Vol.01 No.01 (2025) 47-56

@

SUSTAINABLE IN ENERGY'

nnnnnnnnnnnnnnnnnn

https://ojs.polmed.ac.id/index.php/SiEST

Literature Review: Computational Methods for Designing
Thermostable Efficient and Cost-Effective Enzymes for
Industrial Applications

Prisca Caesa Moneteringtyas!’, Nahzim Rahmat!, Inten Pangestika?!, Sri Rahayu Widya
Ningrum?, Annisa Fillaeli3, Aliyah Aliyah#*
1 Industrial Chemical Engineering Technology, Department of Mechanical Engineering, Politeknik Negeri Medan, 20155,
Medan, Indonesia
2 Study Program of Industrial Chemical Engineering, Politeknik Negeri Lampung, 35144, , Bandar Lampung, Indonesia
3 Department of Chemistry Education, Faculty of Mathematics and Natural Sciences, Universitas Negeri Yogyakarta,
Indonesia, JI. Colombo 1, Yogyakarta 55281, Indonesia
4 Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe Univesity, 1-1 Rokkodai-cho,
Nada-Ku, Kobe, Hyogo, 657-8501, Japan
*Corresponding Author: priscacaesa@polmed.ac.id

Graphical Abstract

q, ,'
(N ,‘
$ i ) : =
w s > ——
VA %ﬁ Computational
Enzyme : Methods
w
t

Structure Structure-Based

|
Rational Dénign |+ | Thermostable Enzymes
+ Rosetta i« | Effcient Enzymes
+« GROMACS o [Conpimective Enrymes
|
|

o | Low
+ | High production cost

(
+
* PYMOL
\ K « FoldX

Enzymes for Industrial
Applications

Highlights
o This review explores recent computational methods for enhancing enzyme thermostability for industrial
applications.
e Structure-based design and machine learning are key approaches, each with unique strengths and
limitations.

e Hybrid models integrating these techniques show improved predictive accuracy and enzyme performance.
o A comparison of leading software tools is provided to guide method selection based on research goals.

ARTICLE INFO ABSTRACT

Keywords: Enzymes play a vital role as biocatalysts in various industrial
Computational methods, applications due to their high specificity and efficiency under
enzyme, thermostability mild conditions. However, their limited thermostability

significantly — constrains their operational lifespan and
effectiveness at elevated temperatures. This review examines

Article history: recent advancements in computational methods aimed at
Eec‘?“’gd Mayl§6lzgg§5 enhancing enzyme thermostability, focusing on structure-based
A?é(les;te g‘}?ﬁy 16, 2025 rational design, machine learning, and hybrid approaches. Key

findings highlight the effectiveness of structure-based methods,
in optimizing enzyme structures, while machine learning
approaches demonstrated potential in predicting stabilizing
mutations. This review identifies key research gaps and proposes
directions for future studies to facilitate the industrial adoption of
thermostable enzymes.
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1. Introduction

Enzymes are key biocatalysts in industry because of their high specificity as well
as efficiency [1]. However, their use in practice is frequently restricted. This is because
they lack sufficient thermal stability, which makes the enzyme not effective enough
when temperatures are elevated [2]. Improving upon the thermal stability for enzymes,
without any sacrifice of their catalytic efficiency, has therefore become a focus inside
enzyme engineering.

Current improvements in advanced computing methods present truly hopeful
answers to these specific difficulties. To predict and add mutations that make enzymes
more thermally stable, was created structure-based rational design, machine learning,
and hybrid methods [3].

The purpose of this review is to carefully review the current computational
strategies, and to further assess their effectiveness, for improvements regarding the
thermal stability of enzymes. A thorough review of nearly all of these approaches should
offer some guidance on the directions in which further studies can go in order to help
thermostable enzymes find use inside of industry.

2.  Methods

This literature review illustrated the potential role that computers could play in
improving the industrial stability of enzymes. The review reviewed journal articles
published between 2015 on-wards for the reason that those articles are considered the
latest breakthrough in developing computational tools and methods. Some journals in
2005 was also included due to its foundational contributions to structure-based rational
design.

The study evaluated the literature focused on computer tools, namely, Rosetta,
GROMACS, PyMOL, TensorFlow, Scikit-learn. Review papers and works that relied
only on laboratory studies were not included. Terms such as "thermostable enzymes
computational design" and "machine learning for stability in enzyme" were used to carry
out the search.

