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Abstract—This study focuses on developing an algorithm that accurately calculates the volume of vehicles passing through a busy 

crossroads in Indonesia using object recognition. The high density of vehicles and their proximity often pose a challenge when 

distinguishing between vehicle types using a camera. Therefore, the proposed algorithm is designed to assign a unique identity (ID) to 

each vehicle and other objects, such as pedestrians, ensuring that volume calculations are not repeated. The objective is to provide an 

equitable comparison of road density and the total number of detected vehicles, enabling the determination of whether the road is 

crowded. To accomplish this, the algorithm incorporates the Non-Max Suppression function, which displays bounding boxes around 

objects with confidence values and counts the objects within each box. Even when objects are nearby, the algorithm tracks them 

effectively, thanks to the support of the Darknet Algorithm. The main capabilities of this algorithm for improving vehicle detection 

include enhanced accuracy, speed, and generalization ability. Typically, it is used in conjunction with the You Only Look Once (YOLO) 

object detection framework. Five convolutional neural network models are tested to assess the algorithm's accuracy: YOLOv3, 

YOLOv4, CrResNext50, DenseNet201-YOLOv4, and YOLOv7-tiny. The training process utilizes the Darknet Algorithm. The best-

performing models, YOLOv3 and YOLOv4, achieve exceptional accuracy and F1 scores of up to 99%. They are followed by 

CrResNext50 and DenseNet201-YOLOv4, which achieve accuracy rates of 92% and 98% and F1 scores of 94% and 98%, respectively. 

The YOLOv7-tiny model achieves an accuracy rate and F1 score of 86% and 88%, respectively. Overall, the results demonstrate the 

algorithm's success in accurately detecting and calculating the volume of vehicles and other objects in a busy intersection. This makes 

it a valuable tool for regional government decision-making. 
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I. INTRODUCTION

The government has demonstrated its commitment to 

developing infrastructure for road construction throughout 

Indonesia. By providing transportation facilities, the 

government aims to facilitate interaction between local 

communities and their surrounding environment, 

encompassing social, economic, and cultural aspects [1]. 
Roads are crucial in accommodating various vehicles and 

pedestrians, including cars, public transport, trucks, bicycles, 

motorbikes, and pedestrians. They have become an 

indispensable component of transportation systems [2]. 

Modern society faces serious problems with transportation 

systems, including but not limited to traffic congestion, safety, 

and pollution. Information communication technologies have 

gained increasing attention and importance in modern 

transportation systems [3]. To address this, transport 

authorities have increasingly turned to CCTV cameras to 

monitor traffic flows and gather valuable data for various 

applications. One such application is automatic vehicle 

classification, which involves specialized software 

identifying different types of vehicles (small, medium, and 

large) in recorded footage. This technology offers numerous 

benefits, from optimizing traffic management to informing 

infrastructure planning [4]. 

Different current road loads can cause inefficiency in using 

lanes at the intersection. Traffic regulation at the intersection 

regulates the movement of each group of vehicle movements 
so that they can move alternately and do not interfere with 

each other or disrupt existing flows [5]. However, traffic 

lights in urban areas are still less effective due to the 

unbalanced volume of vehicles. All traffic flow values (per 

direction and total) are converted into passenger car units (pcu) 

using the car ferry equivalent, which is derived from each type 

of vehicle as follows [6]. 
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a. Light vehicles (LV), namely two-axle, 4-wheeled 

motorized vehicles with 2.0-3.0 m (including passenger 

cars, microbuses, pick-ups, and small trucks) 

b. Heavy vehicles (HV), namely motorized vehicles with 

more than 3.5 m and typically with more than four 

wheels (including buses, two axles’ trucks, three trucks, 

and combination trucks). 

c. Motorcycles (MC), namely two or three-wheeled 

motorized vehicles.  

Traffic volume is the number of vehicles that pass a certain 
point or line. Vehicles are typically classified into several 

types, including heavy vehicles, light vehicles, motorcycles, 

and non-motorized vehicles [4]. The traffic volume on a road 

will vary, forming a traffic flow pattern. Traffic flow patterns 

indicate changes in traffic volume over a given period [7]. 

Basically, traffic flow patterns help us know peak and non-

peak hours and their intervals. Density is the number of 

vehicles per unit length of the road (vehicles/km). Density can 

be observed from aerial photos and Closed-Circuit Television 

(CCTV) installed at several intersection points. Describing 

the short-term traffic flow is essential for studying intelligent 
transportation systems [8]. Knowing beforehand the real-time 

density of a road or an intersection could make the road less 

crowded due to drivers avoiding potentially high traffic [9].  

Detecting vehicle objects is the first step in obtaining traffic 

flow information at the intersection. Object detection aims to 

get the location and classification of objects from an image. 

The goal is to acquire the features of the object. In this study, 

observations will be made of six class objects around the 

intersection. Class objects include cars, trucks, public 

transportation, bicycles, motorcycles, and people who are at 

the intersection location. Five convolutional neural network 
models will test the objects during the testing process. 

