
INTERNATIONAL JOURNAL
ON INFORMATICS VISUALIZATION

journal homepage : www.joiv.org/index.php/joiv

INTERNATIONAL
JOURNAL ON

INFORMATICS
VISUALIZATION

Enhancing Vision-Based Vehicle Detection and Counting Systems

with the Darknet Algorithm and CNN Model

Abdul Haris Rangkuti a,*, Varyl Hasbi Athala a
a Computer Science Department, School of Computer Science, Bina Nusantara University, Bandung Campus, Jakarta, Indonesia

Corresponding author: *rangku2000@binus.ac.id

Abstract—This study focuses on developing an algorithm that accurately calculates the volume of vehicles passing through a busy

crossroads in Indonesia using object recognition. The high density of vehicles and their proximity often pose a challenge when

distinguishing between vehicle types using a camera. Therefore, the proposed algorithm is designed to assign a unique identity (ID) to

each vehicle and other objects, such as pedestrians, ensuring that volume calculations are not repeated. The objective is to provide an

equitable comparison of road density and the total number of detected vehicles, enabling the determination of whether the road is

crowded. To accomplish this, the algorithm incorporates the Non-Max Suppression function, which displays bounding boxes around

objects with confidence values and counts the objects within each box. Even when objects are nearby, the algorithm tracks them

effectively, thanks to the support of the Darknet Algorithm. The main capabilities of this algorithm for improving vehicle detection

include enhanced accuracy, speed, and generalization ability. Typically, it is used in conjunction with the You Only Look Once (YOLO)

object detection framework. Five convolutional neural network models are tested to assess the algorithm's accuracy: YOLOv3,

YOLOv4, CrResNext50, DenseNet201-YOLOv4, and YOLOv7-tiny. The training process utilizes the Darknet Algorithm. The best-

performing models, YOLOv3 and YOLOv4, achieve exceptional accuracy and F1 scores of up to 99%. They are followed by

CrResNext50 and DenseNet201-YOLOv4, which achieve accuracy rates of 92% and 98% and F1 scores of 94% and 98%, respectively.

The YOLOv7-tiny model achieves an accuracy rate and F1 score of 86% and 88%, respectively. Overall, the results demonstrate the

algorithm's success in accurately detecting and calculating the volume of vehicles and other objects in a busy intersection. This makes

it a valuable tool for regional government decision-making.

Keywords—Volume; vehicle; object recognition; crossroads; CNN; accuracy; F1 Score.

Manuscript received 12 Feb. 2024; revised 6 Apr. 2024; accepted 3 Jun. 2024. Date of publication 31 Jan. 2025.

International Journal on Informatics Visualization is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

The government has demonstrated its commitment to

developing infrastructure for road construction throughout

Indonesia. By providing transportation facilities, the

government aims to facilitate interaction between local

communities and their surrounding environment,

encompassing social, economic, and cultural aspects [1].
Roads are crucial in accommodating various vehicles and

pedestrians, including cars, public transport, trucks, bicycles,

motorbikes, and pedestrians. They have become an

indispensable component of transportation systems [2].

Modern society faces serious problems with transportation

systems, including but not limited to traffic congestion, safety,

and pollution. Information communication technologies have

gained increasing attention and importance in modern

transportation systems [3]. To address this, transport

authorities have increasingly turned to CCTV cameras to

monitor traffic flows and gather valuable data for various

applications. One such application is automatic vehicle

classification, which involves specialized software

identifying different types of vehicles (small, medium, and

large) in recorded footage. This technology offers numerous

benefits, from optimizing traffic management to informing

infrastructure planning [4].

Different current road loads can cause inefficiency in using

lanes at the intersection. Traffic regulation at the intersection

regulates the movement of each group of vehicle movements
so that they can move alternately and do not interfere with

each other or disrupt existing flows [5]. However, traffic

lights in urban areas are still less effective due to the

unbalanced volume of vehicles. All traffic flow values (per

direction and total) are converted into passenger car units (pcu)

using the car ferry equivalent, which is derived from each type

of vehicle as follows [6].

1

JOIV : Int. J. Inform. Visualization, 9(1) - January 2025 1-12

a. Light vehicles (LV), namely two-axle, 4-wheeled

motorized vehicles with 2.0-3.0 m (including passenger

cars, microbuses, pick-ups, and small trucks)

b. Heavy vehicles (HV), namely motorized vehicles with

more than 3.5 m and typically with more than four

wheels (including buses, two axles’ trucks, three trucks,

and combination trucks).

c. Motorcycles (MC), namely two or three-wheeled

motorized vehicles.

Traffic volume is the number of vehicles that pass a certain
point or line. Vehicles are typically classified into several

types, including heavy vehicles, light vehicles, motorcycles,

and non-motorized vehicles [4]. The traffic volume on a road

will vary, forming a traffic flow pattern. Traffic flow patterns

indicate changes in traffic volume over a given period [7].

Basically, traffic flow patterns help us know peak and non-

peak hours and their intervals. Density is the number of

vehicles per unit length of the road (vehicles/km). Density can

be observed from aerial photos and Closed-Circuit Television

(CCTV) installed at several intersection points. Describing

the short-term traffic flow is essential for studying intelligent
transportation systems [8]. Knowing beforehand the real-time

density of a road or an intersection could make the road less

crowded due to drivers avoiding potentially high traffic [9].

Detecting vehicle objects is the first step in obtaining traffic

flow information at the intersection. Object detection aims to

get the location and classification of objects from an image.

The goal is to acquire the features of the object. In this study,

observations will be made of six class objects around the

intersection. Class objects include cars, trucks, public

transportation, bicycles, motorcycles, and people who are at

the intersection location. Five convolutional neural network
models will test the objects during the testing process.

However, the models undergo a training process using

Darknet before detecting the targeted objects. This paper aims

to use object detection on traffic in urban areas and to

experiment with which convolutional neural network models

are best suited for this case.

