based on this 

visualization, all variables exhibited low to moderate 

correlations with rainfall with both positive and negative 

relationships observed. Of 12 variables, 8 showed a moderate 

correlation with rainfall including SST, WSU, CTH, and CBH 

with  positive correlations, and WSV, SSR, CTP, and CBP with 

negative ones. In contrast, both LST (day and night) and 

STMin/STMax had low correlations with rainfall in the study 

area with absolute correlation values below 0.1. 

 

 

 

 

 

 
Fig. 7. Correlation heatmap matrix among variables 

 

The characteristics of each data serve as the essential 

variable in the multivariate rainfall prediction modeling. 

Ideally, selecting variables with moderate correlations (both 

positive and negative) to rainfall can enhance the accuracy of 

the predictions [62]. Based on the correlation analysis, WSU 

was found as the variable with the strongest positive correlation 

to rainfall and a correlation coefficient of 0.59. Conversely, 

WSV became the variable with the strongest negative 

correlation to rainfall with a correlation coefficient of -0.64. 

The results of correlation test indicated no significant 

relationship between rainfall pattern similarity and the spatial 

resolution of the data used. Of all components, temperature—
including Land Surface Temperature (LSTD & LSTN) and Soil 

Temperature (STMin & STMax)—showed the weakest 

correlation with rainfall and most other components. In 

contrast, cloud properties (CTH, CTP, CBH, and CBP) 

demonstrated a moderate correlation with wind speed (u and v 

components), shortwave radiation (SSR), sea surface 

temperature (SST), and precipitation. 

3.2. Results of multivariate rainfall prediction modeling 

Multivariate rainfall prediction was conducted using 

variables with an absolute correlation value greater than 0.4 

[37,38]. Consequently, only nine variables were included: 

rainfall, SST, WSU, WSV, SSR, CTH, CTP, CBH, and CBP. 

For each variable, data from the previous five-time steps (t-1, 

t-2, t-3, t-4, and t-5) were used as inputs for prediction. This 

resulted in a total of 45 predictive variables. The algorithms 

employed in this study were SVR, DNN, GBR, and RF, all of 

which were implemented with best hyperparameter 

architecture using TPE results.  

Table 3 shows the search spaces and optimal 

hyperparameters for each algorithm. The optimal 

hyperparameters were selected based on the combination that 

produced the minimum objective function value. In this study, 

there were 50 iterations for performing the optimization 

process using TPE. Hence, 50 experiments were performed to 

find an optimal value for each hyperparameter. The TPE 

technique is able to reduce computational load as it only 

performs n-experiments to find the optimal hyperparameters, 

rather than trying each combination of hyperparameters one by 

one. 

Table 3. Hyperparameter tuning result using TPE each algorithm 

Hyperparameter Search spaces Optimum value 

SVR algorithm 

Regularization 

parameter (C) 

uniform (0.1, 1000) 963.969 

Kernel ‘rbf’ ‘rbf’ 
Kernel coefficient 

(gamma) 

uniform (1e4, 1) 0.045 

DNN algorithm 

n_layers_dnn 6,7,8,9,10 6 

n_unit_neurons 64, 128, 256, 512 512 

activation_function ‘relu’, ‘softmax’ ‘relu’ 
Optimizer ‘Adam’, ‘Adamax’ ‘Adam’ 

GBR algorithm 

n_estimators range (100,1000,200) 400 

max_depth range (3,10,1) 5 

Learning_rate  uniform (0.01, 0.2) 0.040 

subsample  uniform (0.5, 1) 0.763 

RF algorithm 

n_estimators range (100,1000,200) 100 

max_depth range (3,10,1) 9 

min_samples_split range (2,10,1) 5 

max_features  ‘sqrt’, ‘log2’, None None 

 

The models generated by each algorithm were applied to 

both training and testing datasets. Fig. 8 illustrates the 

application of each algorithm to the training data with a focus  

on rainfall data from January to March 2022 for more precise 

visualization. The results showed that most algorithms 

effectively captured the general pattern of the actual data during 

training. Of four algorithms, GBR provided the best visual fit, 

showing more minor discrepancies between predicted and 

actual values compared to others. 

The prediction results obtained through the DNN algorithm 

on the training data exhibited a relatively larger gap compared 

to actual data relative to other models. Other algorithms could 

consistently learn daily rainfall patterns effectively, 

particularly the GBR model. Most time steps were able to 

predict with great precision against the actual data. This 

condition was not entirely favorable as the prediction results on 

the testing data must be re-investigated. Since the gap with the 

actual data was very small, the GBR model could generalize 

the data well. The time-step segments in Fig. 9 showed that the 

DNN model tended to produce lower prediction values 

compared to the actual data with the most significant gap 

occurred during the first 15 days of March 2023. 