However, the models undergo a training process using 

Darknet before detecting the targeted objects. This paper aims 

to use object detection on traffic in urban areas and to 

experiment with which convolutional neural network models 

are best suited for this case. 

The crossroads used as the experimental site of this 

research is in the Bandung area, West Java province. Fig 1. 

shows four intersections with dense characteristics, such as 

the intersection of the Buah Batu and Batu Nunggal highways, 

during a test experiment using a darknet framework. At the 

depicted intersection, the volume of each object class will be 
automatically calculated. Knowing the volume of objects for 

each class can also improve the supervisory function of 

vehicle objects while supporting local government decision-

making.  

Implementing an idea of fast and timely traffic flow that 

can effectively reduce traffic jams, reduce accidents, and 

prepare a comfortable traffic environment. Traffic conditions 

at the intersection are data on traffic volume taken during peak 

hours in the Bandung city area. The description for the traffic 

volume data that became the research material was taken from 

several intersection roads in the city of Bandung. At this 
intersection, every day, there is a tremendous amount of 

traffic. For this reason, regulating traffic lights at crossroads 

is needed to run vehicles and accommodate every road user. 

The problem with regulating the traffic system using a fixed 

time model is it can cause changes in traffic density to be 

unpredictable because of the traffic lights. 

 
Fig. 1  Shows intersections area with four locations during an experiment 

using a darknet framework 

II. MATERIALS AND METHODS 

A. Related Works 

An intelligent traffic light control system must be 

implemented dynamically with real-time traffic. Studies are 

using deep reinforcement learning techniques for traffic light 

control, showing reasonably good results for control [10]. 

Ultimately, using smart transportation (e.g., smart traffic 

lights) will make our trips more comfortable and efficient and 

help avoid congestion on one side of the road [11]. In general, 

the Intelligent Transportation System (ITS) application has 

become an essential component and has been widely 
implemented for smart cities to overcome the limitations of 

traditional transportation systems. The existing traffic light 

control system divides the traffic light signals into fixed 

durations and operates inefficiently [12]. The description of 

the need for Intelligent Transportation Systems (ITS) has 

become a concern in recent years. In addition, with the rapid 

development of vehicle computing hardware, vehicle sensor 

systems, and city-wide infrastructure, many of these 

applications continue to be developed, such as Vehicular 

Cloud (VC), intelligent traffic control, etc [13].  

Traffic demand forecasting is essential for transport 

management and public safety. Still, it is very challenging 
because of the complex spatial-temporal dependence and 

consequent uncertainties created by the road network and 

traffic conditions [14]. Traffic flow prediction is the central 

part of ITS research. Road traffic data shows the same trend 

on successive days. Accurate traffic flow prediction ensures 

public safety and solves traffic jams. The increasing demand 

for faster travel, severe traffic congestion, and its adverse 

impact on traffic safety and environmental conditions have 

attracted significant attention from countries worldwide [15] 

due to the limited land resources, construction costs, and time-

consuming processes. Furthermore, the highway expansion 
project cannot wholly and effectively solve this problem. In 

addition, potential traffic demand is also generated due to 

increased vehicle traffic capacity [16]. For this reason, the 

research is focused on knowing the volume of vehicles in an 

area so that it will be an input for local governments to find 
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appropriate and efficient solutions in dealing with 

increasingly severe traffic jams. The description for detecting 

vehicle volume in this study is to use Artificial intelligence 

technology through machine learning. 

The problem that necessitates the development of object 

detection applications is the need to accurately determine road 

density, particularly at intersections, in real-time. By 

addressing the density issue, drivers can avoid road 

congestion and reduce the likelihood of encountering heavy 

traffic. Several additional benefits are associated with an 
application capable of detecting the density of vehicle objects. 

Firstly, drivers can actively seek alternative routes to avoid 

being trapped in time-consuming traffic jams, thus saving 

valuable travel time. Moreover, this technology empowers 

drivers to proactively circumvent potential high-traffic areas, 

further enhancing their ability to avoid congestion. Target 

detection technology, as one of the core technologies in 

computer vision, provides basic technical support for many 

aspects, such as target tracking, semantic segmentation of 

vehicles under heavy traffic conditions, discovering in-

vehicle alcohol to prevent road accidents, and detecting 
cyberattacks on autonomous vehicles [17]. 

The typical approach for determining the number of 

vehicles traversing a highway involves employing detection 

and tracking techniques. By analyzing the tracking 

trajectories of vehicles, it becomes possible to calculate the 

total count of vehicles passing through a specific area. The 

vehicle calculation process based on detection and tracking 

methods can be subdivided into background reduction and 

DNN-based methods [18]. Background reduction technology 

is used to design the background model and extract the 

existing moving vehicles in the videos. Several morphological 
operations are usually applied to the vehicle segment to count 

the traffic vehicles [19]. The background model is specifically 

used for a limited region within the video frame. Subsequently, 

morphological processing is applied to the extracted target to 

amplify its features and mitigate the impact of obstructing 

vehicles [20]. Various techniques are employed for detecting 

moving objects. The process involves several post-processing 

steps, which are crucial in establishing optimal thresholds for 

distinguishing between foreground and background. These 

steps significantly enhance the detection rate accuracy 

achieved through this technique. However, identifying and 

adapting a suitable threshold, particularly in environments 
with limited visibility, has proven unsuccessful thus far [19]. 