Searches using database sites, such as ScienceDirect, Springer, Wiley Online
Library, and IEEE Xplore, were carried out to retrieve the articles. The search was able
to cover a wide range of computer techniques, which were all practically applied in
industries.

Thus, it was possible to analyze the collected data through computational methods
and main findings derived from the research gaps studies. A particular emphasis was
therefore placed on studies that employed various computer techniques since this
method is very significant in industrial applicances.
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This method also allowed a comprehensive overview of current advancements
and challenges in computational enzyme design, as it balanced the views on existing
methods' potential and limitations.

3. Results and Discussion

There has been significant progress in computational methods to improve enzyme
thermostability, especially through the use of structure-based rational design, machine
learning, and hybrid approaches. Each method has its own specificities as outlined in
Table 1.

Table 1 Review

Title Authors and Research Method/ Key Findings Research
Year Topic Software Gaps
Computational =~ Korkegian et Enhancing Rosetta Successfully ~ Limited
Thermostabilizat al. (2005) [4] enzyme (structure- improved exploration
ion of an thermostabil based enzyme of machine
Enzyme ity design) thermostabili learning
ty through approaches.
structural
modification
s.
Protein Modarres et Principles of PyMOL, Identified Lack of
Thermostability  al., (2016) [5] protein FoldX key factors integration
Engineering engineering  (rational influencing between
for design and protein computation
thermostabil ~directed thermostabili al and
ity evolution) ty. experimental
approaches.
Thermostability = Nezhad et Rational Rosetta, Enhanced Limited
Engineering of al. (2022) [6] design for GROMACS stability exploration
Industrial industrial (structure- without of data-
Enzymes enzyme based compromisin  driven
through thermostabil rational g catalytic methods.
Structure-Based ity design) efficiency.
Rational Design
Data-Driven Dou et al. Data-driven Scikit-learn, Demonstrate Need for
Strategies for the (2023) [7] approaches  TensorFlow d hybrid
Computational for enzyme (machine effectiveness  approaches
Design of design learning and  of data- combining
Enzyme data mining) driven data-driven
Thermal strategies in and rational
Stability predicting design.
stability.
Rational-Design  Pongsupasa Improving PyRosetta, Achieved Insufficient
Engineering to et al, (2023) enzyme GROMACS  enhanced analysis  of
Improve [8] stability (site- stability by long-term
Enzyme through directed modifying stability  in
Thermostability mutagenesis  specific
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. Authors and Research Method/ .1 Research
Title Year Topic Software Key Findings Gaps
rational and amino acid industrial
design molecular sites. conditions.
dynamics
simulations)
Achieving Tu et al. Enhancing Schrodinger Successfully  Limited
Thermostability  (2024) [9] phytase Suite, stabilized application
of a Phytase with stability NAMD phytase at to other
Resistance up to (directed high types of
100 °C evolution temperatures enzymes.
and rational
design)
Computational ~ Derat & Computatio AlphaFold, Showcased Insufficient
Advances in Kamerlin. nal methods PyMOL, the role of AI  focus on cost-
Protein (2022) [10] in enzyme MODELLE in effectiveness
Engineering and engineering R (Al-based accelerating  for industrial
Enzyme Design tools  and enzyme applications.
molecular design.
simulations)
Current Dinmukham Strategies Rosetta, Highlighted  Lack of
Advances in ed et al for Scikit-learn  benefits of detailed
Design and (2021) [11] industrial (hybrid combining analysis on
Engineering enzyme approaches:  multiple implementati
Strategies of design rational approaches.  on
Industrial design + challenges.
Enzymes machine
learning)
Computational ~ Xie et al. Enzyme Rosetta, Enhanced Limited
design of an (2024)[12] design for GROMACS degradation scalability
efficient and plastic , AutoDock efficiency studies  for
thermostable degradation (computatio and stability industrial
esterase for nal protein of esterase. applications.
polylactic  acid design and
depolymerizatio molecular
n dynamics)
A general Jiang et al, Al-based PyTorch, Improved Lack of
Temperature- (2024) [13] models for Transforme both stability comparative
Guided protein rs Library and activity studies with
Language model engineering  (temperatur  of proteins traditional
to engineer e-guided using Al methods.
enhanced language
Stability and models)
Activity in
Proteins

Information on studies regarding computational methods for improving enzyme
thermostability is furthersummarized in Table 1. It contains the title, names of authors,
date of publication, methodology or software used, important findings, and identified
research gaps. The outcome suggests that hybrid strategies combining structure-based
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design and machine learning would counterbalance the limitations of independent
approaches and would be a strong strategy to improve enzyme thermostability.

