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Abstract

Rainfall forecasts are essential for human activities enabling communities to anticipate any impacts. Rainfall events correlate with other natural
and hydro-meteorological phenomena, which can be used in modeling and prediction. This study used daily CHIRPS for the Gajahwong
watershed in Yogyakarta, Indonesia as the precipitation data. It also used Sea Surface Temperature, Land Surface Temperature (Day and Night),
Minimum and Maximum Temperatures, Solar Radiation, Wind Speed (U and V components), Cloud Pressure (Top and Base), and Cloud Height
(Top and Base) as the parameters. Further, data processing was performed by means of the Google Earth Engine (GEE) platform. Machine
learning methods, including Support Vector Regression, Gradient Boosting Regression, Random Forest, and Deep Neural Networks, were
applied. The correlation analysis revealed that only the Wind Speed V-component showed significant correlation with rainfall, other seven
parameters showed moderate and four showed weak ones. Meanwhile, accuracy assessments indicated that Support Vector Regression had the
most accurate predictions accompanied by Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Squared Error (MSE), R?,
and Coefficient Correlation (CC) at 1.366, 0.947, 1.866, 0.948 and 0.982 respectively. This study demonstrated that utilizing openly accessible
atmospheric datasets processed through the GEE could yield reliable rainfall predictions, facilitating informed decisions on a wide scale. The
methodology is adaptable and can be reproduced for any comparable research or operational purposes.
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1. Introduction

Rainfall is a primary factor of the hydrological cycle,
essential for sustaining ecosystems and maintaining
environmental balance on Earth [1]. The process begins with
evaporation, followed by condensation, cloud formation, and
precipitation [2]. Water, once on the ground, undergoes
interception, infiltration, transpiration, and evaporation,
completing a hydrological cycle [3,4].

Rainfall distribution in a specific area is determined by
various atmospheric factors, including surface temperature,
humidity, air pressure, wind speed, cloud cover, and solar
radiation [5,6]. In such condition, satellite imagery serves as a
reliable tool for detecting and documenting atmospheric
phenomena and conditions [7]. As a tropical country, Indonesia
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experiences substantial rainfall with some equatorial regions
receiving it year-round, while others have distinct seasonal
patterns [8,9].

Weather conditions significantly impact human activities
such as in agriculture (e.g. planting, seedling, maintenance, and
harvesting) [10], transportation (land and air), tourism (outdoor
and natural attractions) [6], flood mitigation [11], and water
resource management [12]. For this, accurate short-term and
long-term weather forecasts become vital across multiple
sectors [13].

Accurate weather forecasting is deemed vital for
anticipating any events that can disrupt daily activities [10].
Climate change has further altered rainfall patterns, making
precise prediction increasingly important [13]. Beyond mere
delays in human activities, extreme weather events such as
prolonged droughts, flash floods, infrastructure damage, and
landslides pose serious threats to many regions [14].

To mitigate these negative impacts, reliable rainfall
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prediction and modeling are crucial. Advanced forecasting
models provide early warnings [5], helping to minimize any
risks to life, property, infrastructure, and land [6]. While
communities have historically relied on local knowledge and
wisdom to predict rainfall [15], the growing impact of climate
change on weather conditions [9] necessitates more precise and
technologically advanced approaches.

Accurate rainfall predictions benefit various sectors by
enabling efficient water resource management and effective
disaster mitigation. Leveraging big data from diverse weather
parameters and applying machine learning algorithms can
significantly  enhance prediction models [16,17,18].
Techniques such as classification and regression allow for the
analysis of historical data to forecast future rainfall patterns
[16].

Various methods for rainfall prediction have been
developed, including both statistical and machine learning-
based approaches [17]. Statistical modeling derives equation
models based on existing data (data-driven), utilizing
techniques such as Simple Regression Analysis (SRA),
Decomposition, Exponential Smoothing (ES), Autoregressive
Integrated Moving Average (ARIMA) [17], and Least Squares
Adjustment (LA) [19]. Meanwhile, machine learning-based
rainfall models such as Neural Networks (NN), Random Forest
(RF), Gradient Boosting (GB), Support Vector Machines
(SVM) [17], K-Nearest Neighbors (KNN), and Genetic
Programming (GP) [18] are considered highly accurate in
identifying patterns in existing data.

Machine learning algorithms are able to effectively identify
rainfall patterns from historical event data, enabling prediction
and regression. These approaches are categorized as univariate
forecasting, which relies on patterns in historical data involving
a single wvariable [20,21]. Univariate forecasting is
advantageous in consideration to its simplicity in interpretation
and computational efficiency [22,23]. In contrast, multivariate
time series forecasting incorporates multiple variables as the
inputs for predicting future rainfall [20]. This approach is
believed to enhance accuracy, capture complex
interrelationships among variables, address external factors,
and improve robustness [22,23].

Machine learning in this context analyzes correlations
between various hydrological and hydro-meteorological
phenomena and rainfall occurrences. These correlations can
then be used as parameters that influence modeling and
prediction [5]. Atmospheric hydro-meteorological conditions
correlated with rainfall include evaporation, sunshine, wind
speed, humidity, cloud properties, temperature [18], dew point,
wind direction, visibility [5], Southern Oscillation Index,
NINO 3.4 Index [24], Madden-Julian Oscillation (MJO),
Northern Oscillation Index (NOI), and Quasi-Biennial
Oscillation (QBO) [13].