The crossroads used as the experimental site of this

research is in the Bandung area, West Java province. Fig 1.

shows four intersections with dense characteristics, such as

the intersection of the Buah Batu and Batu Nunggal highways,

during a test experiment using a darknet framework. At the

depicted intersection, the volume of each object class will be
automatically calculated. Knowing the volume of objects for

each class can also improve the supervisory function of

vehicle objects while supporting local government decision-

making.

Implementing an idea of fast and timely traffic flow that

can effectively reduce traffic jams, reduce accidents, and

prepare a comfortable traffic environment. Traffic conditions

at the intersection are data on traffic volume taken during peak

hours in the Bandung city area. The description for the traffic

volume data that became the research material was taken from

several intersection roads in the city of Bandung. At this
intersection, every day, there is a tremendous amount of

traffic. For this reason, regulating traffic lights at crossroads

is needed to run vehicles and accommodate every road user.

The problem with regulating the traffic system using a fixed

time model is it can cause changes in traffic density to be

unpredictable because of the traffic lights.

Fig. 1 Shows intersections area with four locations during an experiment

using a darknet framework

II. MATERIALS AND METHODS

A. Related Works

An intelligent traffic light control system must be

implemented dynamically with real-time traffic. Studies are

using deep reinforcement learning techniques for traffic light

control, showing reasonably good results for control [10].

Ultimately, using smart transportation (e.g., smart traffic

lights) will make our trips more comfortable and efficient and

help avoid congestion on one side of the road [11]. In general,

the Intelligent Transportation System (ITS) application has

become an essential component and has been widely
implemented for smart cities to overcome the limitations of

traditional transportation systems. The existing traffic light

control system divides the traffic light signals into fixed

durations and operates inefficiently [12]. The description of

the need for Intelligent Transportation Systems (ITS) has

become a concern in recent years. In addition, with the rapid

development of vehicle computing hardware, vehicle sensor

systems, and city-wide infrastructure, many of these

applications continue to be developed, such as Vehicular

Cloud (VC), intelligent traffic control, etc [13].

Traffic demand forecasting is essential for transport

management and public safety. Still, it is very challenging
because of the complex spatial-temporal dependence and

consequent uncertainties created by the road network and

traffic conditions [14]. Traffic flow prediction is the central

part of ITS research. Road traffic data shows the same trend

on successive days. Accurate traffic flow prediction ensures

public safety and solves traffic jams. The increasing demand

for faster travel, severe traffic congestion, and its adverse

impact on traffic safety and environmental conditions have

attracted significant attention from countries worldwide [15]

due to the limited land resources, construction costs, and time-

consuming processes. Furthermore, the highway expansion
project cannot wholly and effectively solve this problem. In

addition, potential traffic demand is also generated due to

increased vehicle traffic capacity [16]. For this reason, the

research is focused on knowing the volume of vehicles in an

area so that it will be an input for local governments to find

2

appropriate and efficient solutions in dealing with

increasingly severe traffic jams. The description for detecting

vehicle volume in this study is to use Artificial intelligence

technology through machine learning.

The problem that necessitates the development of object

detection applications is the need to accurately determine road

density, particularly at intersections, in real-time. By

addressing the density issue, drivers can avoid road

congestion and reduce the likelihood of encountering heavy

traffic. Several additional benefits are associated with an
application capable of detecting the density of vehicle objects.

Firstly, drivers can actively seek alternative routes to avoid

being trapped in time-consuming traffic jams, thus saving

valuable travel time. Moreover, this technology empowers

drivers to proactively circumvent potential high-traffic areas,

further enhancing their ability to avoid congestion. Target

detection technology, as one of the core technologies in

computer vision, provides basic technical support for many

aspects, such as target tracking, semantic segmentation of

vehicles under heavy traffic conditions, discovering in-

vehicle alcohol to prevent road accidents, and detecting
cyberattacks on autonomous vehicles [17].

The typical approach for determining the number of

vehicles traversing a highway involves employing detection

and tracking techniques. By analyzing the tracking

trajectories of vehicles, it becomes possible to calculate the

total count of vehicles passing through a specific area. The

vehicle calculation process based on detection and tracking

methods can be subdivided into background reduction and

DNN-based methods [18]. Background reduction technology

is used to design the background model and extract the

existing moving vehicles in the videos. Several morphological
operations are usually applied to the vehicle segment to count

the traffic vehicles [19]. The background model is specifically

used for a limited region within the video frame. Subsequently,

morphological processing is applied to the extracted target to

amplify its features and mitigate the impact of obstructing

vehicles [20]. Various techniques are employed for detecting

moving objects. The process involves several post-processing

steps, which are crucial in establishing optimal thresholds for

distinguishing between foreground and background. These

steps significantly enhance the detection rate accuracy

achieved through this technique. However, identifying and

adapting a suitable threshold, particularly in environments
with limited visibility, has proven unsuccessful thus far [19].

The preparation phase uses “ffmpeg” for video cutting and

labeling images (Fig 2). Once the preparation has been

completed, the training phase uses the Darknet algorithm to

train the prepared data. Lastly, the testing phase measures the

performance and outputs the results using OpenCV. OpenCV

is an open-source library of programming functions mainly

for image processing. OpenCV was chosen in favor of

Darknet for the testing due to its ability to write the

appropriate algorithm for the experiment [20].

This comprehensive paper delves into deep learning-based
object detection frameworks, thoroughly reviewing their

capabilities and advancements [21]. Recognizing the diverse

nature of specific detection tasks, we extend our exploration

to encompass a brief survey of notable tasks such as salient

object detection, face detection, and pedestrian detection [22].

By analyzing the unique characteristics of each task, we aim

to provide valuable insights into the evolving landscape of

object detection within the realm of deep learning [23]. The

utilization of deep learning object detection algorithms,

specifically designed for analyzing 2D images, has emerged

as a formidable force in road object detection within

autonomous driving [24]. The remarkable success achieved

by deep learning methods in the context of road vehicle

detection is indisputable [25]. These advancements have

solidified the critical role of deep learning in enhancing the

accuracy and efficiency of road object detection and paved the
way for unprecedented progress in autonomous driving [26].

Nevertheless, rapidly and accurately detecting and

classifying vehicles faces challenges arising from the limited

spacing between vehicles on the road and interference

features in photos or video frames containing vehicle images.

