JOIV : Int. J. Inform. Visualization, 9(1) - January 2025 1-12

INTERNATIONAL
JOURNALON
INFORMATICS
VISUALIZATION

INTERNATIONAL JOURNAL
\ ON INFORMATICS VISUALIZATION

journal homepage : www.joiv.org/index.php/joiv

Enhancing Vision-Based Vehicle Detection and Counting Systems
with the Darknet Algorithm and CNN Model
Abdul Haris Rangkuti ®*, Varyl Hasbi Athala®

“ Computer Science Department, School of Computer Science, Bina Nusantara University, Bandung Campus, Jakarta, Indonesia
p P ip), g p

Corresponding author: “rangku2000@binus.ac.id

Abstract—This study focuses on developing an algorithm that accurately calculates the volume of vehicles passing through a busy
crossroads in Indonesia using object recognition. The high density of vehicles and their proximity often pose a challenge when
distinguishing between vehicle types using a camera. Therefore, the proposed algorithm is designed to assign a unique identity (ID) to
each vehicle and other objects, such as pedestrians, ensuring that volume calculations are not repeated. The objective is to provide an
equitable comparison of road density and the total number of detected vehicles, enabling the determination of whether the road is
crowded. To accomplish this, the algorithm incorporates the Non-Max Suppression function, which displays bounding boxes around
objects with confidence values and counts the objects within each box. Even when objects are nearby, the algorithm tracks them
effectively, thanks to the support of the Darknet Algorithm. The main capabilities of this algorithm for improving vehicle detection
include enhanced accuracy, speed, and generalization ability. Typically, it is used in conjunction with the You Only Look Once (YOLO)
object detection framework. Five convolutional neural network models are tested to assess the algorithm's accuracy: YOLOV3,
YOLOV4, CrResNext50, DenseNet201-YOLOv4, and YOLOvV7-tiny. The training process utilizes the Darknet Algorithm. The best-
performing models, YOLOv3 and YOLOv4, achieve exceptional accuracy and F1 scores of up to 99%. They are followed by
CrResNext50 and DenseNet201-YOLOv4, which achieve accuracy rates of 92% and 98% and F1 scores of 94% and 98%, respectively.
The YOLOV7-tiny model achieves an accuracy rate and F1 score of 86% and 88%, respectively. Overall, the results demonstrate the
algorithm's success in accurately detecting and calculating the volume of vehicles and other objects in a busy intersection. This makes
it a valuable tool for regional government decision-making.

Keywords—Volume; vehicle; object recognition; crossroads; CNN; accuracy; F1 Score.

Manuscript received 12 Feb. 2024, revised 6 Apr. 2024; accepted 3 Jun. 2024. Date of publication 31 Jan. 2025.
International Journal on Informatics Visualization is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

authorities have increasingly turned to CCTV cameras to

I. INTRODUCTION monitor traffic flows and gather valuable data for various

The government has demonstrated its commitment to appllf:atlops. One ,SUCh 'flpphcatlon 15 e.lut.omatlc vehicle
developing infrastructure for road construction throughout f:lass%ﬁc.atlonf which lnvolve§ specialized .software
Indonesia. By providing transportation facilities, the 1dent1fy1ng different types of yehlcles (small, medium, and
government aims to facilitate interaction between local large) in recorded f oqtgge. This technology offers pumerous
communities and their surrounding environment benefits, from optimizing traffic management to informing

. . . infrastructure planning [4].
encompassing social, economic, and cultural aspects [1]. D.sﬂfuc utep ¢ gc[il] 4 effici . .
Roads are crucial in accommodating various vehicles and tiierent current road loads can cause INCLLCICNCY 1n using

pedestrians, including cars, public transport, trucks, bicycles lanes at the intersection. Traffic regulation at the intersection
motorbikes’ and pe dest;'ians They hz;v e b eé: ome ar; regulates the movement of each group of vehicle movements
indispensable component of transportation systems [2]. so that they can move alternately and do not interfere with

Modern society faces serious problems with transportation f.a(ﬁl o?her (;)r disrupt ex1st1ngllﬂi)ws [i% Howe(;/er, trafﬁc
systems, including but not limited to traffic congestion, safety, 1ghts n urban areas are stll less effective due to the

and pollution. Information communication technologies have upbalgnced volume of vehicles. .AH traffic flow Valug s (per
gained increasing attention and importance in modern direction and total) are converted into passenger car units (pcu)

transportation systems [3]. To address this, transport using the car ferry equivalent, which is derived from each type
’ of vehicle as follows [6].

a. Light vehicles (LV), namely two-axle, 4-wheeled
motorized vehicles with 2.0-3.0 m (including passenger
cars, microbuses, pick-ups, and small trucks)

b. Heavy vehicles (HV), namely motorized vehicles with
more than 3.5 m and typically with more than four
wheels (including buses, two axles’ trucks, three trucks,
and combination trucks).

c. Motorcycles (MC), namely two or three-wheeled
motorized vehicles.

Traffic volume is the number of vehicles that pass a certain
point or line. Vehicles are typically classified into several
types, including heavy vehicles, light vehicles, motorcycles,
and non-motorized vehicles [4]. The traffic volume on a road
will vary, forming a traffic flow pattern. Traffic flow patterns
indicate changes in traffic volume over a given period [7].
Basically, traffic flow patterns help us know peak and non-
peak hours and their intervals. Density is the number of
vehicles per unit length of the road (vehicles/km). Density can
be observed from aerial photos and Closed-Circuit Television
(CCTV) installed at several intersection points. Describing
the short-term traffic flow is essential for studying intelligent
transportation systems [8]. Knowing beforehand the real-time
density of a road or an intersection could make the road less
crowded due to drivers avoiding potentially high traffic [9].

Detecting vehicle objects is the first step in obtaining traffic
flow information at the intersection. Object detection aims to
get the location and classification of objects from an image.
The goal is to acquire the features of the object. In this study,
observations will be made of six class objects around the
intersection. Class objects include cars, trucks, public
transportation, bicycles, motorcycles, and people who are at
the intersection location. Five convolutional neural network
models will test the objects during the testing process.
However, the models undergo a training process using
Darknet before detecting the targeted objects. This paper aims
to use object detection on traffic in urban areas and to
experiment with which convolutional neural network models
are best suited for this case.

The crossroads used as the experimental site of this
research is in the Bandung area, West Java province. Fig 1.
shows four intersections with dense characteristics, such as
the intersection of the Buah Batu and Batu Nunggal highways,
during a test experiment using a darknet framework. At the
depicted intersection, the volume of each object class will be
automatically calculated. Knowing the volume of objects for
each class can also improve the supervisory function of
vehicle objects while supporting local government decision-
making.