Hydro-meteorological data used as covariates are recorded
by various sensors attached on satellite platforms. This is an
effective alternative to address the limitations of ground station
observation data in terms of quantity and accessibility [25]. The
quality of satellite data, however, is significantly determined by
the resolution of the recording sensor [26], including spatial
resolution (detail of coverage) [16,5], temporal resolution
(frequency of observations) [16,5], and spectral resolution
(sensor capabilities) [27]. With the decades of recorded

observations, historical events can be analyzed to uncover
patterns and trends [28,25,29]. This wealth of satellite data can
be considered "big remote sensing data," ready for processing
and analysis to address various challenges [25].

Relevant institutions provide a wide range of hydroclimatic
data freely accessible to public. These datasets are collected
through continuous observations by satellites, ground stations,
or a combination of both [25]. Moreover, these data can be
accessed and processed through free platforms such as Google
Earth Engine (GEE) [29,30,31]. Many researchers are widely
using GEE, which offers multivariate data with strong
correlations to rainfall patterns [5,18].

Based on the current conditions and existing literature, the
integrated use of complex atmospheric variables and
multivariate approaches in rainfall modeling, so far, remains
significantly underexplored. Similarly, the application of the
Google Earth Engine platform for both univariate and
multivariate rainfall prediction using machine learning
techniques seems still limited. These gaps highlight a valuable
opportunity to investigate the importance of accurate rainfall
forecasting and the potential of leveraging publicly available
hydro-meteorological data. This study, in turn, aims to forecast
rainfall over the next five epochs using machine learning-based
univariate and multivariate models.

The novelty of this study lies in the use of complex
atmospheric parameters such as Sea Surface Temperature,
Land Surface Temperature (Day and Night), Minimum and
Maximum Temperatures, Solar Radiation, Wind Speed (U and
V components), Cloud Pressure (Top and Base), and Cloud
Height (Top and Base) in rainfall modeling and prediction via
the GEE platform. Each parameter underwent a correlation
analysis to determine its influence on rainfall and alignment
with rainfall patterns. Additionally, multiple machine learning
methods were evaluated and compared to identify which
approach delivered the most accurate predictions.

2. Materials and Methods
2.1. Area study

This research was conducted in the Gajahwong River
watershed, which spans from the peak of Mount Merapi to
Bantul Regency in the Special Region of Yogyakarta,
Indonesia. The area 1is located between coordinates
(7°32'26.72"S, 110°26'45.52"E) at the upper part of Mount
Merapi and (7°50'21.41"S, 110°23'47.35"E) in the downstream
region. The watershed features a steep river channel with
significant topographic changes in the northern area,
transitioning to low-lying, nearly flat land in the southern area
that gradually slopes downward. The low-lying areas have a
slope of 10%-15% and are the most vulnerable to flooding [32].
The elevation ranges from 2,905 meters sea level height (SLH)
at the peak to 118 meters SLH in the southern part, covering a
total area of approximately 44.40 km?. Fig. 1 illustrates the
study area.

This study area was selected with a consideration that the
river serves as a vital source of irrigation for rice fields and
traverses several key landmarks, including state and private
universities, as well as a zoo. Additionally, the area along the
river is prone to frequent flooding, particularly during the
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period of heavy and high-intensity rainfall [32]. These flooding
events are attributed to the river's proximity to a fault zone
(geomorphological factor), rapid land use changes, and
inadequate water management practices. The study area lies
within a tropical climate zone, characterized by unpredictable
rainfall with high annual variability and an average air
temperature ranging from 23°C to 26°C.
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Fig. 1. Overview of the Gajahwong River watershed study area

2.2. Data

Table 1. Detailed information about the dataset
(sources, spatial resolution, and units of measurement)

Spatial

Data Data sources i Units
Resolution
CHIRPS
Precipit  https://developers.google.com/earth- M mm/d
ation engine/datasets/catalog/ UCSB- ay
CHG_CHIRPS _DAILY
NOAA Optimum Interpolation Sea
Surface Temperature (OISST)
0,25 Arc
SST https://developers.google.com/earth- °C
. Degree
engine/datasets/catalog/NOAA_CD
R_OISST V2 1
WSU European Centre for Medium-Range 11 KM m/s
WSV Weather Forecasts (ECMWF) 11 KM m/s
STMin https://developers.google.com/earth- 11 KM °C
STMax engine/datasets/catalog/ECMWF_E 11 KM °C
SSR RAS5 DAILY 11 KM J/m"2
LSTD MODIS 1 KM °C
https://devel . le.com/earth-
LSTN D's evelopers.google cor'n ea KM oc
engine/datasets/catalog/modis
CTP 1 KM Pa
CTH Sentinel 5P 1 KM m
CBP https:/developers.google.com/earth- | g Pa
engine/datasets/catalog/sentinel-5p
CBH 1 KM m

This study used daily rainfall data from the Climate Hazards

Group Infrared Precipitation with Station (CHIRPS) dataset,
spanning the period from 2018 to 2023 [33]. For accuracy, the
CHIRPS rainfall data have been calibrated against ground
station observations within the study area. Twelve additional
datasets with daily temporal resolution were incorporated for

modeling and prediction, recorded concurrently with the
rainfall data. These datasets included sea surface temperature
(SST) [34], wind speed component-u (WSU), wind speed
component-v  (WSV), minimum temperature (STMin),
maximum temperature (STMax), surface net solar radiation
(SSR) [35], land surface temperature during the day (LSTD),
land surface temperature at night (LSTN), cloud top pressure
(CTP), cloud top height (CTH), cloud base pressure (CBP), and
cloud base height (CBH) [27]. Table 1 depicts the detailed
information about the data sources, spatial units, and value
units for each dataset.