A novel vehicle detection and classification model has been

developed by optimizing the YOLOv4 model to address this

issue. This model incorporates an attention mechanism that

effectively suppresses image interference features by

considering both channel and spatial dimensions [27]. The

CNN model detects moving vehicles using various techniques.
One common approach is frame difference, where the model

compares consecutive frames in a video to identify the

differences in object positions. When an object, such as a

vehicle, moves in a video, its location changes from frame to

frame. By detecting these changes, the model can identify the

presence of moving vehicles [28]. Another method involves

training a deep learning model specifically for object

detection. This approach requires labeled data to train the

model by collecting and annotating a dataset or fine-tuning a

pre-trained model on specific data. The trained model can

then detect moving vehicles in videos [29].
This research focuses on detecting street objects using

camera surveillance. There are six objects in focus: cars,

motorcycles, trucks, bicycles, humans, and public

transportation. These objects are likely to be seen throughout

the city streets of Indonesia. In this experiment, video footage

of the road using camera surveillance in Bandung City is used

on the CCTV. The video quality and lighting of the footage

are not the focus. Therefore, the footage is obtained from the

source. There are three phases of the experiment: the

preparation, training, and testing phase. Each phase uses a

different method of processing. This research also compares

five different convolutional neural networks or CNN models.
The five different CNNs, namely use You Only Look Once

Version 3 (YOLOv3), Version 4 (YOLOv4), Version 7 tiny

(YOLOv7-tiny), CSResNext50-Panet-SPP, and

DenseNet201-YoloV4. These CNNs were chosen to

differentiate from previously published work. In some

instances, the method for using the CNN model for object

detection and comparing the models to determine the best

performance has been experimented with. Therefore, the main

topic of this research is to compare the performance of the five

different CNN models for each street location. A more

thorough explanation can be seen in the following section.

B. Preparation Phase

In Fig 2, the preparation phase diagram is shown. In the

first step, a system was created to detect the objects within a

CCTV frame, using images obtained from a road CCTV video.

These videos were mainly 44 seconds long, and five public

3

CCTV videos were collected from the Area Traffic Control

System of Bandung DISHUB website. Once collected, frames

from every few seconds of the video get extracted and become

new images using a software called FFMPEG. These images

are used to train the machine. Each image requires labeling to

make the machine understand the image. Image labeling is

constructing a map of visual features with semantic and

spatial labels that describe the objects in the image [30].

Image labeling has the function of teaching the machine to

understand the given image. This process outputs a class
definition text file and an image label text file for each image.

Therefore, these files are the references for the machine

during training to differentiate between objects and non-

objects [31].

Fig. 2 Preparation Phase Diagram in detecting the vehicle and People

Image labeling has the function of teaching the machine to

understand the given image. As stated before, the image
labeling process uses labeling as software. This software

reads all the images in the given folder and manually draws

the bounding box and the class name within the image. This

process outputs a class definition text file and an image label

text file for each image. Therefore, these files are the

references for the machine during training to differentiate

between objects and non-objects. There are six types of

objects that the CNN models must detect. These objects are

cars, motorcycles, trucks, people, bicycles, and Indonesian

public transportation called angkot. Each CNN model must

correctly detect and identify as many of these objects as an

object detection system to have a high value. Table I shows
an example of precisely labeled objects with their correct

object category.

TABLE I

IMAGE LABEL SAMPLE AND CATEGORIES IN ENGLISH AND INDONESIAN

LANGUAGE

Image Sample
Category

English Indonesian

Car Mobil

Motorcycle Motor

Truck Truk

People Orang

Bicycle Sepeda

Public Transportation Angkot

This experiment needs some pre-trained convolutional

weights and configuration files data for each CNN model, in

addition to the image labels and train data. After completing
the preparation process, there will be four types of data.

C. Dataset Setup

There are 43 combined street images extracted from

obtained road CCTV videos. These images have sizes ranging

from 516 to 832 kilobytes each. These also have relatively the

same size and aspect ratio. This research doesn’t have any

preprocessing methods for the images. However, all images

have sufficient lighting and contrast for the experiment.
Therefore, the machine would learn unprocessed image data

to detect real-world objects. Each image has one labeling text

that contains data on roadway image objects. The dataset also

contains one class definition text. These data are created

during the labeling process by a program called labeling.

Therefore, in total, there are 87 files contained in a dataset for

the training phase. These data are important to help the

machine understand objects in the image. This research used

CCTV video from one of the obtained video collections for

the testing phase. An overview of the training in detecting the

volume of vehicles at the intersection using the darknet

algorithm can be seen in Fig 3.

Fig. 3 Diagram of Training Phase Using Darknet

4

The diagram in Fig. 4 presented below is a training process

to describe an automatic system designed to detect traffic with

darknet algorithms. The aim is to detect and inform the

amount of traffic volume at road intersections. This research

aims to improve the detection of darknet traffic by exploring

a series of machine learning and deep learning techniques to

classify such traffic and accurately show related application

types.

D. Training Phase

In Fig 4, the data serves as the foundation for the training

process. The training process was conducted five times as a

part of this experiment, as five different CNN models were

tested. Each of these CNN models possesses its own unique

architecture, including Yolo V3, Yolo V4, CSRestNext50,

Yolo V7 Tiny, and DenseNet201-YoloV4. Throughout this

training process, only five CNN models were utilized

optimally despite attempting several other models that did not

yield satisfactory accuracy results. By employing a variety of
CNN models, it becomes possible to identify the most suitable

model to achieve optimal accuracy. Consequently, the

number of extracted features and the output size may differ

among the models.

Fig. 4 Training Phase Diagram Using Darknet algorithm.

However, this discrepancy is not problematic, as the

models still adhere to the fundamental CNN architecture.

Specifically, CNNs, in this case, consist of three primary

layers: Convolutional, Pooling, and The Fully Connected

Layer [32]. Another study addresses these issues concerning

accidents and aims to find solutions to reduce road accidents
resulting from traffic-related incidents. The main challenge

faced in computer vision lies in obtaining effective results

when dealing with variations in data shapes and colors [33].

