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Abstract 

Optimizing the Alkaline-Surfactant-Polymer (ASP) injection process remains a persistent challenge in Enhanced Oil Recovery (EOR), 
particularly in heterogeneous sandstone reservoirs where traditional reservoir simulators are constrained by high computational demands and 
limited flexibility. This study introduces a novel application of the Super Learner (SL) ensemble, a stacking-based machine learning algorithm 
integrating multiple base models (XGBoost, SVR, BRR, and Decision Tree), to systematically predict and optimize ASP injection parameters. 
Unlike previous approaches, our method blends high-fidelity CMOST simulation data with machine learning precision in which it enables real-
time optimization with field-scale relevance. Using 500 simulation scenarios validated by laboratory input, the SL model achieved exceptional 
predictive performance (R² = 0.988, RMSE = 0.304), outperforming all individual learners. The optimal recovery factor (RF) of 79.49% was 
obtained with the finely tuned concentrations of surfactant (5483.29 ppm), polymer (2242.61 ppm), SO₄²⁻ (5610.15 ppm), CO₃²⁻ (7053.59 ppm), 
and Na⁺ (9939.35 ppm). Remarkably, the SL approach could reduce optimization time from 10 hours (CMOST) to under 1 minute; this 
underscored its potential for real-time operational deployment.  The novelty of this work lies in its integrated use of ensemble learning to capture 
the complex and non-linear interactions between ionic chemistry and oil mobilization behavior, offering a field-ready AI framework for rapid 
and adaptive EOR design. This approach paves the way for the intelligent optimization of ASP schemes by minimizing the reliance on 
computationally intensive simulations while ensuring chemical and economic efficiency in marginal or complex reservoirs. 
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1. Introduction  

Alkaline, Surfactant, Polymer (ASP) injection is widely 

recognized as one of the most effective techniques in Chemical 

Enhanced Oil Recovery (EOR)[1,2,3,4]. This method leverages 

the synergistic effects of alkalis, surfactants, and polymers to 

significantly enhance oil recovery. The role of alkali 

component is crucial as it increases the pH of the injected fluid, 

thereby reducing surfactant adsorption and generating in-situ 

surfactants in acidic crude oil conditions [5,6]. This process, in 

turn, leads to a greater reduction in interfacial tension (IFT) and 

alters wettability, making the oil more mobilizable. Surfactants 

further decrease the IFT between crude oil and the injected 

fluids, enabling any trapped oil droplets to flow with greater 

ease. In contrast, polymers increase the viscosity of the injected 

fluid, which improves the mobility ratio between the displacing 

water and reservoir oil; this then leads to more uniform sweep 

efficiency and reduced channeling. 

Sandstone reservoirs, known for their diverse mineral 

composition, provide favorable conditions for ASP injection 

due to their relatively low adsorption of anionic (negatively 

charged) compounds [7,8,9].  

However, implementing ASP injection at the field scale can 

pose several challenges, including high chemical costs, 

operational complexity, and uncertainties in terms of reservoir 

conditions [7,10,11]. It is therefore deemed essential to design 

an ASP injection scheme that can effectively balance 

maximizing recovery with minimizing costs and complexities. 
Traditionally, conventional reservoirs simulation models 

have been utilized to optimize ASP injection with the Recovery 
Factor (RF) used as the primary decision variable [1,2,10,12]. 
These conventional models, however, encounter significant 
limitations when applied to the complex and large-scale nature 
of EOR datasets. They often require extensive computational 
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resources, are time-consuming, and introduce various 
uncertainties [10,12]. To address these challenges, Artificial 
Intelligence (AI) and Machine Learning (ML) techniques have 
emerged as effective alternatives for the optimization of EOR 
processes. Compared to traditional approaches, AI-driven 
methods excel in processing large datasets, identifying intricate 
non-linear relationships, and significantly reducing 
uncertainties [13,14,15,16]. 