2.3. Method

This study employed four machine learning algorithms
across basic learning, ensemble learning, and deep learning
categories for multivariate rainfall prediction modeling. The
selected algorithms included support vector regression (SVR)
representing basic learning, random forest (RF) and gradient
boosting regressor (GBR) representing ensemble learning, and
deep neural network (DNN) representing deep learning. The
research was carried out in three key stages: data preprocessing,
multivariate rainfall prediction modeling and evaluation, and
future rainfall prediction across upcoming epochs.

2.3.1. Preprocessing data

In this stage, several preprocessing steps were performed,
including feature selection, dataset generation, data scaling,
and rainfall data filtering. Feature selection aimed to identify
variables significantly correlated with rainfall. The Pearson
correlation coefficient, as defined in Eq. (1) [36], was utilized
to measure the relationship between each variable and rainfall.
Variables with an absolute correlation value greater than 0.4,
indicating a moderate to strong relationship [37,38], were
selected for inclusion in the rainfall prediction process. The
parameters description includes r as the correlation; x; as the
value of dataset 1 at point i; X as the mean of dataset 1; y; as
the value of dataset 2 at point i; and ¥ as the mean of dataset 2.

X (xi=%) (¥i=Yy)
/Z(xi_7)2 /Z(w-?)z

Dataset generation involved defining the model's predictor
variables (x) and target labels (). For each variable at a given
epoch x;, the predictor variables used in this study included
data from the five preceding epochs, denoted as
X1y Xp—2, Xp—3, Xp—goand x;_s . All  variables with a
correlation greater than 0.4 with precipitation, including
precipitation itself, were included as the predicting variables.
Thus, the total number of predicting variables in this study was
n X 5, where n is the number of variables with a correlation
exceeding 0.4. The target label (y) is defined as the
precipitation at a specific epoch, represented as y;.

Each variable in the dataset had a different range or scale of
values, spanning from single units to thousands. To reduce
potential biases arising from these differences in value
dimensions, this study then applied the Min-Max Scaler
normalization technique, rescaling the values of all variables to
a uniform range between 0 and 1 [39]. The Min-Max scaling

Tr=

(M
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process is represented in Eq. (2), where x; is the scaled value
of the i-th data point, x; is the original value, Xx,,;, is the
minimum value of the variable, and x,,,, is the maximum
value [40].

x; — Xi—Xmin (2)

Xmax— Xmin

In addition to preprocessing the prediction variables, this
study applied the label data preprocessing. It involved filtering
the data to ensure a clean time-series, and reduce the
uncertainty. To achieve these purposes, the Butterworth filter,
a widely utilized technique in digital signal processing, was
employed. The Butterworth filter is known for its maximally
flat passband response and is used to remove any undesired
frequencies and noise [41]. The filtering process involved data
transformation from the time domain to the frequency domain
and the application of the Butterworth transfer function. The
transfer function is defined in Eq. (3), where f represents the
frequency at the i-th data point, f; is the cut-off frequency, and
N is the filter order [42]. For this study, a low-pass Butterworth
filter was applied with a cut-off frequency of 0.5 and a filter
order of 5. The filtering process was implemented using the
NumPy library, specifically utilizing the butter function.

1

Butterworth = ——
1+(f/f)?N

3)

r I
iy r\ ,

_M n‘ l .;' ”‘_

l*m Al

L —
1 —— ———
P

Fig. 2. Filtering results using the Butterworth filter
(data source: CHIRPS accessed and processed using GEE, by the authors)
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Fig. 3. Residual values from rainfall filtering compared to the original data
(data source: CHIRPS accessed and processed using GEE, by the researchers)

Fig. 2. presents the results of rainfall data filtering using the
Butterworth filter. Visually, the differences between the
original and filtered data were minimal, with only slight
deviations observed. The filtering process successfully reduced
a number of outliers, resulting in cleaner data better suited for
modeling in subsequent steps.

Fig. 3 depicts the residual values, representing the
differences between the original and filtered data. These
residuals ranged from -21.71 mm/day to 22.51 mm/day. Most
residuals clustered close to zero with an average value of -0.08
+ 3.62 mm/day. When expressed in absolute terms, the mean
residual became 2.24 + 2.85 mm/day, indicating that the
filtering process effectively preserved the primary data trends
while smoothing out noise. The pattern of daily rainfall
fluctuations was still observed, but the seasonal pattern was
refined by applying Butterworth filtering. Under these
conditions, the prediction algorithm was able to learn the time-
series pattern well [43].

2.3.2. Multivariate rainfall prediction modeling and evaluation

The prediction dataset was divided using a sequential
splitting method with an 80:20 ratio. This meant that 80% of
the data were allocated for training, while the remaining 20%
was reserved for testing. The training dataset was used to
develop the prediction model, and the testing dataset was
utilized to evaluate the model's performance. In this paper, the
multivariate prediction model was constructed using four
machine learning algorithms: SVR, RF, GBR, and DNN.