With vivid differences with respect to efficacy and feasibility, almost all the
reviewed studies in Table 1 have successfully conducted enzyme thermal
stabilization.For example, in a work done by Tu et al. [9], extraordinary enhancement of
phytase stability was reported at 100 °C, using an approach involving a combination of
Schrodinger Suite with NAMD. However, the limitations of this method apply to a few
groups of enzymes, whereas others have never been validated in industry yet.

Furthermore, Derat & Kamerlin [10] recount the importance of Al in fast-tracking
enzyme design with software such as AlphaFold and PyMOL. Their results show Al
much fast-forwards enzyme structure prediction and fruitful alterations.

Different studies show that indeed almost all the computational techniques are
successfully applied to enhance enzyme thermostability, but those differ on their
efficiency, scalability, and applicability in industry. For instance, Tu et al. [9] reported
outstanding enhanced stability of phytase using Schrodinger Suite and NAMD, which
supports the promise of combining advanced force fields with high parallelization for
enzyme design. However, such approaches would be questionable when considering
their industrial applications due to high computation costs and the need for extensive
experimental verifications.

Similarly, the application of Al software including AlphaFold has taken to task the
reliability of predictions in protein structure as stated by Derat & Kamerlin [10].
Nevertheless, the major drawback remains high computational expenses along with
hardly any attention to cost-effectiveness, making these processes untenable for
industrial application. Solving such problems implies further resource-poor Al models
and integrating cost evaluation frameworks into computational protocols.

3.1 New Methods to Enhance Enzyme Heat Stability

Software such as Rosetta and GROMACS are very useful in sharpening enzyme
temperature forays with specific techniques. They assist in the design of enzyme
structures by proposing alterations that stabilize the molecule, such as enhancing
hydrogen bonds and salt bridges. In 2005, Korkegian et al. [4] showed that Rosetta could
be used to modify three specific sections of an enzyme, this is also supported by [14]
which also uses Rosetta to enzyme design and activity enhancement so that it makes
enzyme was more stable and efficient when heated.

Machine learning is also playing an important role in making enzymes more
temperature-resistant. Though less widely adopted to date, it has immense potential.
Machine learning algorithms can also help researchers predict the chemical changes that
make enzymes more stable. TensorFlow and Scikit-learn also assist with creating models
that efficiently process complex data with picking up relations between system changes
in the enzyme sequence and stability. In 2023, Dou et al. [7] successfully showed that
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these models are capable of predicting enzyme stability with few experiments. The
trouble is, these models can be difficult to interpret, particularly in understanding how
the changes improve the stability of enzymes. Explainable AI models can be useful in
this case since they are transparent when they point out why specific changes act in the
intended way.

3.2 Alternatives Sofware and Their Roles

Part of running successful computational research is the decision on what
software to use. Table 2 presents a comparison of key software alternatives for molecular
dynamics simulations, machine learning, protein structure modeling, molecular
visualization, and protein programming, emphasizing their unique strengths and
suitable contexts for application.

Table 2. Software Alternatives for Designing Thermostable, Efficient, and Cost-
Effective Enzymes

Category Asftfet::lzifvfs Detailed Explanation

Molecular GROMACS <« GROMACS excels in speed and is open-source, suitable for

Dynamics NAMD < small to medium-scale simulations; NAMD is superior for

Simulation AMBER large-scale simulations due to high parallelization;
AMBER offers higher accuracy for complex proteins [15].

Machine Scikit-learn =~ <> Scikit-learn is ideal for traditional models (regression,

Learning TensorFlow < SVM) with simple syntax; TensorFlow is strong for large-

(ML) PyTorch <> Weka scale production with TPU support; PyTorch is flexible for
research; Weka provides a GUI for non-coding analysis
[16].

Protein MODELLER <« MODELLER focuses on homology modeling with

Structure Rosetta < templates, Rosetta supports de novo modeling and protein

Modeling AlphaFold <> design, AlphaFold achieves the highest accuracy in

AutoDock Vina structure prediction, and AutoDock Vina specializes in
small-molecule docking [17]
Molecular PyMOL < VMD  PyMOL is preferred for high-quality publication images

Visualization with detailed display control; VMD is tailored for
analyzing molecular dynamics data with robust scripting
capabilities.