The preparation phase uses “ffmpeg” for video cutting and 

labeling images (Fig 2). Once the preparation has been 

completed, the training phase uses the Darknet algorithm to 

train the prepared data. Lastly, the testing phase measures the 

performance and outputs the results using OpenCV. OpenCV 

is an open-source library of programming functions mainly 

for image processing. OpenCV was chosen in favor of 

Darknet for the testing due to its ability to write the 

appropriate algorithm for the experiment [20]. 

This comprehensive paper delves into deep learning-based 
object detection frameworks, thoroughly reviewing their 

capabilities and advancements [21]. Recognizing the diverse 

nature of specific detection tasks, we extend our exploration 

to encompass a brief survey of notable tasks such as salient 

object detection, face detection, and pedestrian detection [22]. 

By analyzing the unique characteristics of each task, we aim 

to provide valuable insights into the evolving landscape of 

object detection within the realm of deep learning [23]. The 

utilization of deep learning object detection algorithms, 

specifically designed for analyzing 2D images, has emerged 

as a formidable force in road object detection within 

autonomous driving [24]. The remarkable success achieved 

by deep learning methods in the context of road vehicle 

detection is indisputable [25]. These advancements have 

solidified the critical role of deep learning in enhancing the 

accuracy and efficiency of road object detection and paved the 
way for unprecedented progress in autonomous driving [26].  

Nevertheless, rapidly and accurately detecting and 

classifying vehicles faces challenges arising from the limited 

spacing between vehicles on the road and interference 

features in photos or video frames containing vehicle images. 

A novel vehicle detection and classification model has been 

developed by optimizing the YOLOv4 model to address this 

issue. This model incorporates an attention mechanism that 

effectively suppresses image interference features by 

considering both channel and spatial dimensions [27]. The 

CNN model detects moving vehicles using various techniques. 
One common approach is frame difference, where the model 

compares consecutive frames in a video to identify the 

differences in object positions. When an object, such as a 

vehicle, moves in a video, its location changes from frame to 

frame. By detecting these changes, the model can identify the 

presence of moving vehicles [28]. Another method involves 

training a deep learning model specifically for object 

detection. This approach requires labeled data to train the 

model by collecting and annotating a dataset or fine-tuning a 

pre-trained model on specific data. The trained model can 

then detect moving vehicles in videos [29].  
This research focuses on detecting street objects using 

camera surveillance. There are six objects in focus: cars, 

motorcycles, trucks, bicycles, humans, and public 

transportation. These objects are likely to be seen throughout 

the city streets of Indonesia. In this experiment, video footage 

of the road using camera surveillance in Bandung City is used 

on the CCTV. The video quality and lighting of the footage 

are not the focus. Therefore, the footage is obtained from the 

source. There are three phases of the experiment: the 

preparation, training, and testing phase. Each phase uses a 

different method of processing. This research also compares 

five different convolutional neural networks or CNN models. 
The five different CNNs, namely use You Only Look Once 

Version 3 (YOLOv3), Version 4 (YOLOv4), Version 7 tiny 

(YOLOv7-tiny), CSResNext50-Panet-SPP, and 

DenseNet201-YoloV4. These CNNs were chosen to 

differentiate from previously published work. In some 

instances, the method for using the CNN model for object 

detection and comparing the models to determine the best 

performance has been experimented with. Therefore, the main 

topic of this research is to compare the performance of the five 

different CNN models for each street location. A more 

thorough explanation can be seen in the following section. 

B. Preparation Phase 

In Fig 2, the preparation phase diagram is shown. In the 

first step, a system was created to detect the objects within a 

CCTV frame, using images obtained from a road CCTV video. 

These videos were mainly 44 seconds long, and five public 
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CCTV videos were collected from the Area Traffic Control 

System of Bandung DISHUB website. Once collected, frames 

from every few seconds of the video get extracted and become 

new images using a software called FFMPEG. These images 

are used to train the machine. Each image requires labeling to 

make the machine understand the image. Image labeling is 

constructing a map of visual features with semantic and 

spatial labels that describe the objects in the image [30]. 

Image labeling has the function of teaching the machine to 

understand the given image. This process outputs a class 
definition text file and an image label text file for each image. 

Therefore, these files are the references for the machine 

during training to differentiate between objects and non-

objects [31].  