The training process saves the last weight every 100 iterations

to prevent complete data loss if something happens. After

1000 iterations, the final weight files were created. There are

five final weight files for each of the five CNN models.

Therefore, these 100 and 1000 in iteration calculations are

solely to save the training progress in those iteration numbers.

An overview of the monitoring process stages for several

vehicles at bustling crossroads was obtained using the darknet

algorithm. Some peripherals support the training process. It

can be seen in Table II.

TABLE II

DEVICE SPECIFICATION USED FOR TRAINING

No. Component Specification

1 Processor AMD Ryzen™ 5 5600H Up To 4.2
GHz

2 RAM 16 GB DDR4
3 GPU RTX 3060 Mobile 6GB
3 Disk Space 1.5 TB

Based on Table II, the heavy process of determining the

difference factor between CNN models to carry out the

training phase is done on the same device. Table II provides

information about the six classes' device specifications for the
training stage. This type of computer device is a personal

computer with the latest generation of computer components

that can carry out tasks specifically in detecting 6 classes of

vehicles at road intersections, including counting the number

of vehicles passing through road intersections. The need for

GPU memory and processor specifications becomes

dominant in processing class objects carried out in the training

process.

E. Testing Phase

The next step after the training process is the testing

process. Fig 5 explains the testing process stages, which start

with inputting data on vehicle objects, people, and input

frames. Next, predictions are made for object detection using

one of the five CNN models used in the experiment. The

prediction results are in the form of calculated bounding box

coordinates. Non-Max suppression calculations are

performed to display only the most optimal bounding boxes

for objects to reduce the number of unimportant bounding

boxes. The bounding boxes are then drawn and saved for later

use by developers or users.
Furthermore, the retrieving vehicle process, the person

class data, and calling the volume calculation function for

each object are immediately processed. This step is crucial so

that the vehicle calculation process can be carried out on the

frame being processed at that time. Calculating the object or

object volume begins by taking data on the number of object

labels detected in the frame and then adding them up. This

becomes the vehicle volume data detected in the frame. Then,

the algorithm performs the object tracking process, which

begins with giving an ID to the object in question. However,

the object tracking process has two "if" cases. If two objects

are adjacent to the main object and the main object is new, the
algorithm gives the object a new ID.

Once object tracking is complete, the calculation of object

volume is also performed for each label. This is done in 12

seconds. When the 12-second time limit is reached, the

calculation algorithm outputs the model testing performance

data, including the traffic volume, the number of objects

detected in each category, and the inference time. In addition,

the algorithm also generates images that contain information

5

about the traffic volume at that time, the number of objects

that appear in each category, and the resulting bounding box.

Fig. 5 Diagram of Testing Phase Using OpenCV

F. Measuring Model Performance

There are measurements to determine how well a model

performs in a specific case. This experiment used five

measurements: precision, recall, F1-Score, mean average

precision, and traffic count. Collecting these variables, the

extracted data will be used to compare the performance

between the five chosen CNNs. Therefore, this comparison

will determine which CNN has the most optimal performance
in the case of CCTV object detection. A more detailed

explanation of these calculations is given in the following

section:

1) Precision and Recall:

Precision is used to determine the ability of a model to

detect or identify the targeted objects. The recall is used to

assess the ability of a model to find the targeted objects.
Precision is the percentage of correct positive predictions,

while recall is the percentage of correct positive predictions

among all given ground truths (the number of total objects).

To obtain the precision and recall values, each detected

bounding box needs to be classified as:

a. True positive (TP): A correctly detected ground truths

bounding box.

b. False positive (FP): An incorrectly detected non-

existing or existing object with a misplaced detection

bounding box.

c. False negative (FN): An undetected ground-truth
bounding box.

Suppose a dataset with G ground-truths and a model that

produces N detections and S of which are correct (S ≤ G) [25].

The concepts of precision and recall can be formally

expressed as follows:

 Pr �
∑ ���

	
�
�

∑ ���
	
�
� �∑
��

	
�
�

�
∑ ���

	
�
�

��� ����������
 (1)

 Rc �
∑ ���

	
�
�

∑ ���
	
�
� �∑
��

	
�
�

�
∑ ���

	
�
�

��� ������ ������
 (2)

2) F1-Score and mean Average Precision:

F1-score is a calculation to produce a mean of precision

and recall, which can be expressed as:

 � � 2
��.#�

�#�#�
�

��

���
$%&$'

(

 (3)

The values of the F1-score range from 0 to 1, where 1

means the highest accuracy when both precision and recall are

1 and 0 if precision or recall (or both) have the value of 0.

Mean Average Precision or mAP is the average AP over all

classes, which is expressed as the following formula [34]:

)*+ �

,
∑ *+�

,
�- (4)

where:

APi: The AP value for the i-th class

C: The total number of classes being evaluated.

3) Intersection over Union:

Intersection over Union or IoU is a metric used in object

detection to compare the similarity between two bounding

boxes: the predicted bounding box and the ground reference

bounding box (the box the developer previously labeled). IoU

encodes the shape properties of the objects under comparison

into the region property, such as the widths, heights, and

locations of two bounding boxes. Then, it computes a

normalized measure focusing on their areas or volumes [37].

Fig 6 illustrates how IoU works.

Fig. 6 Training Graph of Each CNN Model

6

4) Traffic Count (volume):

Traffic count is a crucial measurement used to assess the

level of traffic in a video at a specific point in time. This

measurement plays a vital role in evaluating the performance
of a model in real-world scenarios. The traffic count

measurement involves two calculations: the number of

objects detected in a particular second and the number of

objects in the last captured frame. In this experiment, 12

seconds were selected, and all objects were counted during

this period. The machine must successfully detect the objects

to calculate the total traffic for a given time. For each frame,

the machine only counts new objects, assigning them a unique

ID until they disappear. This process continues until the last

frame at 12 seconds, accumulating objects for their respective

categories. Once the total traffic volume is calculated, the next
step is to count the number of objects in the last captured

frame. This calculation identifies and evaluates flaws in the

model's vehicle object detection performance by determining

the number of objects in a single frame.