Fig. 9 shows the results of applying each algorithm's 

prediction model to the testing data. Similar to the training data 

visualization, the comparison between actual and predicted 

values was focused on the time period from January to March 

2023. The visualization indicated that all prediction models 
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produced patterns closely aligned with the actual data, 

suggesting that they are generally reliable when applied to new 

data. In the time-step segment, the SVR model was found 

consistent in predicting actual data with greater precision than 

other models. While the prediction values GBR model were 

nearly aligned with actual values in the training data 

visualization, it showed a significant gap compared to the SVR 

model in the testing data. Visually, the GBR model was found 

less consistent in accurately predicting actual values. The DNN 

model exhibited a similar pattern in the testing data with a 

relatively larger gap compared to other prediction models. 

Prediction values in the testing data tended to be lower than 

actual values. 

 

Fig. 8. Prediction results of each algorithm on the training data 

 

Fig. 9. Prediction results of each algorithm on the testing data 

The difference between actual and predicted values was 

quantified by the residuals, representing a difference between 

the actual and predicted data. Fig. 10 illustrates the residual 

distribution for each algorithm on the training data. Of the 

algorithms, the SVR algorithm had the smallest median value 

of -3.116×10-3, while RF had the highest one at -0.727. 

Although SVR had the smallest median value, GBR had the 

smallest standard deviation with a value of ±0.41, meaning it 

had the most stable relative bias. This can be seen in how the 

outlier points in the GBR model clustered near the interquartile 

range (IQR) and formed a shorter boxplot compared to other 

models. The median value in the GBR model was -0.034. DNN 

was the model with the highest median and standard deviation 

values with the values of 1.726 and ±2.492, respectively. This 

can be visually seen where the DNN model formed a relatively 

long boxplot compared to other models. 

The residual values of each algorithm for the testing data are 

illustrated using a box plot in Fig. 11. Of the models, SVR 

remained the model with the lowest median residual value of 

0.538. In addition, it was the one with the lowest residual 

standard deviation of ±0.998. The boxplot generated by the 

SVR model was visually shorter than those generated by other 

models. In contrast, the DNN model had the highest median 

and standard deviation values with the values of 0.950 and 

±2.132, respectively. This model visually formed the longest 

boxplot of other models. Although the GBR model had better 

residual stability on the training data, when compared to the 

testing data, SVR outperformed the residual stability. 

 
Fig. 10. Residuals of each algorithm on the training data 

 
Fig. 11. Residuals of each algorithm on the testing data 

3.3. Prediction model evaluation 

The prediction model was evaluated using both training and 

testing data, employing five evaluation metrics: CC, R², RMSE, 
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MAE, and MSE. The results for each algorithm and dataset are 

summarized in Error! Reference source not found.. On the t

raining data, the SVR algorithm achieved the highest CC and 

R² values, 0.982 and 0.965, respectively, indicating its strong 

correlation and goodness-of-fit. Conversely, the DNN 

algorithm recorded the lowest ones, 0.943 and 0.932, 

respectively. For error-based metrics (RMSE, MAE, and 

MSE), GBR demonstrated superior performance with the 

lowest values at 0.426, 0.332, and 0.182, respectively. In 

contrast, DNN exhibited the highest ones at 3.363, 2.351, and 

11.312, respectively. 

 

Table 4. Evaluation Metrics for Each Algorithm 

Metric Dataset SVR DNN GBR RF 

CC 
Training 0.982 0.943 0.998 0.982 

Test 0.974 0.932 0.951 0.943 

R2 
Training 0.965 0.890 0.996 0.965 

Test 0.948 0.869 0.905 0.890 

RMSE 
Training 1.310 3.363 0.426 1.349 

Test 1.366 2.804 1.833 1.963 

MAE 
Training 0.788 2.351 0.332 0.977 

Test 0.947 1.824 1.237 1.299 

MSE 
Training 1.717 11.312 0.182 1.818 

Test 1.866 7.863 3.359 3.855 

 
 The SVR algorithm performed better when evaluated with 

testing data. It had the highest CC and R² values of 0.974 and 

0.948, respectively but showed the lowest error-based metrics 

with RMSE, MAE, and MSE values of 1.366, 0.947, and 1.866, 

respectively. While, the DNN algorithm consistently 

demonstrated the lowest performance with CC and R² values of 

0.932 and 0.890, respectively. The RMSE, MAE, and MSE 

values for the DNN model were 2.804, 2.351, and 7.863, 

respectively. These results highlighted the variability in 

algorithm performance between training and testing datasets 

(see 4). 