Support Vector Regression (SVR) refers to a regression
variant of the Support Vector Machine (SVM) algorithm. SVR
was developed by Vapnik (2000) [44], and is based on
statistical ~and  mathematical principles  establishing
relationships between a set of independent variables and a
dependent variable [44]. In SVR, non-linear relationships are
addressed by projecting the data into a higher-dimensional
feature space where a linear function is used to approximate the
relationships. This function, represented as a vector, includes
an epsilon value to account for uncertainty within the vector
space. SVR employs a deterministic optimization approach to
minimize errors. The general formulation of SVR is shown in
Eq. (4), where w is the weight vector in the feature space, ¢ is
the transformation function that linearizes the input data in the
new feature space, and b is the bias term [45]. SVR offers
several advantages, including its effective handling of multi-
dimensional data and relatively low computational
requirements [46].

y=WT-y¥(x)+bxeR,YP(x) ERL,b ER (4)

Random Forest (RF), introduced by Breiman in 2001 [47],
is an ensemble machine learning model designed for both
classification and regression tasks [47,48]. It operates by
constructing multiple decision trees (DTs) and utilizing a
bagging technique, or bootstrap aggregation, to generate
diverse datasets through randomization strategies [49]. Since
RF consists of numerous DTs, the final prediction is obtained
by averaging the outputs of all individual trees, as described in
Eq. (5). Here, y represents the final output, ypr, is the output
of the i-th decision tree, and N is the total number of decision
trees generated [50]. The primary strengths of RF include its
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non-parametric nature, high predictive accuracy, and
robustness against noisy or overfitting data [51,52].
_ 1yw
y= ﬁZi:ﬂ’DT,- (5)

Gradient Boosting Regression (GBR), introduced by
Friedman in 2001 [53], is an ensemble learning model that
builds multiple decision trees (DTs) iteratively and sequentially
[53]. Each subsequent DT is trained to minimize the residual
errors of the previous ones. The predicted value of GBR using
n decision trees is expressed in Eq. (6), where DT, represents
a weak learner, typically a single decision tree with low
individual performance, and y,, is a scaling factor applied to
the tree to minimize residuals. To achieve this, GBR employs
gradient descent to adjust the model by updating the predictions
based on the residuals of prior estimates [54]. The final model
combines the initial estimate with appropriately weighted
corrections from subsequent trees. GBR offers notable
advantages, including the ability to model complex, non-linear
relationships and a relatively robust resistance to overfitting
[55].

f(x) = Xiz1 YmDTom(x:) (6)

Furthermore, a Deep Neural Network (DNN) structure
consists of an input layer, hidden layers, and an output layer,
each of which comprises a set of neurons. Unlike Artificial
Neural Networks (ANN), which typically have one or two
hidden layers, DNNs feature a more significant number of
hidden layers. This increased depth then enhances the network
ability to generalize complex non-linear relationships between
inputs and outputs [56]. The output of a DNN is expressed in
Eq. (7), where x,, represents the input, w; denotes the weights,
b; is the bias, and f(m) is the activation function applied to the
neurons. A key advantage of the DNN architecture lies in its
capacity to capture and model intricate relationships between
inputs and outputs [57].

Yi=Ym-1 f(W; X x, + by),n € [1,N] (7

This research employed the tree-parzen structured estimator
(TPE) technique for hyperparameter tuning. Optimal
hyperparameter determination is able to provide a better
prediction model compared to default settings [58]. The TPE
technique is an enhancement of conventional Bayesian
methods. In conventional Bayesian methods, the surrogate
function for determining hyperparameters uses a Gaussian
function, whereas TPE employs probability density function
(PDF) modelling to separate good and bad hyperparameter sets
using kernel density estimation (KDE) [59]. The process begins
with the random initialization of hyperparameter combinations,
which are then evaluated by an objective function—in this
study, the root means square error (RMSE). Subsequently, the
set of good and bad hyperparameters is determined using
threshold estimation with KDE. A new configuration of the set
of good hyperparameters is then found, and re-evaluated using
the objective function. This process is performed iteratively n
times [60].

This research involved three to four hyperparameters
optimized. In the SVR algorithm, three hyperparameters were

optimized: regularization parameter (C), kernel, and kernel
coefficient (gamma). For the kernel, a single option was used:
the radial basis function (RBF). Meanwhile, for C and gamma,
a normal distribution was used with a range of 0.1 to 1000 for
C, and 0.0001 to 1 for gamma. In the DNN algorithm, there
were four hyperparameters optimized: number of layers,
number of neurons each layer, activation function, and
optimizer. The search space for the activation function was
SoftMax and rectified linear unit (relu), as seen in Eq. (8) and
Eq. (9), where x is the input vector.

Xi
softmax(x;) = max (ﬁ) ®)
.

O,x<0)

relu (x) = max (x >0

(€)]

The search spaces for the DNN hyperparameter optimizer
are adaptive moment estimation (Adam) and Adamax (a
variation of Adam for large parameters). There were four
hyperparameters optimized in the GBR algorithm: the
maximum number of trees for iteration (max_estimators), the
maximum depth of each decision tree (max_depth), learning
rate, and subsample. In the RF algorithm, four hyperparameters
were  optimized: the number of decision trees
(max_estimators), the maximum depth of each decision tree
(max_depth), the minimum number of samples for a data set to
be split again (min_samples_split), and the maximum number
of parameters used to build each DT (max features). The
max_features hyperparameter had three options: “sqrt”,
meaning that the number is the square root of the number of
features; “log2”, meaning that the maximum number of
features is log2(x); and None, meaning that all features are
used. Table 2 presents the search spaces for each
hyperparameter and algorithm.