Implementing an idea of fast and timely traffic flow that
can effectively reduce traffic jams, reduce accidents, and
prepare a comfortable traffic environment. Traffic conditions
at the intersection are data on traffic volume taken during peak
hours in the Bandung city area. The description for the traffic
volume data that became the research material was taken from
several intersection roads in the city of Bandung. At this
intersection, every day, there is a tremendous amount of
traffic. For this reason, regulating traffic lights at crossroads
is needed to run vehicles and accommodate every road user.
The problem with regulating the traffic system using a fixed
time model is it can cause changes in traffic density to be
unpredictable because of the traffic lights.

-
Dk uTmn

Fig. 1 Shows intersections area with four locations during an experiment
using a darknet framework

II. MATERIALS AND METHODS

A. Related Works

An intelligent traffic light control system must be
implemented dynamically with real-time traffic. Studies are
using deep reinforcement learning techniques for traffic light
control, showing reasonably good results for control [10].
Ultimately, using smart transportation (e.g., smart traffic
lights) will make our trips more comfortable and efficient and
help avoid congestion on one side of the road [11]. In general,
the Intelligent Transportation System (ITS) application has
become an essential component and has been widely
implemented for smart cities to overcome the limitations of
traditional transportation systems. The existing traffic light
control system divides the traffic light signals into fixed
durations and operates inefficiently [12]. The description of
the need for Intelligent Transportation Systems (ITS) has
become a concern in recent years. In addition, with the rapid
development of vehicle computing hardware, vehicle sensor
systems, and city-wide infrastructure, many of these
applications continue to be developed, such as Vehicular
Cloud (VC), intelligent traffic control, etc [13].

Traffic demand forecasting is essential for transport
management and public safety. Still, it is very challenging
because of the complex spatial-temporal dependence and
consequent uncertainties created by the road network and
traffic conditions [14]. Traffic flow prediction is the central
part of ITS research. Road traffic data shows the same trend
on successive days. Accurate traffic flow prediction ensures
public safety and solves traffic jams. The increasing demand
for faster travel, severe traffic congestion, and its adverse
impact on traffic safety and environmental conditions have
attracted significant attention from countries worldwide [15]
due to the limited land resources, construction costs, and time-
consuming processes. Furthermore, the highway expansion
project cannot wholly and effectively solve this problem. In
addition, potential traffic demand is also generated due to
increased vehicle traffic capacity [16]. For this reason, the
research is focused on knowing the volume of vehicles in an
area so that it will be an input for local governments to find

appropriate and efficient solutions in dealing with
increasingly severe traffic jams. The description for detecting
vehicle volume in this study is to use Artificial intelligence
technology through machine learning.

The problem that necessitates the development of object
detection applications is the need to accurately determine road
density, particularly at intersections, in real-time. By
addressing the density issue, drivers can avoid road
congestion and reduce the likelihood of encountering heavy
traffic. Several additional benefits are associated with an
application capable of detecting the density of vehicle objects.
Firstly, drivers can actively seek alternative routes to avoid
being trapped in time-consuming traffic jams, thus saving
valuable travel time. Moreover, this technology empowers
drivers to proactively circumvent potential high-traffic areas,
further enhancing their ability to avoid congestion. Target
detection technology, as one of the core technologies in
computer vision, provides basic technical support for many
aspects, such as target tracking, semantic segmentation of
vehicles under heavy traffic conditions, discovering in-
vehicle alcohol to prevent road accidents, and detecting
cyberattacks on autonomous vehicles [17].

The typical approach for determining the number of
vehicles traversing a highway involves employing detection
and tracking techniques. By analyzing the tracking
trajectories of vehicles, it becomes possible to calculate the
total count of vehicles passing through a specific area. The
vehicle calculation process based on detection and tracking
methods can be subdivided into background reduction and
DNN-based methods [18]. Background reduction technology
is used to design the background model and extract the
existing moving vehicles in the videos. Several morphological
operations are usually applied to the vehicle segment to count
the traffic vehicles [19]. The background model is specifically
used for a limited region within the video frame. Subsequently,
morphological processing is applied to the extracted target to
amplify its features and mitigate the impact of obstructing
vehicles [20]. Various techniques are employed for detecting
moving objects. The process involves several post-processing
steps, which are crucial in establishing optimal thresholds for
distinguishing between foreground and background. These
steps significantly enhance the detection rate accuracy
achieved through this technique. However, identifying and
adapting a suitable threshold, particularly in environments
with limited visibility, has proven unsuccessful thus far [19].

The preparation phase uses “ffmpeg” for video cutting and
labeling images (Fig 2). Once the preparation has been
completed, the training phase uses the Darknet algorithm to
train the prepared data. Lastly, the testing phase measures the
performance and outputs the results using OpenCV. OpenCV
is an open-source library of programming functions mainly
for image processing. OpenCV was chosen in favor of
Darknet for the testing due to its ability to write the
appropriate algorithm for the experiment [20].

This comprehensive paper delves into deep learning-based
object detection frameworks, thoroughly reviewing their
capabilities and advancements [21]. Recognizing the diverse
nature of specific detection tasks, we extend our exploration
to encompass a brief survey of notable tasks such as salient
object detection, face detection, and pedestrian detection [22].
By analyzing the unique characteristics of each task, we aim

to provide valuable insights into the evolving landscape of
object detection within the realm of deep learning [23]. The
utilization of deep learning object detection algorithms,
specifically designed for analyzing 2D images, has emerged
as a formidable force in road object detection within
autonomous driving [24]. The remarkable success achieved
by deep learning methods in the context of road vehicle
detection is indisputable [25]. These advancements have
solidified the critical role of deep learning in enhancing the
accuracy and efficiency of road object detection and paved the
way for unprecedented progress in autonomous driving [26].

Nevertheless, rapidly and accurately detecting and
classifying vehicles faces challenges arising from the limited
spacing between vehicles on the road and interference
features in photos or video frames containing vehicle images.
A novel vehicle detection and classification model has been
developed by optimizing the YOLOv4 model to address this
issue. This model incorporates an attention mechanism that
effectively suppresses image interference features by
considering both channel and spatial dimensions [27]. The
CNN model detects moving vehicles using various techniques.
One common approach is frame difference, where the model
compares consecutive frames in a video to identify the
differences in object positions. When an object, such as a
vehicle, moves in a video, its location changes from frame to
frame. By detecting these changes, the model can identify the
presence of moving vehicles [28]. Another method involves
training a deep learning model specifically for object
detection. This approach requires labeled data to train the
model by collecting and annotating a dataset or fine-tuning a
pre-trained model on specific data. The trained model can
then detect moving vehicles in videos [29].