The findings of this research indicated that the SVR 

algorithm was the best algorithm compared to the DNN, GBR, 

and RF algorithms. It consistently produced prediction values 

very close to the actual data. A study by Nayak et al. (2025) 

produced the RMSE values of 0.912 to 1.091 for monthly 

rainfall predictions using the SVR algorithm [63]. In contrast, 

Wang et al. (2023) showed that SVR performed worse than RF 

and Bayesian ridge regression (BRR) for univariate rainfall 

prediction [64]. The GBR algorithm outperformed the SVR 

algorithm on the training data, but did not consistently 

outperform it on the testing data evaluation. Similar to the study 

by Sumith (2025), GBR had an almost perfect R² of 0.95 on the 

training data, but when evaluated on the testing data it had an 

R² value of 0.45 [65]. Nevertheless, in this study the difference 

in evaluation results between the training and testing data for 

the GBR model was less significant with an R² value on the 

testing data greater than 0.9. It was because the GBR algorithm 

continuously iterated residual values, allowing the model to 

closely approximate actual values in the testing data; as a 

consequence, the model performed poorly in generalizing 

unseen data [66]. The DL algorithm in this study performed less 

well than the ML algorithm. It did not adequately learn the daily 

rainfall fluctuations by considering multiple variables. 

However, when using a very large dataset the DL algorithm can 

perform well [67]. Therefore, a longer training data series is 

needed to learn the rainfall fluctuations in the study area. 

 

Fig. 12. Box-plot of KFCV results evaluated by MAE 

 

Fig. 13. Box-plot of KFCV results evaluated by R2 

 

This research employed k-fold cross validation (KFCV) to 

evaluate the stability and robustness of each prediction model. 

KFCV was conducted by setting the number of folds to 10, 

thereby dividing the entire dataset into 10 folds of equal size, 

with 1-fold designated as the testing data and the remaining 9 

folds as the training data. The fold used as testing data was used 

sequentially, and the model was consistently fitted to the 

training fold in combination with other nine folds. The results 

of the KFCV process are visualized in the form of box plots, as 

shown in Fig. 12 and Fig. 13. The metrics used for KFCV were 

MAE and R². In the box-plot visualizations, the x-axis 

represents the prediction model, and the y-axis represents the 

metric value, with each model grouped into training and testing 

datasets. The training dataset was visualized with a blue box, 

and the testing data was shown in red. The whiskers represented 

the range of minimum and maximum metric values. The results 

of KFCV showed that the MAE value of the GBR model and 

training data tended to have the smallest MAE value compared 

to other models and exhibited high stability, as indicated by the 

short whiskers produced. The MAE value of the GBR model's 
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training data was 0.35±0.02. Meanwhile, when all models were 

evaluated using the testing data, the SVR model was found 

more robust, producing the smallest average value and 

relatively higher stability compared to other models. The short 

whiskers in the boxplot represented these characteristics. The 

average MAE value for the SVR model was 1.14 ± 0.32. The 

KFCV R2 metric results followed the same pattern as the MAE. 

The GBR model had the highest value with high robustness at 

1.00 ± 0.00. Meanwhile, the SVR model had the highest R2 and 

robust on the testing data with a value of 0.94 ± 0.02. Therefore, 

in the present study, the SVR model demonstrated both the best 

performance and strong robustness across various splitting 

scenarios. 

The performance of each prediction model was further 

evaluated using a Taylor diagram, visually representing the 

relationship and comparison between prediction and actual 

data. A Taylor diagram includes three main components: the 

radial axis, which indicates the standard deviation of the data; 

isolines, which denote the RMSE values; and the quarter-circle 

arcs, which represent the CC. The reference point on the 

diagram corresponds to the actual values, serving as the 

benchmark for assessing the closeness of the predicted values 

to the actual data. The Taylor diagrams for the training and 

testing data are illustrated in Fig. 14 and Fig. 15, respectively. 

 

Fig. 14. Taylor diagram for training data 

 

Fig. 15. Taylor diagram for testing data 

Fig. 14 shows that all algorithms exhibited a strong 

correlation with the actual data on the training dataset 

(CC>0.9). The GBR algorithm had the closest distance to the 

actual standard deviation value, the lowest RMSE value, and 

the highest correlation. In contrast, the DNN algorithm had the 

opposite characteristics, namely the furthest distance from the 

actual standard deviation value, the highest RMSE, and the 

lowest correlation.  