The prediction model was evaluated by comparing the
predicted values with the actual ones and quantifying the results
using five evaluation metrics, including correlation coefficient
(CQ), coefficient of determination (R?), root mean square error
(RMSE), mean square error (MSE), and mean absolute error
(MAE). The equations, value ranges, and optimal values for
each metric are presented in Table 2, where y,; represents the
i-th actual data point, y,,; is the i-th predicted data point, y,, is
the mean of the predicted data, and y, is the mean of the actual
data [61].

Table 2. Model evaluation metrics

Metric Formula Range Best value
CccC — —
Z(yai - yu)(ypi B Yp) 11 1
\/Z(Yai _%)2 \/Z(Ypi_%)z ’
R 2O — Ya)? ol .
Z?]:1(Yai - %)2 ’
MSE 1< ,
ﬁZ(ypi — Yai) 0, 0
i=1
RMSE MSE 0, 0 0
MAE 1
NZIW ~ Yail 0, 0
i=1




140 Cahyono et al. / Communications in Science and Technology 10(1) (2025) 135-147

2.3.3. Future epoch prediction

The evaluated prediction model was then utilized to predict
future epochs. Since the dataset generation process used data
from the previous five epochs to predict a specific epoch, the
future epoch prediction process also followed a stepwise
approach using five epochs beyond the last observed data. The
future prediction operated iteratively: the previous five epochs
of data were used to predict one epoch ahead (v, ,.,)
Subsequently, to predict y,, .., the predicted y; .., was
incorporated as x;_;. This process continued iteratively until
Vtrasers Was obtained.

3. Results and Discussion
3.1. Predicted data characteristics

Precipitation prediction in this study involved thirteen
parameters obtained from time series observation data. The
prediction was naturally based on previous time series rainfall
observations, allowing for the identification of its
characteristics and behavioral patterns. The characteristics and
behavior of rainfall can be analyzed in great detail based on
historical daily precipitation data. In contrast, the analysis of
global rainfall characteristics can be identified based on
monthly and annual rainfall data. Fig. 4 shows the monthly
precipitation characteristics from 2018 to 2023. The
visualization shows that precipitation in the study area tended
to be highest from December to March with the peak average
occurred in February at 13.75 + 8.68 mm/day. Conversely, the
lowest average precipitation was observed in July at 0.79 +£2.80
mm/day.

Distribution of monthly precipitation during 2019 to 2023

50 q
o
o

401 g © 5
8

oo

w
]
!

Precipitation (mm)
~
S
;

101

;.
.
_.g_a

1 e 3 a 5 6 7 9 10 11 12

Fig. 4. Monthly Precipitation Characteristics
(data source: CHIRPS accessed and processed using GEE, by the authors)

Fig. 5 shows that the overall distribution of rainfall values
remained relatively consistent across the years, with only slight
variations in rainfall trends between them. The annual rainfall
distribution revealed that 2022 experienced the highest average
rainfall at 7.80 + 7.92 mm/day and the highest maximum yearly
rainfall at 48.09 mm/day. Conversely, 2023 recorded the lowest
average annual rainfall at 4.79 + 6.69 mm/day and the lowest
maximum yearly rainfall at 31.45 mm/day. These variations
were associated to the ENSO phenomenon. In 2022, the ENSO
index was predominantly positive, indicating a La Nifia event
that increased rainfall intensity in the equatorial region,
including the study area. In contrast, the ENSO index in 2023
shifted negative, signifying an El Nifio event, reducing rainfall

intensity in the region. These results are consistent with
previous research, which linked local rainfall phenomena with
the global phenomena of El Niflo and La Nifia [13,6].

Annual precipitation in 2019 to 2023
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Fig. 6. Prediction data variables
The time-series behavior of each variable is depicted in

Fig. 6. To determine the relationship between each variable
and rainfall in the study area, correlation analysis was
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performed. The results are presented as a correlation heatmap
in Fig. 7. The first row of the heatmap illustrates the correlation
between rainfall values and other variables [62]. Based on this
visualization, all wvariables exhibited low to moderate
correlations with rainfall with both positive and negative
relationships observed. Of 12 variables, 8 showed a moderate
correlation with rainfall including SST, WSU, CTH, and CBH
with positive correlations, and WSV, SSR, CTP, and CBP with
negative ones. In contrast, both LST (day and night) and
STMin/STMax had low correlations with rainfall in the study
area with absolute correlation values below 0.1.

Correlation Heatmap

Fig. 7. Correlation heatmap matrix among variables

The characteristics of each data serve as the essential
variable in the multivariate rainfall prediction modeling.
Ideally, selecting variables with moderate correlations (both
positive and negative) to rainfall can enhance the accuracy of
the predictions [62]. Based on the correlation analysis, WSU
was found as the variable with the strongest positive correlation
to rainfall and a correlation coefficient of 0.59. Conversely,
WSV became the variable with the strongest negative
correlation to rainfall with a correlation coefficient of -0.64.

The results of correlation test indicated no significant
relationship between rainfall pattern similarity and the spatial
resolution of the data used. Of all components, temperature—
including Land Surface Temperature (LSTD & LSTN) and Soil
Temperature (STMin & STMax)—showed the weakest
correlation with rainfall and most other components. In
contrast, cloud properties (CTH, CTP, CBH, and CBP)
demonstrated a moderate correlation with wind speed (u and v
components), shortwave radiation (SSR), sea surface
temperature (SST), and precipitation.