 
Fig. 2  Preparation Phase Diagram in detecting the vehicle and People 
 

Image labeling has the function of teaching the machine to 

understand the given image. As stated before, the image 
labeling process uses labeling as software. This software 

reads all the images in the given folder and manually draws 

the bounding box and the class name within the image. This 

process outputs a class definition text file and an image label 

text file for each image. Therefore, these files are the 

references for the machine during training to differentiate 

between objects and non-objects.  There are six types of 

objects that the CNN models must detect. These objects are 

cars, motorcycles, trucks, people, bicycles, and Indonesian 

public transportation called angkot. Each CNN model must 

correctly detect and identify as many of these objects as an 

object detection system to have a high value. Table I shows 
an example of precisely labeled objects with their correct 

object category. 

TABLE I 

IMAGE LABEL SAMPLE AND CATEGORIES IN ENGLISH AND INDONESIAN 

LANGUAGE 

Image Sample 
Category 

English Indonesian 

 

Car Mobil 

 

Motorcycle Motor 

 

Truck Truk 

 

People Orang 

 

Bicycle Sepeda 

 

Public Transportation Angkot 

 

This experiment needs some pre-trained convolutional 

weights and configuration files data for each CNN model, in 

addition to the image labels and train data. After completing 
the preparation process, there will be four types of data.  

C. Dataset Setup 

There are 43 combined street images extracted from 

obtained road CCTV videos. These images have sizes ranging 

from 516 to 832 kilobytes each. These also have relatively the 

same size and aspect ratio. This research doesn’t have any 

preprocessing methods for the images. However, all images 

have sufficient lighting and contrast for the experiment. 
Therefore, the machine would learn unprocessed image data 

to detect real-world objects. Each image has one labeling text 

that contains data on roadway image objects. The dataset also 

contains one class definition text. These data are created 

during the labeling process by a program called labeling. 

Therefore, in total, there are 87 files contained in a dataset for 

the training phase. These data are important to help the 

machine understand objects in the image. This research used 

CCTV video from one of the obtained video collections for 

the testing phase. An overview of the training in detecting the 

volume of vehicles at the intersection using the darknet 

algorithm can be seen in Fig 3. 
 

 
Fig. 3  Diagram of Training Phase Using Darknet 
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The diagram in Fig. 4 presented below is a training process 

to describe an automatic system designed to detect traffic with 

darknet algorithms. The aim is to detect and inform the 

amount of traffic volume at road intersections. This research 

aims to improve the detection of darknet traffic by exploring 

a series of machine learning and deep learning techniques to 

classify such traffic and accurately show related application 

types. 

D. Training Phase 

In Fig 4, the data serves as the foundation for the training 

process. The training process was conducted five times as a 

part of this experiment, as five different CNN models were 

tested. Each of these CNN models possesses its own unique 

architecture, including Yolo V3, Yolo V4, CSRestNext50, 

Yolo V7 Tiny, and DenseNet201-YoloV4. Throughout this 

training process, only five CNN models were utilized 

optimally despite attempting several other models that did not 

yield satisfactory accuracy results. By employing a variety of 
CNN models, it becomes possible to identify the most suitable 

model to achieve optimal accuracy. Consequently, the 

number of extracted features and the output size may differ 

among the models.  

 

Fig. 4  Training Phase Diagram Using Darknet algorithm. 

 

However, this discrepancy is not problematic, as the 

models still adhere to the fundamental CNN architecture. 

Specifically, CNNs, in this case, consist of three primary 

layers: Convolutional, Pooling, and The Fully Connected 

Layer [32]. Another study addresses these issues concerning 

accidents and aims to find solutions to reduce road accidents 
resulting from traffic-related incidents. The main challenge 

faced in computer vision lies in obtaining effective results 

when dealing with variations in data shapes and colors [33]. 

The training process saves the last weight every 100 iterations 

to prevent complete data loss if something happens. After 

1000 iterations, the final weight files were created. There are 

five final weight files for each of the five CNN models. 

Therefore, these 100 and 1000 in iteration calculations are 

solely to save the training progress in those iteration numbers. 

An overview of the monitoring process stages for several 

vehicles at bustling crossroads was obtained using the darknet 

algorithm.  Some peripherals support the training process. It 

can be seen in Table II. 

TABLE II 

DEVICE SPECIFICATION USED FOR TRAINING 

No. Component Specification 

1 Processor AMD Ryzen™ 5 5600H Up To 4.2 
GHz 

2 RAM 16 GB DDR4 
3 GPU RTX 3060 Mobile 6GB 
3 Disk Space 1.5 TB 

 

Based on Table II, the heavy process of determining the 

difference factor between CNN models to carry out the 

training phase is done on the same device. Table II provides 

information about the six classes' device specifications for the 
training stage. This type of computer device is a personal 

computer with the latest generation of computer components 

that can carry out tasks specifically in detecting 6 classes of 

vehicles at road intersections, including counting the number 

of vehicles passing through road intersections. The need for 

GPU memory and processor specifications becomes 

dominant in processing class objects carried out in the training 

process. 