This research focuses on detecting street objects using
camera surveillance. There are six objects in focus: cars,
motorcycles, trucks, Dbicycles, humans, and public
transportation. These objects are likely to be seen throughout
the city streets of Indonesia. In this experiment, video footage
of the road using camera surveillance in Bandung City is used
on the CCTV. The video quality and lighting of the footage
are not the focus. Therefore, the footage is obtained from the
source. There are three phases of the experiment: the
preparation, training, and testing phase. Each phase uses a
different method of processing. This research also compares
five different convolutional neural networks or CNN models.
The five different CNNs, namely use You Only Look Once
Version 3 (YOLOvV3), Version 4 (YOLOv4), Version 7 tiny
(YOLOvV7-tiny), CSResNext50-Panet-SPP, and
DenseNet201-YoloV4. These CNNs were chosen to
differentiate from previously published work. In some
instances, the method for using the CNN model for object
detection and comparing the models to determine the best
performance has been experimented with. Therefore, the main
topic of this research is to compare the performance of the five
different CNN models for each street location. A more
thorough explanation can be seen in the following section.

B. Preparation Phase

In Fig 2, the preparation phase diagram is shown. In the
first step, a system was created to detect the objects within a
CCTYV frame, using images obtained from a road CCTV video.
These videos were mainly 44 seconds long, and five public

CCTYV videos were collected from the Area Traffic Control
System of Bandung DISHUB website. Once collected, frames
from every few seconds of the video get extracted and become
new images using a software called FFMPEG. These images
are used to train the machine. Each image requires labeling to
make the machine understand the image. Image labeling is
constructing a map of visual features with semantic and
spatial labels that describe the objects in the image [30].
Image labeling has the function of teaching the machine to
understand the given image. This process outputs a class
definition text file and an image label text file for each image.
Therefore, these files are the references for the machine
during training to differentiate between objects and non-
objects [31].

Preparation

Road CCTV
Video Dataset Pretrained Convolutional

Weights And Configuration

File

Image Screenshots Every
Few Seconds using
FFMPEG

Image Labels And Trainw

. Data

Training Dataset

Dataset labelling using
labelimg

Fig. 2 Preparation Phase Diagram in detecting the vehicle and People

Image labeling has the function of teaching the machine to
understand the given image. As stated before, the image
labeling process uses labeling as software. This software
reads all the images in the given folder and manually draws
the bounding box and the class name within the image. This
process outputs a class definition text file and an image label
text file for each image. Therefore, these files are the
references for the machine during training to differentiate
between objects and non-objects. There are six types of
objects that the CNN models must detect. These objects are
cars, motorcycles, trucks, people, bicycles, and Indonesian
public transportation called angkot. Each CNN model must
correctly detect and identify as many of these objects as an
object detection system to have a high value. Table I shows
an example of precisely labeled objects with their correct
object category.

TABLEI
IMAGE LABEL SAMPLE AND CATEGORIES IN ENGLISH AND INDONESIAN
LANGUAGE
Category
Image Sample English Indonesian
I;r .
\ k.!ia Car Mobil
Motorcycle Motor
Truck Truk
People Orang
Bicycle Sepeda
Public Transportation Angkot

This experiment needs some pre-trained convolutional
weights and configuration files data for each CNN model, in
addition to the image labels and train data. After completing
the preparation process, there will be four types of data.

C. Dataset Setup

There are 43 combined street images extracted from
obtained road CCTV videos. These images have sizes ranging
from 516 to 832 kilobytes each. These also have relatively the
same size and aspect ratio. This research doesn’t have any
preprocessing methods for the images. However, all images
have sufficient lighting and contrast for the experiment.
Therefore, the machine would learn unprocessed image data
to detect real-world objects. Each image has one labeling text
that contains data on roadway image objects. The dataset also
contains one class definition text. These data are created
during the labeling process by a program called labeling.
Therefore, in total, there are 87 files contained in a dataset for
the training phase. These data are important to help the
machine understand objects in the image. This research used
CCTYV video from one of the obtained video collections for
the testing phase. An overview of the training in detecting the
volume of vehicles at the intersection using the darknet
algorithm can be seen in Fig 3.

: . 3 =

bdg_jamika bdg_jamika bdg_jamika bdg_jarmika
_0007.png

_0006.txt _0007.4xt _0008.png

bdg_jamika bdg_jamika bdg_jamika classes.txt

_0018.txt _0019.png _0019.4xt
Fig. 3 Diagram of Training Phase Using Darknet

The diagram in Fig. 4 presented below is a training process
to describe an automatic system designed to detect traffic with
darknet algorithms. The aim is to detect and inform the
amount of traffic volume at road intersections. This research
aims to improve the detection of darknet traffic by exploring
a series of machine learning and deep learning techniques to
classify such traffic and accurately show related application

types.

D. Training Phase

In Fig 4, the data serves as the foundation for the training
process. The training process was conducted five times as a
part of this experiment, as five different CNN models were
tested. Each of these CNN models possesses its own unique
architecture, including Yolo V3, Yolo V4, CSRestNext50,
Yolo V7 Tiny, and DenseNet201-YoloV4. Throughout this
training process, only five CNN models were utilized
optimally despite attempting several other models that did not
yield satisfactory accuracy results. By employing a variety of
CNN models, it becomes possible to identify the most suitable
model to achieve optimal accuracy. Consequently, the
number of extracted features and the output size may differ
among the models.

Stat)
\1\ //'
SR Neural Network |
Initialization (YoloV4,
Train File Input » CSResNext50, YoloV3,
(YoloV7-Tiny, or

PenseNet201-YOLOv4/)
& ' -

*-{ Start Training iteration J

v
A AN
_lteration™.
modulus " True
100 4

Training \cl)":;‘“
(DARKNET) N

<// modulus M
. 1000

D

Saving Weights
(Last or 1000)
== 4 \

JFalse
//’ \\
L False” Finish
A 4
True

Output Weight Files——{ End

4

e

J

Fig. 4 Training Phase Diagram Using Darknet algorithm.

However, this discrepancy is not problematic, as the
models still adhere to the fundamental CNN architecture.
Specifically, CNNs, in this case, consist of three primary
layers: Convolutional, Pooling, and The Fully Connected
Layer [32]. Another study addresses these issues concerning
accidents and aims to find solutions to reduce road accidents
resulting from traffic-related incidents. The main challenge
faced in computer vision lies in obtaining effective results
when dealing with variations in data shapes and colors [33].
The training process saves the last weight every 100 iterations
to prevent complete data loss if something happens. After
1000 iterations, the final weight files were created. There are
five final weight files for each of the five CNN models.