To make it clearer, Support Vector Machines (SVM) and 

Multi-Layer Perceptron Neural Networks (MLP-NN) have 

been effectively utilized to predict the efficiency of polymer 

flooding and surfactant-polymer flooding. These methods have 

demonstrated a strong alignment with field data, facilitating the 

precise optimization of injection strategies [17,18]. 

Furthermore, Least Squares Support Vector Machine 

(LSSVM) models, when paired with Genetic Algorithms (GA) 

for optimization, have shown remarkable accuracy in 

predicting RF and Net Present Value (NPV), and they could 

achieve correlation coefficients (R²) greater than 0.993 [13,19]. 

These studies underscore the advantage of machine learning 

models in capturing complex, multi-dimensional, and non-

linear interactions among critical EOR parameters, which seem 

be difficult to be achieved by traditional methods. 

Building on these advancements, ensemble learning 

techniques have garnered interest for their ability to enhance 

model robustness by aggregating the predictions of multiple 

models. Super Learner (SL), a stacking-based ensemble 

method, combines various machine learning algorithms to 

reduce biases, minimize variance, and improve prediction 

accuracy[20,21]. In the realm of petroleum engineering, it has 

proven to be highly effective, surpassing individual models in 

predicting any essential reservoir properties, such as dead oil 

viscosity and water saturation [22,23]. 

This study utilized the SL ensemble to optimize the ASP 

injection process with three main objectives: (1) to optimize 

critical ASP parameters, including sulfate ions (SO4
2-) from 

surfactants, sodium ions and carbonate ions (Na+, CO3
2-) from 

alkali sources, and polymer concentrations [2,9], thereby 

maximizing the RF; (2) to compare the performance of the SL 

model against traditional models such as Bayesian Ridge, 

Support Vector Regression (SVR), and XGBoost, thereby 

demonstrating the effectiveness of ensemble learning; and (3) 

to identify the optimal conditions for minimizing IFT and 

enhancing sweep efficiency, which can have practical 

applications in real-world field operations. 

By integrating laboratory-scale data, and simulation model 

data with advanced ML techniques, this study presents a novel 

framework aimed at bridging the gap between experimental 

and field-scale optimization of ASP injection, ultimately 

contributing to improved and more efficient oil recovery. 

2. Materials and Methods 

2.1. Experimental setup 

2.1.1. Data collection 

The study commenced with the creation of a Cartesian 

reservoir model specifically designed to simulate the behavior 

of oil reservoirs during ASP injection. This model represented 

the reservoir as a grid of cells to facilitate a detailed analysis of 

fluid dynamics and chemical interactions [2,9,24]. Multiple 

scenarios were executed using the model to explore various 

combinations of injection parameters, resulting in a diverse 

dataset. The collected data then underwent processing to ensure 

consistency, reliability, and noise reduction; this ultimately 

yielded a high-quality dataset suitable for machine learning 

applications. 

To determine the most significant factors determining oil 

recovery, feature selection techniques were employed. The 

following features were identified as the ones with the greatest 

impact on oil recovery: the concentrations of each chemical 

component crucial to modify rock wettability, reduce IFT, and 

enhance sweep efficiency. Salinity plays a significant role in 

the effectiveness of surfactants by affecting micelle stability 

and surfactant solubility, which, in turn, influences IFT 

reduction. IFT is a direct measure of the interaction forces 

between the oil and the injected water phases; lower IFT values 

indicate improved conditions for oil mobilization, making it a 

key parameter in evaluating the success of the ASP injection 

process. 

The selected features served as the inputs for training 

various machine learning models with the target variable being 

oil RF. These trained models aimed to predict the effectiveness 

of different ASP injection scenarios, thereby providing 

valuable insights in the optimization of recovery processes. 

2.1.2. Machine learning model and super learner ensemble 

To capture the complex relationships between ASP injection 

parameters and RF, a range of machine learning models was 

utilized. Each algorithm offered a distinct approach to 

understand the interplay between parameters: 

1) Bayesian Ridge Regression (BRR): This probabilistic 

model adjusts the regularization strength automatically 

based on training data, making it robust against 

multicollinearity and able to provide confidence intervals 

for predictions. Here, it serves as a baseline to understand 

linear trends and parameter uncertainty in the dataset [14]. 