E. Testing Phase 

The next step after the training process is the testing 

process. Fig 5 explains the testing process stages, which start 

with inputting data on vehicle objects, people, and input 

frames. Next, predictions are made for object detection using 

one of the five CNN models used in the experiment. The 

prediction results are in the form of calculated bounding box 

coordinates. Non-Max suppression calculations are 

performed to display only the most optimal bounding boxes 

for objects to reduce the number of unimportant bounding 

boxes. The bounding boxes are then drawn and saved for later 

use by developers or users. 
Furthermore, the retrieving vehicle process, the person 

class data, and calling the volume calculation function for 

each object are immediately processed. This step is crucial so 

that the vehicle calculation process can be carried out on the 

frame being processed at that time. Calculating the object or 

object volume begins by taking data on the number of object 

labels detected in the frame and then adding them up. This 

becomes the vehicle volume data detected in the frame. Then, 

the algorithm performs the object tracking process, which 

begins with giving an ID to the object in question. However, 

the object tracking process has two "if" cases. If two objects 

are adjacent to the main object and the main object is new, the 
algorithm gives the object a new ID. 

Once object tracking is complete, the calculation of object 

volume is also performed for each label. This is done in 12 

seconds. When the 12-second time limit is reached, the 

calculation algorithm outputs the model testing performance 

data, including the traffic volume, the number of objects 

detected in each category, and the inference time. In addition, 

the algorithm also generates images that contain information 

5



about the traffic volume at that time, the number of objects 

that appear in each category, and the resulting bounding box. 

 

 
Fig. 5  Diagram of Testing Phase Using OpenCV 

F. Measuring Model Performance 

There are measurements to determine how well a model 

performs in a specific case. This experiment used five 

measurements: precision, recall, F1-Score, mean average 

precision, and traffic count. Collecting these variables, the 

extracted data will be used to compare the performance 

between the five chosen CNNs. Therefore, this comparison 

will determine which CNN has the most optimal performance 
in the case of CCTV object detection. A more detailed 

explanation of these calculations is given in the following 

section: 

1) Precision and Recall: 

Precision is used to determine the ability of a model to 

detect or identify the targeted objects. The recall is used to 

assess the ability of a model to find the targeted objects. 
Precision is the percentage of correct positive predictions, 

while recall is the percentage of correct positive predictions 

among all given ground truths (the number of total objects). 

To obtain the precision and recall values, each detected 

bounding box needs to be classified as: 

a. True positive (TP): A correctly detected ground truths 

bounding box. 

b. False positive (FP): An incorrectly detected non-

existing or existing object with a misplaced detection 

bounding box. 

c. False negative (FN): An undetected ground-truth 
bounding box. 

Suppose a dataset with G ground-truths and a model that 

produces N detections and S of which are correct (S ≤ G) [25]. 

The concepts of precision and recall can be formally 

expressed as follows: 
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2) F1-Score and mean Average Precision: 

F1-score is a calculation to produce a mean of precision 

and recall, which can be expressed as: 
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The values of the F1-score range from 0 to 1, where 1 

means the highest accuracy when both precision and recall are 

1 and 0 if precision or recall (or both) have the value of 0. 

Mean Average Precision or mAP is the average AP over all 

classes, which is expressed as the following formula [34]: 

 )*+ �
 

,
∑ *+�

,
�-  (4) 

where: 

APi: The AP value for the i-th class  

C: The total number of classes being evaluated. 

3) Intersection over Union: 

Intersection over Union or IoU is a metric used in object 

detection to compare the similarity between two bounding 

boxes: the predicted bounding box and the ground reference 

bounding box (the box the developer previously labeled). IoU 

encodes the shape properties of the objects under comparison 

into the region property, such as the widths, heights, and 

locations of two bounding boxes. Then, it computes a 

normalized measure focusing on their areas or volumes [37]. 

Fig 6 illustrates how IoU works. 

 
Fig. 6  Training Graph of Each CNN Model 
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4) Traffic Count (volume): 

Traffic count is a crucial measurement used to assess the 

level of traffic in a video at a specific point in time. This 

measurement plays a vital role in evaluating the performance 
of a model in real-world scenarios. The traffic count 

measurement involves two calculations: the number of 

objects detected in a particular second and the number of 

objects in the last captured frame. In this experiment, 12 

seconds were selected, and all objects were counted during 

this period. The machine must successfully detect the objects 

to calculate the total traffic for a given time. For each frame, 

the machine only counts new objects, assigning them a unique 

ID until they disappear. This process continues until the last 

frame at 12 seconds, accumulating objects for their respective 

categories. Once the total traffic volume is calculated, the next 
step is to count the number of objects in the last captured 

frame. This calculation identifies and evaluates flaws in the 

model's vehicle object detection performance by determining 

the number of objects in a single frame. 