Therefore, these 100 and 1000 in iteration calculations are
solely to save the training progress in those iteration numbers.
An overview of the monitoring process stages for several
vehicles at bustling crossroads was obtained using the darknet
algorithm. Some peripherals support the training process. It
can be seen in Table II.

TABLE II

DEVICE SPECIFICATION USED FOR TRAINING
No. Component Specification
1 Processor AMD Ryzen™ 5 5600H Up To 4.2

GHz

2 RAM 16 GB DDR4
3 GPU RTX 3060 Mobile 6GB
3 Disk Space 1.5TB

Based on Table II, the heavy process of determining the
difference factor between CNN models to carry out the
training phase is done on the same device. Table II provides
information about the six classes' device specifications for the
training stage. This type of computer device is a personal
computer with the latest generation of computer components
that can carry out tasks specifically in detecting 6 classes of
vehicles at road intersections, including counting the number
of vehicles passing through road intersections. The need for
GPU memory and processor specifications becomes
dominant in processing class objects carried out in the training
process.

E. Testing Phase

The next step after the training process is the testing
process. Fig 5 explains the testing process stages, which start
with inputting data on vehicle objects, people, and input
frames. Next, predictions are made for object detection using
one of the five CNN models used in the experiment. The
prediction results are in the form of calculated bounding box
coordinates. Non-Max suppression calculations are
performed to display only the most optimal bounding boxes
for objects to reduce the number of unimportant bounding
boxes. The bounding boxes are then drawn and saved for later
use by developers or users.

Furthermore, the retrieving vehicle process, the person
class data, and calling the volume calculation function for
each object are immediately processed. This step is crucial so
that the vehicle calculation process can be carried out on the
frame being processed at that time. Calculating the object or
object volume begins by taking data on the number of object
labels detected in the frame and then adding them up. This
becomes the vehicle volume data detected in the frame. Then,
the algorithm performs the object tracking process, which
begins with giving an ID to the object in question. However,
the object tracking process has two "if" cases. If two objects
are adjacent to the main object and the main object is new, the
algorithm gives the object a new ID.

Once object tracking is complete, the calculation of object
volume is also performed for each label. This is done in 12
seconds. When the 12-second time limit is reached, the
calculation algorithm outputs the model testing performance
data, including the traffic volume, the number of objects
detected in each category, and the inference time. In addition,
the algorithm also generates images that contain information

about the traffic volume at that time, the number of objects
that appear in each category, and the resulting bounding box.

Train File Input} [F'ra;n ':P“‘} { Predict J

Calculate

o

Bounding Box
Coordinate

Call Traffic
Types and
Volume
Calculation
Function

Get Current
Number of
Vehicle(s) in
the Frame
(Volume)

Assign ID to
Object

If Different
Objects that are too

close have
Keep ID

False

True

same id

False If an object True
present in the

previous frame,
Count

Keep ID
Detected

Object to the
Corresponding

Assign

Processed
Frame
Including
Traffic Count
Information

If delta time
>=
20 seconds

False

Testing
(OpenCV) Output Testing
Performance
Data

Fig. 5 Diagram of Testing Phase Using OpenCV

F. Measuring Model Performance

There are measurements to determine how well a model
performs in a specific case. This experiment used five
measurements: precision, recall, F1-Score, mean average
precision, and traffic count. Collecting these variables, the
extracted data will be used to compare the performance
between the five chosen CNNs. Therefore, this comparison
will determine which CNN has the most optimal performance
in the case of CCTV object detection. A more detailed
explanation of these calculations is given in the following
section:

1) Precision and Recall:

Precision is used to determine the ability of a model to
detect or identify the targeted objects. The recall is used to
assess the ability of a model to find the targeted objects.
Precision is the percentage of correct positive predictions,
while recall is the percentage of correct positive predictions
among all given ground truths (the number of total objects).
To obtain the precision and recall values, each detected
bounding box needs to be classified as:

a. True positive (TP): A correctly detected ground truths
bounding box.

b. False positive (FP): An incorrectly detected non-
existing or existing object with a misplaced detection
bounding box.

c. False negative (FN): An undetected ground-truth
bounding box.

Suppose a dataset with G ground-truths and a model that
produces N detections and S of which are correct (S < G) [25].
The concepts of precision and recall can be formally
expressed as follows:

Pr = 2}51:17'})11 — Z£:1Tpn (1)
1 TP+YS_1FP, all detections
=1 TP Tn=1TP
RC — n=1 n n=1 n (2)

- 3 1 TPp+Y5 1 FNy " all ground truths

2) FI1-Score and mean Average Precision:
Fl-score is a calculation to produce a mean of precision
and recall, which can be expressed as:

Pr.Rc TP
= FN+FP 3)
2

F, =2 =
PR+Rc TP+
The values of the Fl-score range from 0 to 1, where 1
means the highest accuracy when both precision and recall are
1 and O if precision or recall (or both) have the value of 0.
Mean Average Precision or mAP is the average AP over all
classes, which is expressed as the following formula [34]:

mAP = Z3C, AP, &)

where:
AP;i: The AP value for the i-th class
C: The total number of classes being evaluated.

3) Intersection over Union:

Intersection over Union or IoU is a metric used in object
detection to compare the similarity between two bounding
boxes: the predicted bounding box and the ground reference
bounding box (the box the developer previously labeled). loU
encodes the shape properties of the objects under comparison
into the region property, such as the widths, heights, and
locations of two bounding boxes. Then, it computes a
normalized measure focusing on their areas or volumes [37].
Fig 6 illustrates how IoU works.

IoU =

L
s

Fig. 6 Training Graph of Each CNN Model

4) Traffic Count (volume):

Traffic count is a crucial measurement used to assess the
level of traffic in a video at a specific point in time. This
measurement plays a vital role in evaluating the performance
of a model in real-world scenarios. The traffic count
measurement involves two calculations: the number of
objects detected in a particular second and the number of
objects in the last captured frame. In this experiment, 12
seconds were selected, and all objects were counted during
this period. The machine must successfully detect the objects
to calculate the total traffic for a given time. For each frame,
the machine only counts new objects, assigning them a unique
ID until they disappear. This process continues until the last
frame at 12 seconds, accumulating objects for their respective
categories. Once the total traffic volume is calculated, the next
step is to count the number of objects in the last captured
frame. This calculation identifies and evaluates flaws in the
model's vehicle object detection performance by determining
the number of objects in a single frame.

III. RESULTS AND DISCUSSION

A. Results
This experiment will use five types of CNN models to
detect cars, motorcycles, trucks, bicycles, public

transportation, and people as their targeted objects. Each CNN
model has a different performance result when used in that
scenario. The performance of the models can be measured
through five metrics. The metrics are precision, recall, F1-
score, average loU percentage, and inference time relative to
mAP@0.50. These five metrics are automatically calculated
by Darknet algorithm and generated as an output. Two
additional metrics were also calculated during the training
process: duration and the average model training loss.