3.2. Results of multivariate rainfall prediction modeling

Multivariate rainfall prediction was conducted using
variables with an absolute correlation value greater than 0.4
[37,38]. Consequently, only nine variables were included:
rainfall, SST, WSU, WSV, SSR, CTH, CTP, CBH, and CBP.
For each variable, data from the previous five-time steps (t-1,
t-2, t-3, t-4, and t-5) were used as inputs for prediction. This
resulted in a total of 45 predictive variables. The algorithms
employed in this study were SVR, DNN, GBR, and RF, all of

which were implemented with best hyperparameter
architecture using TPE results.

Table 3 shows the search spaces and optimal
hyperparameters for each algorithm. The optimal

hyperparameters were selected based on the combination that
produced the minimum objective function value. In this study,
there were 50 iterations for performing the optimization

process using TPE. Hence, 50 experiments were performed to
find an optimal value for each hyperparameter. The TPE
technique is able to reduce computational load as it only
performs n-experiments to find the optimal hyperparameters,
rather than trying each combination of hyperparameters one by
one.

Table 3. Hyperparameter tuning result using TPE each algorithm

Hyperparameter Search spaces Optimum value
SVR algorithm
Regularization uniform (0.1, 1000) 963.969
parameter (C)
Kernel ‘tbf? ‘tbf?
Kernel coefficient  uniform (le4, 1) 0.045
(gamma)
DNN algorithm
n_layers dnn 6,7,8,9,10 6
n_unit_neurons 64, 128, 256, 512 512
activation_function ‘relu’, ‘softmax’ ‘relu’
Optimizer ‘Adam’, ‘Adamax’ ‘Adam’
GBR algorithm
n_estimators range (100,1000,200) 400
max_depth range (3,10,1) 5
Learning_rate uniform (0.01, 0.2) 0.040
subsample uniform (0.5, 1) 0.763
RF algorithm
n_estimators range (100,1000,200) 100
max_depth range (3,10,1) 9
min_samples_split range (2,10,1) 5
max_features ‘sqrt’, ‘log2’, None None

The models generated by each algorithm were applied to
both training and testing datasets. Fig. 8 illustrates the
application of each algorithm to the training data with a focus
on rainfall data from January to March 2022 for more precise
visualization. The results showed that most algorithms
effectively captured the general pattern of the actual data during
training. Of four algorithms, GBR provided the best visual fit,
showing more minor discrepancies between predicted and
actual values compared to others.

The prediction results obtained through the DNN algorithm
on the training data exhibited a relatively larger gap compared
to actual data relative to other models. Other algorithms could
consistently learn daily rainfall patterns effectively,
particularly the GBR model. Most time steps were able to
predict with great precision against the actual data. This
condition was not entirely favorable as the prediction results on
the testing data must be re-investigated. Since the gap with the
actual data was very small, the GBR model could generalize
the data well. The time-step segments in Fig. 9 showed that the
DNN model tended to produce lower prediction values
compared to the actual data with the most significant gap
occurred during the first 15 days of March 2023.

Fig. 9 shows the results of applying each algorithm's
prediction model to the testing data. Similar to the training data
visualization, the comparison between actual and predicted
values was focused on the time period from January to March
2023. The visualization indicated that all prediction models



142 Cahyono et al. / Communications in Science and Technology 10(1) (2025) 135-147

produced patterns closely aligned with the actual data,
suggesting that they are generally reliable when applied to new
data. In the time-step segment, the SVR model was found
consistent in predicting actual data with greater precision than
other models. While the prediction values GBR model were
nearly aligned with actual values in the training data
visualization, it showed a significant gap compared to the SVR
model in the testing data. Visually, the GBR model was found
less consistent in accurately predicting actual values. The DNN
model exhibited a similar pattern in the testing data with a
relatively larger gap compared to other prediction models.
Prediction values in the testing data tended to be lower than
actual values.

Actual s Predicted Values Training Dataset

20101 01507 202001 203007 202101 202107 2030 2201 202301
Date

Actual vs Predicted Values Taining Distaset (GBR)

Fig. 8. Prediction results of each algorithm on the training data

Actual vs Predicted Values Testing Dataset

Fig. 9. Prediction results of each algorithm on the testing data

The difference between actual and predicted values was
quantified by the residuals, representing a difference between
the actual and predicted data. Fig. 10 illustrates the residual
distribution for each algorithm on the training data. Of the
algorithms, the SVR algorithm had the smallest median value
of -3.116x103, while RF had the highest one at -0.727.
Although SVR had the smallest median value, GBR had the
smallest standard deviation with a value of +0.41, meaning it
had the most stable relative bias. This can be seen in how the
outlier points in the GBR model clustered near the interquartile
range (IQR) and formed a shorter boxplot compared to other
models. The median value in the GBR model was -0.034. DNN
was the model with the highest median and standard deviation
values with the values of 1.726 and £2.492, respectively. This
can be visually seen where the DNN model formed a relatively
long boxplot compared to other models.