III.   RESULTS AND DISCUSSION  

A. Results 

This experiment will use five types of CNN models to 

detect cars, motorcycles, trucks, bicycles, public 

transportation, and people as their targeted objects. Each CNN 
model has a different performance result when used in that 

scenario. The performance of the models can be measured 

through five metrics. The metrics are precision, recall, F1-

score, average IoU percentage, and inference time relative to 

mAP@0.50. These five metrics are automatically calculated 

by Darknet algorithm and generated as an output. Two 

additional metrics were also calculated during the training 

process: duration and the average model training loss. 

Fig. 7 shows the training process of CSResnext50-Panet-

SPP in a graph. The graph shows that the loss percentage 

began to fall after around the 300th iteration and continuously 
dropped until the 3000th iteration. From the 3000th iteration, 

the loss percentage maintained a steady reduction, staying 

between 0% and 2% until the last iteration.  The next CNN 

model is the DenseNet201-YOLOv4.  
 

 
Fig. 7  Training Graph of CSResnext50-Panet-SPP 

Fig 8 illustrates the model's training graph. This graph 

shows the most unsteady training process. Unlike other 

training graphs that have a steadier line, this graph shows that 

the loss percentage tends to increase and decrease every 100 

iterations. However, it still resulted in a lower loss percentage 

overall for every 3000 iterations after the 2400th iteration. 
 

 
Fig. 8  Training Graph of DenseNet201-YOLOv4 

 

Fig 9 shows the training graph of YOLOv3. The training 

process of YOLOv3 has many similarities with the training 

process of CSResnext50-Panet-SPP with their steady loss 

percentage. The last iteration resulted in between 0.2% and 
0.6% loss percentage. 

 

 
Fig.  9  Training Graph of YOLOv3 

 

Fig. 10 presents the next CNN model for training six 

classes of objects: YOLOv4. Fig. 10 illustrates the training 

process in a graph. After the 2400th iteration, the loss 

percentage kept increasing and decreasing by 1% for every 

100 iterations. Eventually, the last iteration stopped at 

between 1% and 2%. 
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Fig. 10  Training Graph of YOLOv4 

 

Fig. 11 presents the result of the experiment using 

YOLOv7-tiny. Fig 11 shows the training process graph of 
YOLOv7-tiny. Unlike other models, which have a steady line 

of loss percentage with the only difference of how constant 

the loss percentage occurs, this training process has a 

particular case. After around the 300th iteration, the loss 

percentage increases again until the 700th iteration. This case 

only takes place in this training process. Then, the loss 

percentage kept decreasing steadily like the training process 

of CSResnext50-Panet-SPP until the 9600th iteration. From 

there on, the loss percentage stays in the same line of loss 

percentage until the very end of the iteration. 
 

 
Fig. 11  Training Graph of YOLOv7-tiny 

 

Every CNN model resulted in a different training graph, 

with a different training duration and training loss percentage. 

The only similarity is the total number of iterations, which is 

12000. 

 
Fig. 12   Training Duration of CNN Models 

 

The training graph shows the training duration of each 

CNN model. Fig. 12 presents the training duration of every 

CNN model. In this case, the lower the duration, the better the 

CNN models because of the low wait time. YOLOv7-Tiny has 

the best training duration, with only 3.561 hours. The worst 

training duration came from CSResNext50, with 17.434 hours. 

The rest of the models have almost the same duration, ranging 
from 8.5 to 10.5 hours. 

 

 
Fig. 13  Average Model Training Loss Graph 

 

The training graph also shows the training loss of each 

CNN model. Fig 13 depicts the average training loss of every 
CNN model. The lower the value of the training loss, the 

better the quality of the model. Three models have a score 

under 1.0: YOLOv3, CSResNext50, and YOLOv4. The 

lowest training loss score is YOLOv3, 0.37, while 

DenseNet201-YOLOv4 has the highest score, with a value of 

3.319. 

The first three metrics that could affect the model’s 

performance are precision, recall, and F1-score. Fig 14 shows 

each CNN model's precision, recall, and F1-score metrics. 

Compared to other models, YOLOv4 has the highest value in 

all three metrics, with a score of 0.99 for precision, 1.0 for 

recall, and 1.0 for F1-score. All other CNN models have 
decent values, with an over 0.9 score in all metrics, except for 

YOLOv7-Tiny, which has a value of less than 0.9 for all 

metrics.  

 
Fig. 14  Combined Precision, Recall, and F1-Score Performance Graph 
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Fig. 15   Average IoU Graph of CNN Models 

 

The next metric that could affect the performance of a CNN 

model is the average Intersection of Union or IoU. For this 

metric, the higher the percentage value, the higher the 

performance of a CNN model. Fig 15 shows the average IoU 

of CNN models. All models have a high IoU percentage of 

over 75%. The highest average IoU value of all five CNN 

models is YOLOv4, with a score of 93.63%. In comparison, 

the lowest average IoU is YOLOv7-Tiny, with a score of 

75.13%. 

 
Fig. 16  Inference Time, Relative to mAP@0.50 Performance Graph 

 

The last metric is the inference time relative to mAP@0.50. 