The Taylor diagram for the testing data (Fig. 15) reveals 

that SVR not only maintained low RMSE and high CC values 

but also aligned closely with the standard deviation reference 

line of the actual data. Based on both quantitative and visual 

evaluations, the SVR algorithm outperformed other algorithms 

in this study, showcasing its robust and reliable predictive 

capabilities. 

This research explored the potential for overfitting using 

learning curves. A learning curve is a graph that illustrates the 

relationship between the percentage of total training data used 

and the resulting accuracy, both on new training data (taken 

from 0-100% of the training data) and testing data. The testing 

data used to evaluate each scenario was the testing data 

resulting from an 80:20 split in the initial process. Meanwhile, 

the fraction of the training data was determined based on the 

80:20 split during the initial process. In each scenario, the 

model was fitted with the resulting training data fraction. Fig. 

16 presents the learning curve analysis results for each model 

that was visualized by different colors. Meanwhile, the 

difference between the training and testing data results for each 

algorithm was visualized by the different types of lines, where 

training data and testing data were represented by a solid line 

and a dashed line, respectively. The metric used for learning 

curve analysis was R2. The results obtained then showed that 

the more training data used (the data fraction approaching 1), 

the more convergent the graph between training and testing 

data for each model. This indicated no significant gap between 

the training and testing data. However, when compared 

relatively across models, the RF and GBR algorithms showed 

the highest gap between training and testing data compared to 

SVR and DNN, indicating the potential of these two models for 

overfitting. Nevertheless, the R2 value for the testing data of 

both algorithms was above 0.8, meaning the models are still 

able to make good predictions on unseen data. 

 

Fig. 16. Learning curve each model 
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3.4. Future epoch prediction 

Subsequently, the prediction model was applied to forecast 

rainfall values for future epochs. Five future epochs were set to 

align with the number of lags used in the dataset generation 

process. This corresponds to predicting rainfall for the next five 

days. Future epoch forecasts were made recursively, where the 

output at epoch t+1 became the input for the forecast at epoch 

t+2, and thus onward. Fig. 17  illustrates the forecasting results 

for these five future epochs, as produced by each algorithm. 

The data were visualized in a line chart accompanied by a box 

plot to illustrate the distribution of data predictions across 

models.  

 

Fig. 17. Future forecasting for each epoch 

Predictions were generated for the period from December 

31, 2023, to January 5, 2024. During epoch t+1, the four 

algorithms predicted rainfall closely, as indicated by the small 

box plots generated. The standard deviation value at epoch t+1 

was ±1.862. However, during epochs t+2 to t+5, the DNN 

algorithm had prediction values relatively far from the SVR, 

RF, and GBR prediction values. A significant difference was 

observed at epoch t+2, with a standard deviation of ±4.952. The 

t+2 epoch had the highest average predicted rainfall at 14.362 

mm. While, the lowest rainfall was recorded at t+5 with an 

average of 3.467 mm. 

4. Conclusion 

This research evaluated the use of open-access remote 

sensing data and artificial intelligence algorithms for predicting 

daily rainfall in the Gajahwong watershed area, Yogyakarta, 

Indonesia. Rainfall prediction was based on the trend of rainfall 

events (univariate) and was made by considering a number of 

variables, including SST, WSU, WSV, STMin, STMax, SSR, 

LSTD, LSTN, CTP, CTH, CBP, and CBH. The results 

indicated that 7 out of 12 variables showed good correlation 

coefficients during the feature selection process. These seven 

variables were then used in the prediction model. The rainfall 

forecasting in this study considered 5-step epochs before the 

data at epoch t, leading to a total of 40 variables (5 epochs 

multiplied by 7 plus 1 variable). The artificial intelligence 

algorithms employed ranged from basic machine learning 

(SVR), ensemble machine learning (RF and BGR), to deep 

learning (DNN). Based on the modeling results, GBR 

demonstrated a very high performance on the training data, 

achieving an R² value of 0.996. However, when evaluated on 

the testing data, it did not consistently outperform other 

algorithms with an R² value of 0.905. Conversely, SVR 

achieved the highest performance with the testing data, 

obtaining an R² of 0.948. Overall, this study highlighted SVR 

as the best-performing algorithm and the one that was resistant 

to overfitting. The limitation of this research is that it merely 

provided predictions in the time domain, rather than spatial 

domain predictions. Nonetheless, the results are promising for 

daily rainfall predictions in the study area, utilizing open-access 

remote sensing big data. Despite differences in the spatial 

resolution of the data, the accuracy of the predictions is 

commendable. It is essential that the data have the similar 

temporal resolution (daily). This research is expected to apply 

across various sectors, particularly hydro-meteorological 

disaster management.  
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