Fig. 7 shows the training process of CSResnext50-Panet-
SPP in a graph. The graph shows that the loss percentage
began to fall after around the 300" iteration and continuously
dropped until the 3000th iteration. From the 3000th iteration,
the loss percentage maintained a steady reduction, staying
between 0% and 2% until the last iteration. The next CNN
model is the DenseNet201-YOLOv4.

BN

6o iy

1.0

Mhsetdian,

iwmma i

o 1200 2400 3600 4800 6000 7200 8400 9600 10800 12
current ave loss = 0.4031 iteration = 12000 approx. time left = 0.12 hour
Press 's' to save : chart.png — Saved Iteration number

b aibey

in efg max_batches=12000

Fig. 7 Training Graph of CSResnext50-Panet-SPP

Fig 8 illustrates the model's training graph. This graph
shows the most unsteady training process. Unlike other
training graphs that have a steadier line, this graph shows that
the loss percentage tends to increase and decrease every 100
iterations. However, it still resulted in a lower loss percentage
overall for every 3000 iterations after the 2400™ iteration.

P

1200 2400 3600 4800 6000 7200 8400 9600 10800 12
current avg loss = 3.3194 iteration = 12000 approx. time left = 0.09 hours
Press 's’ to save : chart.png — Saved Iteration number

Fig. 8 Training Graph of DenseNet201-YOLOv4

in efg max_batches=12000

Fig 9 shows the training graph of YOLOvV3. The training
process of YOLOvV3 has many similarities with the training
process of CSResnext50-Panet-SPP with their steady loss
percentage. The last iteration resulted in between 0.2% and
0.6% loss percentage.

e

Wil

WW L S

1200 2400 3600 4800 6000 7200 8400 9600 10800 12
current avg loss = 0.3702 iteration = 12000 approx. time left = 0.08 hours
Press 's' to save : chart.png — Saved Iteration number

Fig. 9 Training Graph of YOLOV3

A A

ANMAAL L &

0.0
[

in cfg max_batches=12000

Fig. 10 presents the next CNN model for training six
classes of objects: YOLOvA4. Fig. 10 illustrates the training
process in a graph. After the 2400th iteration, the loss
percentage kept increasing and decreasing by 1% for every
100 iterations. Eventually, the last iteration stopped at
between 1% and 2%.

—_
i
0.0 |15
loss | 3
H
18.0—
L4
e
t
16. E
14. -
%
12. %
%
10. £
L
i
T
ki
8.0 ;l
5
{ i
6.0 4
A
4.0
2.0 ﬁi i
0.0
[1200 2400 3600 4800 6000 7200 8400 9600 10800]

current avg loss = 0.9444 iteration = 12000 approx. time left = 0.10 hours
Press ‘s’

o save : chart.png ~ Saved Iteration number in efg max_batches=12000

Fig. 10 Training Graph of YOLOv4

Fig. 11 presents the result of the experiment using
YOLOvV7-tiny. Fig 11 shows the training process graph of
YOLOV7-tiny. Unlike other models, which have a steady line
of loss percentage with the only difference of how constant
the loss percentage occurs, this training process has a
particular case. After around the 300" iteration, the loss
percentage increases again until the 700™ iteration. This case
only takes place in this training process. Then, the loss
percentage kept decreasing steadily like the training process
of CSResnext50-Panet-SPP until the 9600™ iteration. From
there on, the loss percentage stays in the same line of loss
percentage until the very end of the iteration.

AN A,

2.0 aa

0.0
0

1200 2400 3600 4800 6000 7200 8400 9600 10800 12
current avg loss = 2.3961 iteration = 12000 approx. time left = 0.03 hours

Press 's' to save : chart.png - Saved Iteration number in cfg max_batches=12000

Fig. 11 Training Graph of YOLOV7-tiny

Every CNN model resulted in a different training graph,
with a different training duration and training loss percentage.

The only similarity is the total number of iterations, which is
12000.

Training Duration Of CNMN Models (Hours)

YOLOW B.B60
CSResNextsSO 17.434
De rseNet201-YOLOva | 10539
YOLOua 9.889
YOLOWZ-Tiny 3.561
0.000 5.000 10,000 15.000 20.000

Lower Is Faster

Fig. 12 Training Duration of CNN Models

The training graph shows the training duration of each
CNN model. Fig. 12 presents the training duration of every
CNN model. In this case, the lower the duration, the better the
CNN models because of the low wait time. YOLOv7-Tiny has
the best training duration, with only 3.561 hours. The worst
training duration came from CSResNext50, with 17.434 hours.

The rest of the models have almost the same duration, ranging
from 8.5 to 10.5 hours.

Average Model Training Loss Graph (%)

YOLOw - 0370
csreshientso [o403
oerseniet201-v0100s |G : -1
vorow [N 0942
votow-iny . | 2355

0,000 0,500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

Lower Is Better

Fig. 13 Average Model Training Loss Graph

The training graph also shows the training loss of each
CNN model. Fig 13 depicts the average training loss of every
CNN model. The lower the value of the training loss, the
better the quality of the model. Three models have a score
under 1.0: YOLOv3, CSResNext50, and YOLOv4. The
lowest training loss score is YOLOv3, 0.37, while
DenseNet201-YOLOvV4 has the highest score, with a value of
3.319.

The first three metrics that could affect the model’s
performance are precision, recall, and F1-score. Fig 14 shows
each CNN model's precision, recall, and Fl-score metrics.
Compared to other models, YOLOv4 has the highest value in
all three metrics, with a score of 0.99 for precision, 1.0 for
recall, and 1.0 for Fl-score. All other CNN models have
decent values, with an over 0.9 score in all metrics, except for
YOLOV7-Tiny, which has a value of less than 0.9 for all
metrics.

Combined Precision, Recall, and F1-Score
Performance Graph

0.99
YOLOw]
0.88
csResnextso B
.98
De e Net201-YOLOuA o8
0.8
.99
YoLOu .
1.00
5
YOLOW -Tiny (.
.88

07 08 os 1

Highar Is Better

mprecsion ™ Recall WFi-score

Fig. 14 Combined Precision, Recall, and F1-Score Performance Graph

Average loU Graph of CNN Models

e I
csrestiextso | T - -
oz rsenerzor-vowovs |G :: -
oion | - -
vorow-Tiny | T ;3%

00086 20.00% 40.00% 60.00% B0.00% 1000086
Highar Is Better

Fig. 15 Average IoU Graph of CNN Models

The next metric that could affect the performance of a CNN
model is the average Intersection of Union or IoU. For this
metric, the higher the percentage value, the higher the
performance of a CNN model. Fig 15 shows the average loU
of CNN models. All models have a high IoU percentage of
over 75%. The highest average IoU value of all five CNN
models is YOLOv4, with a score of 93.63%. In comparison,
the lowest average IoU is YOLOv7-Tiny, with a score of
75.13%.