III. RESULTS AND DISCUSSION

A. Results

This experiment will use five types of CNN models to

detect cars, motorcycles, trucks, bicycles, public

transportation, and people as their targeted objects. Each CNN
model has a different performance result when used in that

scenario. The performance of the models can be measured

through five metrics. The metrics are precision, recall, F1-

score, average IoU percentage, and inference time relative to

mAP@0.50. These five metrics are automatically calculated

by Darknet algorithm and generated as an output. Two

additional metrics were also calculated during the training

process: duration and the average model training loss.

Fig. 7 shows the training process of CSResnext50-Panet-

SPP in a graph. The graph shows that the loss percentage

began to fall after around the 300th iteration and continuously
dropped until the 3000th iteration. From the 3000th iteration,

the loss percentage maintained a steady reduction, staying

between 0% and 2% until the last iteration. The next CNN

model is the DenseNet201-YOLOv4.

Fig. 7 Training Graph of CSResnext50-Panet-SPP

Fig 8 illustrates the model's training graph. This graph

shows the most unsteady training process. Unlike other

training graphs that have a steadier line, this graph shows that

the loss percentage tends to increase and decrease every 100

iterations. However, it still resulted in a lower loss percentage

overall for every 3000 iterations after the 2400th iteration.

Fig. 8 Training Graph of DenseNet201-YOLOv4

Fig 9 shows the training graph of YOLOv3. The training

process of YOLOv3 has many similarities with the training

process of CSResnext50-Panet-SPP with their steady loss

percentage. The last iteration resulted in between 0.2% and
0.6% loss percentage.

Fig. 9 Training Graph of YOLOv3

Fig. 10 presents the next CNN model for training six

classes of objects: YOLOv4. Fig. 10 illustrates the training

process in a graph. After the 2400th iteration, the loss

percentage kept increasing and decreasing by 1% for every

100 iterations. Eventually, the last iteration stopped at

between 1% and 2%.

7

Fig. 10 Training Graph of YOLOv4

Fig. 11 presents the result of the experiment using

YOLOv7-tiny. Fig 11 shows the training process graph of
YOLOv7-tiny. Unlike other models, which have a steady line

of loss percentage with the only difference of how constant

the loss percentage occurs, this training process has a

particular case. After around the 300th iteration, the loss

percentage increases again until the 700th iteration. This case

only takes place in this training process. Then, the loss

percentage kept decreasing steadily like the training process

of CSResnext50-Panet-SPP until the 9600th iteration. From

there on, the loss percentage stays in the same line of loss

percentage until the very end of the iteration.

Fig. 11 Training Graph of YOLOv7-tiny

Every CNN model resulted in a different training graph,

with a different training duration and training loss percentage.

The only similarity is the total number of iterations, which is

12000.

Fig. 12 Training Duration of CNN Models

The training graph shows the training duration of each

CNN model. Fig. 12 presents the training duration of every

CNN model. In this case, the lower the duration, the better the

CNN models because of the low wait time. YOLOv7-Tiny has

the best training duration, with only 3.561 hours. The worst

training duration came from CSResNext50, with 17.434 hours.

The rest of the models have almost the same duration, ranging
from 8.5 to 10.5 hours.

Fig. 13 Average Model Training Loss Graph

The training graph also shows the training loss of each

CNN model. Fig 13 depicts the average training loss of every
CNN model. The lower the value of the training loss, the

better the quality of the model. Three models have a score

under 1.0: YOLOv3, CSResNext50, and YOLOv4. The

lowest training loss score is YOLOv3, 0.37, while

DenseNet201-YOLOv4 has the highest score, with a value of

3.319.

The first three metrics that could affect the model’s

performance are precision, recall, and F1-score. Fig 14 shows

each CNN model's precision, recall, and F1-score metrics.

Compared to other models, YOLOv4 has the highest value in

all three metrics, with a score of 0.99 for precision, 1.0 for

recall, and 1.0 for F1-score. All other CNN models have
decent values, with an over 0.9 score in all metrics, except for

YOLOv7-Tiny, which has a value of less than 0.9 for all

metrics.

Fig. 14 Combined Precision, Recall, and F1-Score Performance Graph

8

Fig. 15 Average IoU Graph of CNN Models

The next metric that could affect the performance of a CNN

model is the average Intersection of Union or IoU. For this

metric, the higher the percentage value, the higher the

performance of a CNN model. Fig 15 shows the average IoU

of CNN models. All models have a high IoU percentage of

over 75%. The highest average IoU value of all five CNN

models is YOLOv4, with a score of 93.63%. In comparison,

the lowest average IoU is YOLOv7-Tiny, with a score of

75.13%.

Fig. 16 Inference Time, Relative to mAP@0.50 Performance Graph

The last metric is the inference time relative to mAP@0.50.

Fig. 16 illustrates the inference time relative to the

mAP@0.50 performance graph of every CNN model. The

inference time represents how fast a model detects the

targeted object. The lower the inference time, the faster the

detection becomes. However, mAP also needs to be
considered to know more about compatibility on such devices.

The CNN model with the fastest inference time and high

compatibility is DenseNet201-YOLOv4. YOLOv3 and

YOLOv4 have a high mAP but have a lower inference time

than DenseNet201-YOLOv4. YOLOv4-Tiny has the lowest

inference time with a mAP of around 98%, while

CSResNext50-Panet SPP has the lowest mAP percentage

with a value of around 97%.

B. Discussion

During the experiment, a total of five different CNN

models were tested to evaluate their performance in detecting

cars (mobil) and motorcycles (motor) as the targeted objects.

Upon completion of the experiment, it was observed that each

CNN model produced varying predictions when presented

with the same test video.The CNN model exhibits precise

predictions for objects falling within three distinct categories:

cars (Mobil), motorcycles (motor), and people (orang). An

illustration of these predictions is presented in Fig 17.

In this frame, the model detects a total of five cars (Mobil),

seven motorcycles (motor), and four people (orang).
Compared to CSResNext50, DenseNet201 detects one person

more but one motorcycle (motor) and one car (Mobil) less.