Fig. 16 illustrates the inference time relative to the 

mAP@0.50 performance graph of every CNN model. The 

inference time represents how fast a model detects the 

targeted object.  The lower the inference time, the faster the 

detection becomes. However, mAP also needs to be 
considered to know more about compatibility on such devices. 

The CNN model with the fastest inference time and high 

compatibility is DenseNet201-YOLOv4. YOLOv3 and 

YOLOv4 have a high mAP but have a lower inference time 

than DenseNet201-YOLOv4. YOLOv4-Tiny has the lowest 

inference time with a mAP of around 98%, while 

CSResNext50-Panet SPP has the lowest mAP percentage 

with a value of around 97%. 

B. Discussion 

During the experiment, a total of five different CNN 

models were tested to evaluate their performance in detecting 

cars (mobil) and motorcycles (motor) as the targeted objects. 

Upon completion of the experiment, it was observed that each 

CNN model produced varying predictions when presented 

with the same test video.The CNN model exhibits precise 

predictions for objects falling within three distinct categories: 

cars (Mobil), motorcycles (motor), and people (orang). An 

illustration of these predictions is presented in Fig 17.   

In this frame, the model detects a total of five cars (Mobil), 

seven motorcycles (motor), and four people (orang). 
Compared to CSResNext50, DenseNet201 detects one person 

more but one motorcycle (motor) and one car (Mobil) less. 

DenseNet201 could detect a person who was a lot further from 

the road. In this frame, the other motorcycle (motor) was a lot 

more unclear than in Fig. 17 due to the possibility that the 

vehicle was moving too fast. The car (mobile) that was on the 

left side of the road and was the furthest from the camera 

could not be detected. The problem could be with the tree that 

blocks some parts of the car (mobil). 

 
Fig. 17  CSResNext50 Prediction Results to detect the object 

 

Showcasing the results obtained through the employment 

of the CSResNext50 CNN model. In this particular frame, the 

model successfully recognizes a total of six cars (Mobil), eight 

motorcycles (motor), and three individuals (orang). Its 

primary focus lies in identifying moving vehicles, 

disregarding stationary parked ones. Furthermore, the model 

targets explicitly individuals situated close to the road. Within 
the context of this figure, three classes of objects are 

observable, namely people (orang), cars (mobil), and 

motorbikes (motor). However, there exist three other classes 

of objects that remain unseen, including trucks (truk), bicycles 

(sepeda), and public transportation (angkot). The detection of 

public transportation (angkot) and cars (mobil) proves to be a 

challenging task for this model, resulting in a somewhat 

similar visual appearance between the two classes.  

A model could encounter problems detecting objects if the 

target object is blocked by another object in the frame or if the 

target object moves too fast for the model to detect. Fig. 18 

shows the prediction when using the DenseNet201 CNN 
model.  

 
Fig. 18  DenseNet201 Prediction Results to detect the object 

 

In recent object detection research, a CNN model was used 

to process faces when two target objects were too close to 

each other. One of the advantages of this model is its ability 

to detect multiple objects in close proximity. For example, in 
Fig. 19, the YOLOv3 CNN model was used for prediction. In 

this frame, the model successfully detected a total of five cars 
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(mobil), seven motorcycles (motor), and four people (orang). 

It was able to detect a person who was far from the road and 

all seven visible motorcycles (motor). However, it failed to 

detect the car (mobil) on the right side of the road that was 

trying to overtake the car (mobil) in front. object detection 

research using a CNN model has shown promising results in 

detecting multiple objects, even when they are close to each 

other. For example, the YOLOv3 CNN model could detect 

various objects in a given frame. However, there are still 

challenges in accurately detecting all objects, especially in 
complex scenarios or occluded by other objects. Further 

research and advancements in object detection models are 

continuously being made to improve their performance and 

accuracy. 

 

 
Fig. 19  YOLOv3 Prediction Results to detect the object. 

 

In addition to the challenge of detecting target objects, 

CNN models can also make incorrect predictions. An 

example of this can be seen in Fig. 20, where the YOLOv4 

CNN model was used for prediction. In this frame, the model 

detected a total of five cars (mobil), eight motorcycles (motor), 

one public vehicle (angkot), and five people (orang). 

However, unlike the previous model that struggled with 
object detection, YOLOv4 misinterpreted the car (mobil) on 

the left road, furthest from the camera, as a person instead of 

a car. CNN models, like YOLOv4, are designed to learn and 

recognize image patterns through extensive training on large 

datasets. 

 

 
Fig. 20  YOLOv4 Prediction 

 
Fig.  21 showcases the prediction results obtained using the 

YOLOv7-tiny CNN model. In this frame, the model 

successfully detects four cars (mobil), three motorcycles 

(motor), one public vehicle (angkot), and four people (orang). 

However, similar to YOLOv3, YOLOv7-tiny encounters a 

specific issue. It fails to detect the motorcycle (motor) located 

next to the car (mobil) on the left side, closest to the camera. 