The residual values of each algorithm for the testing data are
illustrated using a box plot in Fig. 11. Of the models, SVR
remained the model with the lowest median residual value of
0.538. In addition, it was the one with the lowest residual
standard deviation of +0.998. The boxplot generated by the
SVR model was visually shorter than those generated by other
models. In contrast, the DNN model had the highest median
and standard deviation values with the values of 0.950 and
+2.132, respectively. This model visually formed the longest
boxplot of other models. Although the GBR model had better
residual stability on the training data, when compared to the
testing data, SVR outperformed the residual stability.
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Fig. 10. Residuals of each algorithm on the training data
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Fig. 11. Residuals of each algorithm on the testing data
3.3. Prediction model evaluation

The prediction model was evaluated using both training and
testing data, employing five evaluation metrics: CC, R?2, RMSE,
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MAE, and MSE. The results for each algorithm and dataset are
summarized in Error! Reference source not found.. On the t
raining data, the SVR algorithm achieved the highest CC and
R? values, 0.982 and 0.965, respectively, indicating its strong
correlation and goodness-of-fit. Conversely, the DNN
algorithm recorded the lowest ones, 0.943 and 0.932,
respectively. For error-based metrics (RMSE, MAE, and
MSE), GBR demonstrated superior performance with the
lowest values at 0.426, 0.332, and 0.182, respectively. In
contrast, DNN exhibited the highest ones at 3.363, 2.351, and
11.312, respectively.

Table 4. Evaluation Metrics for Each Algorithm

Metric Dataset SVR DNN GBR RF

cc Training 0.982 0.943 0.998 0.982
Test 0.974 0.932 0.951 0.943
R Training 0.965 0.890 0.996 0.965
Test 0.948 0.869 0.905 0.890
Training 1.310 3.363 0.426 1.349

RMSE
Test 1.366 2.804 1.833 1.963
Training 0.788 2.351 0.332 0.977

MAE
Test 0.947 1.824 1.237 1.299
Training 1.717 11.312 0.182 1.818

MSE
Test 1.866 7.863 3.359 3.855

The SVR algorithm performed better when evaluated with
testing data. It had the highest CC and R? values of 0.974 and
0.948, respectively but showed the lowest error-based metrics
with RMSE, MAE, and MSE values of 1.366, 0.947, and 1.866,
respectively. While, the DNN algorithm consistently
demonstrated the lowest performance with CC and R? values of
0.932 and 0.890, respectively. The RMSE, MAE, and MSE
values for the DNN model were 2.804, 2.351, and 7.863,
respectively. These results highlighted the variability in
algorithm performance between training and testing datasets
(see 4).

The findings of this research indicated that the SVR
algorithm was the best algorithm compared to the DNN, GBR,
and RF algorithms. It consistently produced prediction values
very close to the actual data. A study by Nayak et al. (2025)
produced the RMSE values of 0.912 to 1.091 for monthly
rainfall predictions using the SVR algorithm [63]. In contrast,
Wang et al. (2023) showed that SVR performed worse than RF
and Bayesian ridge regression (BRR) for univariate rainfall
prediction [64]. The GBR algorithm outperformed the SVR
algorithm on the training data, but did not consistently
outperform it on the testing data evaluation. Similar to the study
by Sumith (2025), GBR had an almost perfect R? of 0.95 on the
training data, but when evaluated on the testing data it had an
R? value of 0.45 [65]. Nevertheless, in this study the difference
in evaluation results between the training and testing data for
the GBR model was less significant with an R? value on the
testing data greater than 0.9. It was because the GBR algorithm
continuously iterated residual values, allowing the model to
closely approximate actual values in the testing data; as a
consequence, the model performed poorly in generalizing
unseen data [66]. The DL algorithm in this study performed less

well than the ML algorithm. It did not adequately learn the daily
rainfall fluctuations by considering multiple variables.
However, when using a very large dataset the DL algorithm can
perform well [67]. Therefore, a longer training data series is
needed to learn the rainfall fluctuations in the study area.
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Fig. 12. Box-plot of KFCV results evaluated by MAE
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Fig. 13. Box-plot of KFCV results evaluated by R?

This research employed k-fold cross validation (KFCV) to
evaluate the stability and robustness of each prediction model.
KFCV was conducted by setting the number of folds to 10,
thereby dividing the entire dataset into 10 folds of equal size,
with 1-fold designated as the testing data and the remaining 9
folds as the training data. The fold used as testing data was used
sequentially, and the model was consistently fitted to the
training fold in combination with other nine folds. The results
of the KFCV process are visualized in the form of box plots, as
shown in Fig. 12 and Fig. 13. The metrics used for KFCV were
MAE and R2 In the box-plot visualizations, the x-axis
represents the prediction model, and the y-axis represents the
metric value, with each model grouped into training and testing
datasets. The training dataset was visualized with a blue box,
and the testing data was shown in red. The whiskers represented
the range of minimum and maximum metric values. The results
of KFCV showed that the MAE value of the GBR model and
training data tended to have the smallest MAE value compared
to other models and exhibited high stability, as indicated by the
short whiskers produced. The MAE value of the GBR model's
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training data was 0.3540.02. Meanwhile, when all models were
evaluated using the testing data, the SVR model was found
more robust, producing the smallest average value and
relatively higher stability compared to other models. The short
whiskers in the boxplot represented these characteristics. The
average MAE value for the SVR model was 1.14 + 0.32. The
KFCV R? metric results followed the same pattern as the MAE.
The GBR model had the highest value with high robustness at
1.00 + 0.00. Meanwhile, the SVR model had the highest R? and
robust on the testing data with a value 0f 0.94 +0.02. Therefore,
in the present study, the SVR model demonstrated both the best
performance and strong robustness across various splitting
scenarios.