DenseNet201 could detect a person who was a lot further from

the road. In this frame, the other motorcycle (motor) was a lot

more unclear than in Fig. 17 due to the possibility that the

vehicle was moving too fast. The car (mobile) that was on the

left side of the road and was the furthest from the camera

could not be detected. The problem could be with the tree that

blocks some parts of the car (mobil).

Fig. 17 CSResNext50 Prediction Results to detect the object

Showcasing the results obtained through the employment

of the CSResNext50 CNN model. In this particular frame, the

model successfully recognizes a total of six cars (Mobil), eight

motorcycles (motor), and three individuals (orang). Its

primary focus lies in identifying moving vehicles,

disregarding stationary parked ones. Furthermore, the model

targets explicitly individuals situated close to the road. Within
the context of this figure, three classes of objects are

observable, namely people (orang), cars (mobil), and

motorbikes (motor). However, there exist three other classes

of objects that remain unseen, including trucks (truk), bicycles

(sepeda), and public transportation (angkot). The detection of

public transportation (angkot) and cars (mobil) proves to be a

challenging task for this model, resulting in a somewhat

similar visual appearance between the two classes.

A model could encounter problems detecting objects if the

target object is blocked by another object in the frame or if the

target object moves too fast for the model to detect. Fig. 18

shows the prediction when using the DenseNet201 CNN
model.

Fig. 18 DenseNet201 Prediction Results to detect the object

In recent object detection research, a CNN model was used

to process faces when two target objects were too close to

each other. One of the advantages of this model is its ability

to detect multiple objects in close proximity. For example, in
Fig. 19, the YOLOv3 CNN model was used for prediction. In

this frame, the model successfully detected a total of five cars

9

(mobil), seven motorcycles (motor), and four people (orang).

It was able to detect a person who was far from the road and

all seven visible motorcycles (motor). However, it failed to

detect the car (mobil) on the right side of the road that was

trying to overtake the car (mobil) in front. object detection

research using a CNN model has shown promising results in

detecting multiple objects, even when they are close to each

other. For example, the YOLOv3 CNN model could detect

various objects in a given frame. However, there are still

challenges in accurately detecting all objects, especially in
complex scenarios or occluded by other objects. Further

research and advancements in object detection models are

continuously being made to improve their performance and

accuracy.

Fig. 19 YOLOv3 Prediction Results to detect the object.

In addition to the challenge of detecting target objects,

CNN models can also make incorrect predictions. An

example of this can be seen in Fig. 20, where the YOLOv4

CNN model was used for prediction. In this frame, the model

detected a total of five cars (mobil), eight motorcycles (motor),

one public vehicle (angkot), and five people (orang).

However, unlike the previous model that struggled with
object detection, YOLOv4 misinterpreted the car (mobil) on

the left road, furthest from the camera, as a person instead of

a car. CNN models, like YOLOv4, are designed to learn and

recognize image patterns through extensive training on large

datasets.

Fig. 20 YOLOv4 Prediction

Fig. 21 showcases the prediction results obtained using the

YOLOv7-tiny CNN model. In this frame, the model

successfully detects four cars (mobil), three motorcycles

(motor), one public vehicle (angkot), and four people (orang).

However, similar to YOLOv3, YOLOv7-tiny encounters a

specific issue. It fails to detect the motorcycle (motor) located

next to the car (mobil) on the left side, closest to the camera.

YOLOv7-tiny is a variant of the YOLO object detection

model. It is optimized for edge GPU devices and is designed

to be lightweight, making it suitable for real-world computer

vision applications and distributed systems. While YOLOv7-

tiny offers faster inference times, it may struggle with
detecting certain objects that are small or far away.

Fig. 21 YOLOv7-tiny Prediction results to detect

TABLE III

TOTAL OBJECTS DETECTED IN THE LAST FRAME (VOLUME)

Class

YOLO

v7-

Tiny

YOLO

v4

DenseNet

201-

YOLOv4

CSResNe

xt50

YOLO

v3

Car 4 5 5 6 5

Motorc

ycle
3 8 7 8 7

Truck 0 0 0 0 0

People 0 5 4 3 4

Bicycle 0 0 0 0 0

Public

Transporta

tion

1 1 0 0 0

SUM 8 19 16 17 16

Table III shows the total number of objects detected in the

last frame of the video. The last frame of the video does not

show either trucks or bicycles. Therefore, there is not a single

model that detects those vehicles. In Table III, YOLOv4

resulted with the most objects detected out of all five CNN

models, detecting five cars, eight motorcycles, five people,

and one public transportation. The lowest total object detected

was when using YOLOv7-tiny with four cars, three

motorcycles, and one public transit.

TABLE IV

TOTAL OBJECTS DETECTED IN THE LAST 12 SECONDS

Class

YOLO

v7-

Tiny

YOLO

v4

DenseNet

201-

YOLOv4

CSResNe

xt50

YOLO

v3

Car 22 21 20 19 22

Motorcycl

e
47 81 73 43 65

Truck 0 0 1 0 0

People 0 7 7 8 6

Bicycle 0 0 0 0 0

Public

Transporta

tion

0 1 0 0 0

SUM 69 110 101 70 93

10

Table IV informs the total objects based on the experiment

that were detected in the last 12 seconds of the test video. The

last 12 seconds of the test video without any bicycle in it.

Therefore, all of the models resulted in zero results of

detecting a bicycle. The Table shows that YOLOv4 detects

the most vehicles, with 21 cars, 81 motorcycles, 7 people, and

1 public transportation. The lowest detection rate is the

YOLOv7-tiny, with only 22 cars and 47 motorcycles detected.

Table III and Table IV inform that YOLOv4 is the most

accurate in detecting targeted objects compared to other CNN
models. However, the number of total objects that YOLOv4

detected is not correctly predicted. For example, the model

incorrectly predicts a car into a person. Therefore, other

metrics such as precision, recall, and f1-score, which calculate

the model's accuracy, are needed to determine their overall

performance.