Protein P Rosetta offers diverse protocols for protein design and

Programmin yRosetta prediction, whereas PyRosetta allows for Python scriptin,

& Rosetta p ! y y ptmng

g to automate complex tasks with greater flexibility.
MODELLER provides more comprehensive features for

Protein MODELLER « homology modeling with better parameter control, while

Design Swiss-Model Swiss-Model is more user-friendly for beginners seeking

quick results without complex configurations.

Table 2 summarizes several software tools that are used for activities such as
molecular dynamics simulations, machine learning, protein structure prediction,
molecular visualization, and protein design. When selecting which software is best, it is
important to consider the research requirements, i.e., accuracy, scalability, and
computation costs. In some cases, merging and aligning different software tools will
enhance the computation performance [18].
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This side-by-side comparison illustrates the advantage of selecting your software
according to the particular demands of your research environment. To illustrate, when
choosing between NAMD and GROMACS for molecular dynamics computation, you
would need to consider the size as well as the complexity of the system that is under
study. GROMACS would most suitably be applicable to small systems, while NAMD is
ideally suited for large systems due to its scalability architecture [19].

3.3 Synergistic Potential of Hybrid Approaches

Hybrid approaches, where structure-based design and machine learning are
combined, have been suggested as a remedy to surpass the drawback of using one
approach in silico. A recent study by Dinmukhamed et al. [11] showed that hybrid
models, where structural information is utilized for training machine learning models,
performed significantly better than single approaches for predicting stabilizing
mutations. This fusion brings together the predictiveness of machine learning and the
structural precision of structure-based methods to enable possibilities of mutations to be
explored even further. Using the incorporation of Rosetta's structural modeling into
TensorFlow's machine learning framework as an example, this hybrid approach resulted
in the creation of enzymes that not only performed better but even proved more stable
in character, actually bridging the accuracy-scalability gap.

3.4 Effectiveness and Limitations of Methods

All these computational approaches discussed here have both strengths and
weaknesses. Structure-based design is excellent at giving very high-level control over
structural modification but is very time-consuming and typically limited to small
enzyme sizes [5]. Machine learning, on the other hand, while able to process big data
very effectively, is not very transparent and requires a lot of training data [12].

The combination of rational design and machine learning offers a possible solution
to such complexities. For example, Dinmukhamed et al. [11] established that the
combination of these approaches not only enhanced the stability of enzymes but also
accelerated the designing process and ensured more accurate results. In this method,
structure simulation data are employed to train machine learning models, which then
aid in designing improved mutation designs.

3.5 Cost-Effectiveness of Computational and Hybrid Methods in Enzyme
Design

In comparison to traditional experimental approaches, computer-aided and
hybrid designs reduce the costs by incurring lower trial-and-error testing and cheaper
reagent, equipment, and labor inputs [20]. Computer programming environments like
Rosetta, GROMACS, TensorFlow, and Scikit-learn offer predictive accuracy through
which scientists filter and rank more viable enzyme mutations to minimize expensive
experimental testing. The computer assistances accelerate enzyme design workflow in
terms of shorter development timelines and fewer overall expenses [21].
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Also, these computational approaches can reduce failure rates through intentional
design and predictive computation, which equate to fewer failed experiments and their
costs. Their scalability, enabled by software and cloud computing, enable one to handle
large volumes of data without spending much more money, which makes them suitable
for industrial use. While the initial investment in computing hardware may be high, the
long-term return on investment includes reduced dependence on trial-and-error
approaches, compressed time-to-market for thermostable enzymes, and increased return
on investment (ROI).

4. Conclusion

The review highlights the way computational approaches have compressed the
design process for thermostable enzymes, through the combination of machine learning
and structure-based rational design. The construction of hybrid strategies that blend
these methods provides a promising route for enhancing enzyme stability without loss
of catalytic function. Yet, there are a number of fundamental issues to be addressed, such
as scalability, cost, and the need for thorough experimental validation of computational
design predictions. These issues will be addressed through concerted research efforts,
the establishment of standard experimental protocols, and calibration of calculation
devices for wider industrial application. Further emphasis must be placed on the
integration of data-driven methods and experimental back-loops to iteratively refine the
design process and also to establish the practical viability of thermostable enzymes.
Having overcome systematically these challenges, we can now employ the full power of

computational tools to revolutionize enzyme engineering in industry.
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