The performance of each prediction model was further
evaluated using a Taylor diagram, visually representing the
relationship and comparison between prediction and actual
data. A Taylor diagram includes three main components: the
radial axis, which indicates the standard deviation of the data;
isolines, which denote the RMSE values; and the quarter-circle
arcs, which represent the CC. The reference point on the
diagram corresponds to the actual values, serving as the
benchmark for assessing the closeness of the predicted values
to the actual data. The Taylor diagrams for the training and
testing data are illustrated in Fig. 14 and Fig. 15, respectively.
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Fig. 14 shows that all algorithms exhibited a strong
correlation with the actual data on the training dataset
(CC>0.9). The GBR algorithm had the closest distance to the
actual standard deviation value, the lowest RMSE value, and
the highest correlation. In contrast, the DNN algorithm had the
opposite characteristics, namely the furthest distance from the
actual standard deviation value, the highest RMSE, and the
lowest correlation.

The Taylor diagram for the testing data (Fig. 15) reveals
that SVR not only maintained low RMSE and high CC values
but also aligned closely with the standard deviation reference
line of the actual data. Based on both quantitative and visual
evaluations, the SVR algorithm outperformed other algorithms
in this study, showcasing its robust and reliable predictive
capabilities.

This research explored the potential for overfitting using
learning curves. A learning curve is a graph that illustrates the
relationship between the percentage of total training data used
and the resulting accuracy, both on new training data (taken
from 0-100% of the training data) and testing data. The testing
data used to evaluate each scenario was the testing data
resulting from an 80:20 split in the initial process. Meanwhile,
the fraction of the training data was determined based on the
80:20 split during the initial process. In each scenario, the
model was fitted with the resulting training data fraction. Fig.
16 presents the learning curve analysis results for each model
that was visualized by different colors. Meanwhile, the
difference between the training and testing data results for each
algorithm was visualized by the different types of lines, where
training data and testing data were represented by a solid line
and a dashed line, respectively. The metric used for learning
curve analysis was R2. The results obtained then showed that
the more training data used (the data fraction approaching 1),
the more convergent the graph between training and testing
data for each model. This indicated no significant gap between
the training and testing data. However, when compared
relatively across models, the RF and GBR algorithms showed
the highest gap between training and testing data compared to
SVR and DNN, indicating the potential of these two models for
overfitting. Nevertheless, the R? value for the testing data of
both algorithms was above 0.8, meaning the models are still
able to make good predictions on unseen data.
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3.4. Future epoch prediction

Subsequently, the prediction model was applied to forecast
rainfall values for future epochs. Five future epochs were set to
align with the number of lags used in the dataset generation
process. This corresponds to predicting rainfall for the next five
days. Future epoch forecasts were made recursively, where the
output at epoch t+1 became the input for the forecast at epoch
t+2, and thus onward. Fig. 17 illustrates the forecasting results
for these five future epochs, as produced by each algorithm.
The data were visualized in a line chart accompanied by a box
plot to illustrate the distribution of data predictions across
models.
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Fig. 17. Future forecasting for each epoch

Predictions were generated for the period from December
31, 2023, to January 5, 2024. During epoch t+1, the four
algorithms predicted rainfall closely, as indicated by the small
box plots generated. The standard deviation value at epoch t+1
was +1.862. However, during epochs t+2 to t+5, the DNN
algorithm had prediction values relatively far from the SVR,
RF, and GBR prediction values. A significant difference was
observed at epoch t+2, with a standard deviation of +4.952. The
t+2 epoch had the highest average predicted rainfall at 14.362
mm. While, the lowest rainfall was recorded at t+5 with an
average of 3.467 mm.

4. Conclusion

This research evaluated the use of open-access remote
sensing data and artificial intelligence algorithms for predicting
daily rainfall in the Gajahwong watershed area, Yogyakarta,
Indonesia. Rainfall prediction was based on the trend of rainfall
events (univariate) and was made by considering a number of
variables, including SST, WSU, WSV, STMin, STMax, SSR,
LSTD, LSTN, CTP, CTH, CBP, and CBH. The results
indicated that 7 out of 12 variables showed good correlation
coefficients during the feature selection process. These seven
variables were then used in the prediction model. The rainfall
forecasting in this study considered 5-step epochs before the
data at epoch t, leading to a total of 40 variables (5 epochs
multiplied by 7 plus 1 variable). The artificial intelligence
algorithms employed ranged from basic machine learning
(SVR), ensemble machine learning (RF and BGR), to deep
learning (DNN). Based on the modeling results, GBR
demonstrated a very high performance on the training data,
achieving an R? value of 0.996. However, when evaluated on
the testing data, it did not consistently outperform other
algorithms with an R? value of 0.905. Conversely, SVR
achieved the highest performance with the testing data,

obtaining an R? of 0.948. Overall, this study highlighted SVR
as the best-performing algorithm and the one that was resistant
to overfitting. The limitation of this research is that it merely
provided predictions in the time domain, rather than spatial
domain predictions. Nonetheless, the results are promising for
daily rainfall predictions in the study area, utilizing open-access
remote sensing big data. Despite differences in the spatial
resolution of the data, the accuracy of the predictions is
commendable. It is essential that the data have the similar
temporal resolution (daily). This research is expected to apply
across various sectors, particularly hydro-meteorological
disaster management.
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