Inference Time Relative To mAP@0.50 Performance

Graph
1000086

2 3% 4.
29.50% b
CNN Mode

o 99.00%
a

1. CSResNextSO-PanetSPP
& sss0%
& 2.Y010u3
B eoo% L 5 3.Y010u8

4, DerBeNeR201-YOLOVA

97.50% 5. YOLOu7-Tiny
+1

97.00%
0.000 10.000 20.000 30.000 40.000 S0.000 60.000 70.000
Inference Time (ms)

Fig. 16 Inference Time, Relative to mAP@0.50 Performance Graph

The last metric is the inference time relative to mAP@0.50.
Fig. 16 illustrates the inference time relative to the
mAP@0.50 performance graph of every CNN model. The
inference time represents how fast a model detects the
targeted object. The lower the inference time, the faster the
detection becomes. However, mAP also needs to be

considered to know more about compatibility on such devices.

The CNN model with the fastest inference time and high
compatibility is DenseNet201-YOLOv4. YOLOvV3 and
YOLOV4 have a high mAP but have a lower inference time
than DenseNet201-YOLOv4. YOLOv4-Tiny has the lowest
inference time with a mAP of around 98%, while
CSResNext50-Panet SPP has the lowest mAP percentage
with a value of around 97%.

B. Discussion

During the experiment, a total of five different CNN
models were tested to evaluate their performance in detecting
cars (mobil) and motorcycles (motor) as the targeted objects.
Upon completion of the experiment, it was observed that each
CNN model produced varying predictions when presented
with the same test video.The CNN model exhibits precise
predictions for objects falling within three distinct categories:
cars (Mobil), motorcycles (motor), and people (orang). An
illustration of these predictions is presented in Fig 17.

In this frame, the model detects a total of five cars (Mobil),
seven motorcycles (motor), and four people (orang).
Compared to CSResNext50, DenseNet201 detects one person
more but one motorcycle (mofor) and one car (Mobil) less.

DenseNet201 could detect a person who was a lot further from
the road. In this frame, the other motorcycle (motor) was a lot
more unclear than in Fig. 17 due to the possibility that the
vehicle was moving too fast. The car (mobile) that was on the
left side of the road and was the furthest from the camera
could not be detected. The problem could be with the tree that
blocks some parts of the car (mobil).

Fig. 17 CSResNext50 Prediction Results to detect the object

Showcasing the results obtained through the employment
of the CSResNext50 CNN model. In this particular frame, the
model successfully recognizes a total of six cars (Mobil), eight
motorcycles (motor), and three individuals (orang). Its
primary focus lies in identifying moving vehicles,
disregarding stationary parked ones. Furthermore, the model
targets explicitly individuals situated close to the road. Within
the context of this figure, three classes of objects are
observable, namely people (orang), cars (mobil), and
motorbikes (motor). However, there exist three other classes
of objects that remain unseen, including trucks (truk), bicycles
(sepeda), and public transportation (angkot). The detection of
public transportation (angkot) and cars (mobil) proves to be a
challenging task for this model, resulting in a somewhat
similar visual appearance between the two classes.

A model could encounter problems detecting objects if the
target object is blocked by another object in the frame or if the
target object moves too fast for the model to detect. Fig. 18
shows the prediction when using the DenseNet201 CNN
model.

PORRIF IR [+ - ¢ ¥
Fig. 18 DenseNet201 Prediction Results to detect the object

In recent object detection research, a CNN model was used
to process faces when two target objects were too close to
each other. One of the advantages of this model is its ability
to detect multiple objects in close proximity. For example, in
Fig. 19, the YOLOv3 CNN model was used for prediction. In
this frame, the model successfully detected a total of five cars

(mobil), seven motorcycles (motor), and four people (orang).
It was able to detect a person who was far from the road and
all seven visible motorcycles (motor). However, it failed to
detect the car (mobil) on the right side of the road that was
trying to overtake the car (mobil) in front. object detection
research using a CNN model has shown promising results in
detecting multiple objects, even when they are close to each
other. For example, the YOLOv3 CNN model could detect
various objects in a given frame. However, there are still
challenges in accurately detecting all objects, especially in
complex scenarios or occluded by other objects. Further
research and advancements in object detection models are
continuously being made to improve their performance and
accuracy.

Fig. 19 YOLOV3 Prediction Results to detect the object.

In addition to the challenge of detecting target objects,
CNN models can also make incorrect predictions. An
example of this can be seen in Fig. 20, where the YOLOv4
CNN model was used for prediction. In this frame, the model
detected a total of five cars (mobil), eight motorcycles (motor),
one public vehicle (angkot), and five people (orang).
However, unlike the previous model that struggled with
object detection, YOLOv4 misinterpreted the car (mobil) on
the left road, furthest from the camera, as a person instead of
a car. CNN models, like YOLOV4, are designed to learn and
recognize image patterns through extensive training on large
datasets.

Fig. 20 YOLOvV4 Prediction

Fig. 21 showcases the prediction results obtained using the
YOLOv7-tiny CNN model. In this frame, the model

10

successfully detects four cars (mobil), three motorcycles
(motor), one public vehicle (angkot), and four people (orang).
However, similar to YOLOv3, YOLOv7-tiny encounters a
specific issue. It fails to detect the motorcycle (motor) located
next to the car (mobil) on the left side, closest to the camera.
YOLOvV7-tiny is a variant of the YOLO object detection
model. It is optimized for edge GPU devices and is designed
to be lightweight, making it suitable for real-world computer
vision applications and distributed systems. While YOLOv7-
tiny offers faster inference times, it may struggle with
detecting certain objects that are small or far away.

Fig. 21 YOLOv7-tiny Prediction results to detect

TABLE III
TOTAL OBJECTS DETECTED IN THE LAST FRAME (VOLUME)
YOLO yorLo DemseNet qpesNe YOLO
Class v7- va 201- 50 V3
Tiny YOLOv4

Car 4 5 5 6 5

Motorc 3 8 7 8 7
ycle

Truck 0 0 0 0 0

People 0 5 4 3 4

Bicycle 0 0 0 0 0

Public
Transporta 1 1 0 0 0
tion

SUM 8 19 16 17 16

Table III shows the total number of objects detected in the
last frame of the video. The last frame of the video does not
show either trucks or bicycles. Therefore, there is not a single
model that detects those vehicles. In Table III, YOLOv4
resulted with the most objects detected out of all five CNN
models, detecting five cars, eight motorcycles, five people,
and one public transportation. The lowest total object detected
was when using YOLOv7-tiny with four cars, three
motorcycles, and one public transit.