Besides how many objects a model could detect in a

specific time length, inference time relative to the mAP of a

CNN model and the average IoU could also affect their

performance. In Fig 16, all CNN models are highly

compatible with a mAP of above 97%. YOLOv4 has the
highest compatibility but has the second-highest inference

time and the highest average IoU, according to Fig 15. In

conclusion, among five CNN models, YOLOv4 performs

better when detecting objects and has high compatibility and

a high inference time that could slow down the detection

process.

IV. CONCLUSION

An experiment was conducted to determine the most
effective method or algorithm for detecting objects at

intersections of highways and calculating their volume. The

study focused on six objects: cars, motorbikes, bicycles,

trucks, people, and public transportation. These objects were

detected in the same testing environment. The training

process utilized darknet algorithms to detect these six classes

of objects at the intersection. On the other hand, the testing

process employed five CNN models: YOLOv7-Tiny,

YOLOv4, DenseNet201-YOLOv4, CSResNext50, and

YOLOv3. The purpose was to identify which CNN model

produced the most accurate results, including determining the
volume of each object passing through the intersection.

The experiment took place at a busy intersection in

Bandung, West Java. Five CNN models were used: YOLOv3,

YOLOv4, CSResNext50, DenseNet201-YOLOv4, and

YOLOv7-Tiny. The experiment results showed that each

model achieved an accuracy rate of over 87%. Notably, the

YOLOv3 and YOLOv4 models achieved an accuracy rate of

over 98%. This indicates that each CNN model had a

sufficiently high accuracy to detect objects correctly.

However, it should be noted that particular objects may not be

detected if they are blocked or overlapped by other objects or
if they are non-targeted objects, such as trees. Additionally,

fast-moving objects may challenge the CNN models, resulting

in detection errors. To address this issue, it is necessary to

optimize the CNN models or explore alternative models better

suited for this purpose. Further research should focus on

testing the capabilities of these models. Based on the

experiment's findings, it can be concluded that the chosen

CNN models demonstrated high accuracy in detecting objects

at the intersection. However, improvements are needed to

address certain limitations and optimize the models for future

research.

REFERENCES

[1] A. Desmi, L. A. Widari, and R. Yanti, “Efektifitas Model Karakteristik

Arus Lalu Lintas pada Ruas Jalan Simpang 4 Bireun (Perbandingan

dengan Metode Greenshield, Greenberg, Underwood),” Teras Jurnal :

Jurnal Teknik Sipil, vol. 9, no. 1, p. 19, Apr. 2019,

doi:10.29103/tj.v9i1.178.

[2] G. Prati, V. Marín Puchades, M. De Angelis, F. Fraboni, and L.

Pietrantoni, “Factors contributing to bicycle–motorised vehicle

collisions: a systematic literature review,” Transport Reviews, vol. 38,

no. 2, pp. 184–208, Apr. 2017, doi: 10.1080/01441647.2017.1314391.

[3] J. Guerrero-Ibáñez, S. Zeadally, and J. Contreras-Castillo, “Sensor

Technologies for Intelligent Transportation Systems,” Sensors, vol. 18,

no. 4, p. 1212, Apr. 2018, doi: 10.3390/s18041212.

[4] M. Won, “Intelligent Traffic Monitoring Systems for Vehicle

Classification: A Survey,” IEEE Access, vol. 8, pp. 73340–73358,

2020, doi: 10.1109/access.2020.2987634.

[5] J. Bai and Y. Chen, “A Deep Neural Network Based on Classification

of Traffic Volume for Short‐Term Forecasting,” Mathematical

Problems in Engineering, vol. 2019, no. 1, Jan. 2019,

doi:10.1155/2019/6318094.

[6] J. Liu et al., “Secure intelligent traffic light control using fog

computing,” Future Generation Computer Systems, vol. 78, pp. 817–

824, Jan. 2018, doi: 10.1016/j.future.2017.02.017.

[7] N. Kumar, S. S. Rahman, and N. Dhakad, “Fuzzy Inference Enabled

Deep Reinforcement Learning-Based Traffic Light Control for

Intelligent Transportation System,” IEEE Transactions on Intelligent

Transportation Systems, vol. 22, no. 8, pp. 4919–4928, Aug. 2021,

doi:10.1109/tits.2020.2984033.

[8] A. Boukerche and J. Wang, “Machine Learning-based traffic

prediction models for Intelligent Transportation Systems,” Computer

Networks, vol. 181, p. 107530, Nov. 2020,

doi:10.1016/j.comnet.2020.107530.

[9] J. Wang, X. Guo, and X. Yang, “Efficient and Safe Strategies for

Intersection Management: A Review,” Sensors, vol. 21, no. 9, p. 3096,

Apr. 2021, doi: 10.3390/s21093096.

[10] H. Wei, G. Zheng, H. Yao, and Z. Li, “IntelliLight: A reinforcement

learning approach for intelligent traffic light control,” Proceedings of

the 24th ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining, pp. 2496–2505, Jul. 2018,

doi:10.1145/3219819.3220096.

[11] R. I. Meneguette, R. E. De Grande, and A. A. F. Loureiro, Intelligent

Transport System in Smart Cities. Springer International Publishing,

2018. doi: 10.1007/978-3-319-93332-0.

[12] A. T. Wecksler, L. Veale, M. Basanta-Sanchez, and M. Bern,

“Development of Software Workflow for the Rapid Detection of

Cross-Linked Dipeptides,” Journal of the American Society for Mass

Spectrometry, vol. 33, no. 3, pp. 598–602, Feb. 2022,

doi:10.1021/jasms.1c00312.

[13] S. Pradhan and S. Tripathy, “FRAC: a flexible resource allocation for

vehicular cloud system,” IET Intelligent Transport Systems, vol. 14,

no. 14, pp. 2141–2150, Dec. 2020, doi: 10.1049/iet-its.2020.0390.

[14] J. Tang, F. Gao, F. Liu, and X. Chen, “A Denoising Scheme-Based

Traffic Flow Prediction Model: Combination of Ensemble Empirical

Mode Decomposition and Fuzzy C-Means Neural Network,” IEEE

Access, vol. 8, pp. 11546–11559, 2020,

doi:10.1109/access.2020.2964070.