YOLOv7-tiny is a variant of the YOLO object detection 

model. It is optimized for edge GPU devices and is designed 

to be lightweight, making it suitable for real-world computer 

vision applications and distributed systems. While YOLOv7-

tiny offers faster inference times, it may struggle with 
detecting certain objects that are small or far away. 

 

 
Fig. 21  YOLOv7-tiny Prediction results to detect 

TABLE III 

TOTAL OBJECTS DETECTED IN THE LAST FRAME (VOLUME) 

Class 

YOLO

v7-

Tiny 

YOLO

v4 

DenseNet

201-

YOLOv4 

CSResNe

xt50 

YOLO

v3 

Car 4 5 5 6 5 

Motorc

ycle 
3 8 7 8 7 

Truck 0 0 0 0 0 

People 0 5 4 3 4 

Bicycle 0 0 0 0 0 

Public 

Transporta

tion 

1 1 0 0 0 

SUM 8 19 16 17 16 
 

Table III shows the total number of objects detected in the 

last frame of the video. The last frame of the video does not 

show either trucks or bicycles. Therefore, there is not a single 

model that detects those vehicles. In Table III, YOLOv4 

resulted with the most objects detected out of all five CNN 

models, detecting five cars, eight motorcycles, five people, 

and one public transportation. The lowest total object detected 

was when using YOLOv7-tiny with four cars, three 

motorcycles, and one public transit. 

TABLE IV  

TOTAL OBJECTS DETECTED IN THE LAST 12 SECONDS 

Class 

YOLO

v7-

Tiny 

YOLO

v4 

DenseNet

201-

YOLOv4 

CSResNe

xt50 

YOLO

v3 

Car 22 21 20 19 22 

Motorcycl

e 
47 81 73 43 65 

Truck 0 0 1 0 0 

People 0 7 7 8 6 

Bicycle 0 0 0 0 0 

Public 

Transporta

tion 

0 1 0 0 0 

SUM 69 110 101 70 93 
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Table IV informs the total objects based on the experiment 

that were detected in the last 12 seconds of the test video. The 

last 12 seconds of the test video without any bicycle in it. 

Therefore, all of the models resulted in zero results of 

detecting a bicycle. The Table shows that YOLOv4 detects 

the most vehicles, with 21 cars, 81 motorcycles, 7 people, and 

1 public transportation. The lowest detection rate is the 

YOLOv7-tiny, with only 22 cars and 47 motorcycles detected. 

Table III and Table IV inform that YOLOv4 is the most 

accurate in detecting targeted objects compared to other CNN 
models. However, the number of total objects that YOLOv4 

detected is not correctly predicted. For example, the model 

incorrectly predicts a car into a person. Therefore, other 

metrics such as precision, recall, and f1-score, which calculate 

the model's accuracy, are needed to determine their overall 

performance. 

Besides how many objects a model could detect in a 

specific time length, inference time relative to the mAP of a 

CNN model and the average IoU could also affect their 

performance. In Fig 16, all CNN models are highly 

compatible with a mAP of above 97%. YOLOv4 has the 
highest compatibility but has the second-highest inference 

time and the highest average IoU, according to Fig 15. In 

conclusion, among five CNN models, YOLOv4 performs 

better when detecting objects and has high compatibility and 

a high inference time that could slow down the detection 

process. 

IV. CONCLUSION 

An experiment was conducted to determine the most 
effective method or algorithm for detecting objects at 

intersections of highways and calculating their volume. The 

study focused on six objects: cars, motorbikes, bicycles, 

trucks, people, and public transportation. These objects were 

detected in the same testing environment. The training 

process utilized darknet algorithms to detect these six classes 

of objects at the intersection. On the other hand, the testing 

process employed five CNN models: YOLOv7-Tiny, 

YOLOv4, DenseNet201-YOLOv4, CSResNext50, and 

YOLOv3. The purpose was to identify which CNN model 

produced the most accurate results, including determining the 
volume of each object passing through the intersection.  

The experiment took place at a busy intersection in 

Bandung, West Java. Five CNN models were used: YOLOv3, 

YOLOv4, CSResNext50, DenseNet201-YOLOv4, and 

YOLOv7-Tiny. The experiment results showed that each 

model achieved an accuracy rate of over 87%. Notably, the 

YOLOv3 and YOLOv4 models achieved an accuracy rate of 

over 98%. This indicates that each CNN model had a 

sufficiently high accuracy to detect objects correctly. 

However, it should be noted that particular objects may not be 

detected if they are blocked or overlapped by other objects or 
if they are non-targeted objects, such as trees. Additionally, 

fast-moving objects may challenge the CNN models, resulting 

in detection errors. To address this issue, it is necessary to 

optimize the CNN models or explore alternative models better 

suited for this purpose. Further research should focus on 

testing the capabilities of these models. Based on the 

experiment's findings, it can be concluded that the chosen 

CNN models demonstrated high accuracy in detecting objects 

at the intersection. However, improvements are needed to 

address certain limitations and optimize the models for future 

research. 
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