TABLE IV
TOTAL OBJECTS DETECTED IN THE LAST 12 SECONDS
YOLO yorLo DemseNet cqresve YOLO
Class v7- va 201- 50 V3
Tiny YOLOv4

Car 22 21 20 19 22
Ie\’[‘“orcyd 47 81 73 4 65
Truck 0 0 1 0 0
People 0 7 7 8 6
Bicycle 0 0 0 0 0
Public
Transporta 0 1 0 0 0
tion
SUM 69 110 101 70 93

Table IV informs the total objects based on the experiment
that were detected in the last 12 seconds of the test video. The
last 12 seconds of the test video without any bicycle in it.
Therefore, all of the models resulted in zero results of
detecting a bicycle. The Table shows that YOLOv4 detects
the most vehicles, with 21 cars, 81 motorcycles, 7 people, and
1 public transportation. The lowest detection rate is the
YOLOV7-tiny, with only 22 cars and 47 motorcycles detected.

Table III and Table IV inform that YOLOV4 is the most
accurate in detecting targeted objects compared to other CNN
models. However, the number of total objects that YOLOv4
detected is not correctly predicted. For example, the model
incorrectly predicts a car into a person. Therefore, other
metrics such as precision, recall, and f1-score, which calculate
the model's accuracy, are needed to determine their overall
performance.

Besides how many objects a model could detect in a
specific time length, inference time relative to the mAP of a
CNN model and the average IoU could also affect their
performance. In Fig 16, all CNN models are highly
compatible with a mAP of above 97%. YOLOv4 has the
highest compatibility but has the second-highest inference
time and the highest average IoU, according to Fig 15. In
conclusion, among five CNN models, YOLOv4 performs
better when detecting objects and has high compatibility and
a high inference time that could slow down the detection
process.

IV. CONCLUSION

An experiment was conducted to determine the most
effective method or algorithm for detecting objects at
intersections of highways and calculating their volume. The
study focused on six objects: cars, motorbikes, bicycles,
trucks, people, and public transportation. These objects were
detected in the same testing environment. The training
process utilized darknet algorithms to detect these six classes
of objects at the intersection. On the other hand, the testing
process employed five CNN models: YOLOv7-Tiny,
YOLOv4, DenseNet201-YOLOv4, CSResNext50, and
YOLOV3. The purpose was to identify which CNN model
produced the most accurate results, including determining the
volume of each object passing through the intersection.

The experiment took place at a busy intersection in
Bandung, West Java. Five CNN models were used: YOLOV3,
YOLOv4, CSResNext50, DenseNet201-YOLOv4, and
YOLOV7-Tiny. The experiment results showed that each
model achieved an accuracy rate of over 87%. Notably, the
YOLOV3 and YOLOv4 models achieved an accuracy rate of
over 98%. This indicates that each CNN model had a
sufficiently high accuracy to detect objects correctly.
However, it should be noted that particular objects may not be
detected if they are blocked or overlapped by other objects or
if they are non-targeted objects, such as trees. Additionally,
fast-moving objects may challenge the CNN models, resulting
in detection errors. To address this issue, it is necessary to
optimize the CNN models or explore alternative models better
suited for this purpose. Further research should focus on
testing the capabilities of these models. Based on the
experiment's findings, it can be concluded that the chosen
CNN models demonstrated high accuracy in detecting objects
at the intersection. However, improvements are needed to

11

address certain limitations and optimize the models for future
research.

REFERENCES

A.Desmi, L. A. Widari, and R. Yanti, “Efektifitas Model Karakteristik
Arus Lalu Lintas pada Ruas Jalan Simpang 4 Bireun (Perbandingan
dengan Metode Greenshield, Greenberg, Underwood),” Teras Jurnal :
Jurnal Teknik Sipil, vol. 9, no. 1, p. 19, Apr. 2019,
doi:10.29103/tj.v9il1.178.

G. Prati, V. Marin Puchades, M. De Angelis, F. Fraboni, and L.
Pietrantoni, “Factors contributing to bicycle—motorised vehicle
collisions: a systematic literature review,” Transport Reviews, vol. 38,
no. 2, pp. 184-208, Apr. 2017, doi: 10.1080/01441647.2017.1314391.
J. Guerrero-Ibafiez, S. Zeadally, and J. Contreras-Castillo, “Sensor
Technologies for Intelligent Transportation Systems,” Sensors, vol. 18,
no. 4, p. 1212, Apr. 2018, doi: 10.3390/s18041212.

M. Won, “Intelligent Traffic Monitoring Systems for Vehicle
Classification: A Survey,” IEEE Access, vol. 8, pp. 73340-73358,
2020, doi: 10.1109/access.2020.2987634.

J.Baiand Y. Chen, “A Deep Neural Network Based on Classification
of Traffic Volume for Short - Term Forecasting,” Mathematical
Problems in Engineering, vol. 2019, no. 1, Jan. 2019,
doi:10.1155/2019/6318094.

J. Liu et al, “Secure intelligent traffic light control using fog
computing,” Future Generation Computer Systems, vol. 78, pp. 817—
824, Jan. 2018, doi: 10.1016/j.future.2017.02.017.

N. Kumar, S. S. Rahman, and N. Dhakad, “Fuzzy Inference Enabled
Deep Reinforcement Learning-Based Traffic Light Control for
Intelligent Transportation System,” /IEEE Transactions on Intelligent
Transportation Systems, vol. 22, no. 8, pp. 4919-4928, Aug. 2021,
doi:10.1109/tits.2020.2984033.

A. Boukerche and J. Wang, “Machine Learning-based traffic
prediction models for Intelligent Transportation Systems,” Computer
Networks, vol. 181, p. 107530, Nov. 2020,
doi:10.1016/j.comnet.2020.107530.

J. Wang, X. Guo, and X. Yang, “Efficient and Safe Strategies for
Intersection Management: A Review,” Sensors, vol. 21, n0. 9, p. 3096,
Apr. 2021, doi: 10.3390/521093096.

H. Wei, G. Zheng, H. Yao, and Z. Li, “IntelliLight: A reinforcement
learning approach for intelligent traffic light control,” Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 2496-2505, Jul. 2018,
doi:10.1145/3219819.3220096.

R. I. Meneguette, R. E. De Grande, and A. A. F. Loureiro, Intelligent
Transport System in Smart Cities. Springer International Publishing,
2018. doi: 10.1007/978-3-319-93332-0.