[15] Y. Chen and Z. Li, “An Effective Approach of Vehicle Detection

Using Deep Learning,” Computational Intelligence and Neuroscience,

vol. 2022, pp. 1–9, Jul. 2022, doi: 10.1155/2022/2019257.

[16] Q. Abu Al-Haija and M. Krichen, “A Lightweight In-Vehicle Alcohol

Detection Using Smart Sensing and Supervised Learning,” Computers,

vol. 11, no. 8, p. 121, Aug. 2022, doi: 10.3390/computers11080121.

[17] A. A. Alsulami, Q. Abu Al-Haija, A. Alqahtani, and R. Alsini,

“Symmetrical Simulation Scheme for Anomaly Detection in

Autonomous Vehicles Based on LSTM Model,” Symmetry, vol. 14, no.

7, p. 1450, Jul. 2022, doi: 10.3390/sym14071450.

[18] S. Chen, M. Klemp, J. Taghia, U. Kühnau, N. Pohl, and R. Martin,

“Improved Target Detection Through DNN-Based Multi-Channel

Interference Mitigation in Automotive Radar,” IEEE Transactions on

Radar Systems, vol. 1, pp. 75–89, 2023, doi:10.1109/trs.2023.3279013.

[19] B. G. Rajagopal, N. Vishakraj, N. U. Kumar, and P. Jothivenkatesh,

“Vision-based system for counting of moving vehicles in different

11

weather conditions,” 2017 International conference of Electronics,

Communication and Aerospace Technology (ICECA), pp. 86–91, Apr.

2017, doi: 10.1109/iceca.2017.8203649.

[20] M. A. El-Khoreby and S. Abd Rahman Abu-Bakar, “Vehicle detection

and counting for complex weather conditions,” 2017 IEEE

International Conference on Signal and Image Processing

Applications (ICSIPA), pp. 425–428, Sep. 2017,

doi:10.1109/icsipa.2017.8120648.

[21] S. Sengupta et al., “A review of deep learning with special emphasis

on architectures, applications and recent trends,” Knowledge-Based

Systems, vol. 194, p. 105596, Apr. 2020,

doi:10.1016/j.knosys.2020.105596.

[22] V. K. Sharma and R. N. Mir, “A comprehensive and systematic look

up into deep learning based object detection techniques: A review,”

Computer Science Review, vol. 38, p. 100301, Nov. 2020,

doi:10.1016/j.cosrev.2020.100301.

[23] Z.-Q. Zhao, P. Zheng, S.-T. Xu, and X. Wu, “Object Detection With

Deep Learning: A Review,” IEEE Transactions on Neural Networks

and Learning Systems, vol. 30, no. 11, pp. 3212–3232, Nov. 2019,

doi:10.1109/tnnls.2018.2876865.

[24] J. Zhao et al., “Autonomous driving system: A comprehensive survey,”

Expert Systems with Applications, vol. 242, p. 122836, May 2024,

doi:10.1016/j.eswa.2023.122836.

[25] A. Theissler, J. Pérez-Velázquez, M. Kettelgerdes, and G. Elger,

“Predictive maintenance enabled by machine learning: Use cases and

challenges in the automotive industry,” Reliability Engineering &

System Safety, vol. 215, p. 107864, Nov. 2021,

doi:10.1016/j.ress.2021.107864.

[26] J. Zhao et al., “Improved Vision-Based Vehicle Detection and

Classification by Optimized YOLOv4,” IEEE Access, vol. 10, pp.

8590–8603, 2022, doi: 10.1109/access.2022.3143365.

[27] Q. A. Al-Haija, M. Gharaibeh, and A. Odeh, “Detection in Adverse

Weather Conditions for Autonomous Vehicles via Deep Learning,” AI,

vol. 3, no. 2, pp. 303–317, Apr. 2022, doi: 10.3390/ai3020019.

[28] M. I. Chacon-Murguia and A. Guzman-Pando, “Moving Object

Detection in Video Sequences Based on a Two-Frame Temporal

Information CNN,” Neural Processing Letters, vol. 55, no. 5, pp.

5425–5449, Nov. 2022, doi: 10.1007/s11063-022-11092-1.

[29] C. Amisse, M. E. Jijón-Palma, and J. A. S. Centeno, “Fine-Tuning

Deep Learning Models for Pedestrian Detection,” Boletim de Ciências

Geodésicas, vol. 27, no. 2, 2021, doi: 10.1590/s1982-

21702021000200013.

[30] T. Chen, M. Xu, X. Hui, H. Wu, and L. Lin, “Learning Semantic-

Specific Graph Representation for Multi-Label Image Recognition,”

2019 IEEE/CVF International Conference on Computer Vision

(ICCV), pp. 522–531, Oct. 2019, doi: 10.1109/iccv.2019.00061.

[31] G. J. Ansari, J. H. Shah, M. Yasmin, M. Sharif, and S. L. Fernandes,

“A novel machine learning approach for scene text extraction,” Future

Generation Computer Systems, vol. 87, pp. 328–340, Oct. 2018,

doi:10.1016/j.future.2018.04.074.

[32] N. Jahan, S. Islam, and Md. F. A. Foysal, “Real-Time Vehicle

Classification Using CNN,” 2020 11th International Conference on

Computing, Communication and Networking Technologies (ICCCNT),

pp. 1–6, Jul. 2020, doi: 10.1109/icccnt49239.2020.9225623.

[33] K. Khan, S. B. Zaidi, and A. Ali, “Evaluating the Nature of Distractive

Driving Factors towards Road Traffic Accident,” Civil Engineering

Journal, vol. 6, no. 8, pp. 1555–1580, Aug. 2020, doi: 10.28991/cej-

2020-03091567.

[34] P. Tassinari et al., “A computer vision approach based on deep

learning for the detection of dairy cows in free stall barn,” Computers

and Electronics in Agriculture, vol. 182, p. 106030, Mar. 2021,

doi:10.1016/j.compag.2021.106030.

12