A. T. Wecksler, L. Veale, M. Basanta-Sanchez, and M. Bern,
“Development of Software Workflow for the Rapid Detection of
Cross-Linked Dipeptides,” Journal of the American Society for Mass
Spectrometry, vol. 33, no. 3, pp. 598-602, Feb. 2022,
doi:10.1021/jasms.1c00312.

S. Pradhan and S. Tripathy, “FRAC: a flexible resource allocation for
vehicular cloud system,” IET Intelligent Transport Systems, vol. 14,
no. 14, pp. 2141-2150, Dec. 2020, doi: 10.1049/iet-its.2020.0390.

J. Tang, F. Gao, F. Liu, and X. Chen, “A Denoising Scheme-Based
Traffic Flow Prediction Model: Combination of Ensemble Empirical
Mode Decomposition and Fuzzy C-Means Neural Network,” IEEE
Access, vol. 8, pp- 11546-11559, 2020,
doi:10.1109/access.2020.2964070.

Y. Chen and Z. Li, “An Effective Approach of Vehicle Detection
Using Deep Learning,” Computational Intelligence and Neuroscience,
vol. 2022, pp. 1-9, Jul. 2022, doi: 10.1155/2022/2019257.

Q. Abu Al-Haija and M. Krichen, “A Lightweight In-Vehicle Alcohol
Detection Using Smart Sensing and Supervised Learning,” Computers,
vol. 11, no. 8, p. 121, Aug. 2022, doi: 10.3390/computers11080121.
A. A. Alsulami, Q. Abu Al-Haija, A. Alqahtani, and R. Alsini,
“Symmetrical Simulation Scheme for Anomaly Detection in
Autonomous Vehicles Based on LSTM Model,” Symmetry, vol. 14, no.
7,p. 1450, Jul. 2022, doi: 10.3390/sym14071450.

S. Chen, M. Klemp, J. Taghia, U. Kiihnau, N. Pohl, and R. Martin,
“Improved Target Detection Through DNN-Based Multi-Channel
Interference Mitigation in Automotive Radar,” IEEE Transactions on
Radar Systems, vol. 1, pp. 75-89, 2023, doi:10.1109/trs.2023.3279013.
B. G. Rajagopal, N. Vishakraj, N. U. Kumar, and P. Jothivenkatesh,
“Vision-based system for counting of moving vehicles in different

[13]

[14]

(18]

[19]

[20]

[21]

[22]

[26]

weather conditions,” 2017 International conference of Electronics,
Communication and Aerospace Technology (ICECA), pp. 86-91, Apr.
2017, doi: 10.1109/iceca.2017.8203649.

M. A. El-Khoreby and S. Abd Rahman Abu-Bakar, “Vehicle detection

and counting for complex weather conditions,” 2017 IEEE
International Conference on Signal and Image Processing
Applications (ICSIPA), pp- 425-428, Sep. 2017,

doi:10.1109/icsipa.2017.8120648.

S. Sengupta et al., “A review of deep learning with special emphasis
on architectures, applications and recent trends,” Knowledge-Based
Systems, vol. 194, p- 105596, Apr. 2020,
doi:10.1016/j.knosys.2020.105596.

V. K. Sharma and R. N. Mir, “A comprehensive and systematic look
up into deep learning based object detection techniques: A review,”
Computer Science Review, vol. 38, p. 100301, Nov. 2020,
doi:10.1016/j.cosrev.2020.100301.

Z.-Q. Zhao, P. Zheng, S.-T. Xu, and X. Wu, “Object Detection With
Deep Learning: A Review,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 30, no. 11, pp. 3212-3232, Nov. 2019,
doi:10.1109/tnnls.2018.2876865.

J. Zhao et al., “Autonomous driving system: A comprehensive survey,”
Expert Systems with Applications, vol. 242, p. 122836, May 2024,
doi:10.1016/j.eswa.2023.122836.

A. Theissler, J. Pérez-Velazquez, M. Kettelgerdes, and G. Elger,
“Predictive maintenance enabled by machine learning: Use cases and
challenges in the automotive industry,” Reliability Engineering &

System Safety, vol. 215, p. 107864, Nov. 2021,
doi:10.1016/j.ress.2021.107864.
J. Zhao et al., “Improved Vision-Based Vehicle Detection and

Classification by Optimized YOLOv4,” IEEE Access, vol. 10, pp.
8590-8603, 2022, doi: 10.1109/access.2022.3143365.

12

[27]

(28]

[30]

[32]

[34]

Q. A. Al-Haija, M. Gharaibeh, and A. Odeh, “Detection in Adverse
Weather Conditions for Autonomous Vehicles via Deep Learning,” A7,
vol. 3, no. 2, pp. 303-317, Apr. 2022, doi: 10.3390/ai3020019.

M. I Chacon-Murguia and A. Guzman-Pando, “Moving Object
Detection in Video Sequences Based on a Two-Frame Temporal
Information CNN,” Neural Processing Letters, vol. 55, no. 5, pp.
5425-5449, Nov. 2022, doi: 10.1007/s11063-022-11092-1.

C. Amisse, M. E. Jijon-Palma, and J. A. S. Centeno, “Fine-Tuning
Deep Learning Models for Pedestrian Detection,” Boletim de Ciéncias
Geodésicas, vol. 27, mno. 2, 2021, doi: 10.1590/s1982-
21702021000200013.

T. Chen, M. Xu, X. Hui, H. Wu, and L. Lin, “Learning Semantic-
Specific Graph Representation for Multi-Label Image Recognition,”
2019 IEEE/CVF International Conference on Computer Vision
(ICCV), pp. 522-531, Oct. 2019, doi: 10.1109/iccv.2019.00061.

G. J. Ansari, J. H. Shah, M. Yasmin, M. Sharif, and S. L. Fernandes,
“A novel machine learning approach for scene text extraction,” Future
Generation Computer Systems, vol. 87, pp. 328-340, Oct. 2018,
doi:10.1016/j.future.2018.04.074.

N. Jahan, S. Islam, and Md. F. A. Foysal, “Real-Time Vehicle
Classification Using CNN,” 2020 11th International Conference on
Computing, Communication and Networking Technologies (ICCCNT),
pp. 1-6, Jul. 2020, doi: 10.1109/iccent49239.2020.9225623.

K. Khan, S. B. Zaidi, and A. Ali, “Evaluating the Nature of Distractive
Driving Factors towards Road Traffic Accident,” Civil Engineering
Journal, vol. 6, no. 8, pp. 1555-1580, Aug. 2020, doi: 10.28991/cej-
2020-03091567.

P. Tassinari et al., “A computer vision approach based on deep
learning for the detection of dairy cows in free stall barn,” Computers
and Electronics in Agriculture, vol. 182, p. 106030, Mar. 2021,
doi:10.1016/j.compag.2021.106030.