2) SVR is well-suited to capture non-linear relationships 

between features and RF. By utilizing different kernel 

functions, it effectively handles high-dimensional data and 

provides precise predictions for the complex non-linear 

dependencies inherent in ASP injection optimization. 

3) Linear Regression (LR) and Decision Tree Regresses 

(DTR): These models serve as baseline models for 

comparison purposes. LR helps to identify any significant 

linear relationships between the features, while the DTR 

provides interpretability in identifying parameter splits and 

interactions. The Decision Tree model highlights how 

parameters, such as chemical concentration, affect RF at 

different thresholds. 

4) eXtreme Gradient Boosting (XGBoost) Regressor: 

XGBoost is a highly regarded gradient boosting algorithm 

recognized for its accuracy, efficiency, and capability to 

capture complex non-linear interactions among variables. 

It employs an ensemble of decision trees to predict RF to 

effectively address overfitting through regularization 

techniques while considering the effects of various 

injection scenarios. 
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To enhance predictive performance, the Super Learning 

(SL) Ensemble was utilized, leveraging the strengths of 

individual models. The SL method, an ensemble stacking 

technique, combines predictions from multiple base learners to 

reduce bias and variance, purposely to produce more accurate 

and generalized outcomes. K-fold cross-validation was 

employed to train the SL ensemble to minimize overfitting and 

ensure robustness. By integrating multiple models, the SL 

ensemble capitalized on their individual strengths that resulted 

in improved overall predictive accuracy. The evaluation 

metrics used to assess each model's performance included the 

Coefficient of Determination (R²) to measure how well 

predictions align with actual results, and Root Mean Square 

Error (RMSE) to quantify the magnitude of prediction errors. 

2.1.3. Parameter optimization and sensitivity analysis 

The SL model was utilized to forecast the RF by examining 

various combinations of ASP component concentrations and 

salinity levels. The optimization process employed a grid 

search technique, which systematically evaluated different 

parameter configurations to identify the combination that 

produced the highest RF. This approach facilitated an efficient 

exploration of the solution space, ensuring the selection of the 

most effective injection strategy. 

Additionally, a sensitivity analysis was conducted to assess 

the relative impact of each parameter on RF. This analysis 

yielded valuable insights into the most influential factors, 

enabling targeted adjustments to enhance the effectiveness of 

ASP injection. The results revealed that certain parameters, 

particularly polymer concentration and salinity, had a 

significant impact on RF, underscoring the necessity for their 

precise management to maximize recovery. 

2.1.4. Model calibration and validation 

To validate the reliability of the model, results from the SL 
were compared with both experimental and simulation data. 
The close correlation between model predictions and 
experimental outcomes confirmed the SL model's accuracy in 
capturing the intricate relationships between injection 
parameters and RF. Cross-validation was employed to further 
ensure the model's robustness to provide a statistical measure 
of its generalizability across diverse datasets. 

The model's hyperparameters were iteratively refined to 
enhance prediction performance. A number of adjustments 
were made to the learning rate, regularization strength, and 
other critical hyperparameters to achieve an optimal balance 
between accuracy and control overfitting. The final calibrated 
model was subsequently utilized to simulate various ASP 
injection scenarios, producing the predictions of optimal 
recovery and offering insights into the effective use of 
chemicals, alongside economic considerations. These 
predictions underscored the potential to significantly improve 
recovery rates, while minimizing chemical costs and 
maximizing operational efficiency. 

2.2. Equations 

2.2.1. Data processing  

The research was based on secondary data from [25] 

establishing a base case that featured a sandstone reservoir 

characterized by a relatively tight rock distribution and low 

salinity. From the analysis of the reservoir properties, as 

presented in Fig. 1, it was evident that the reservoir rock 

exhibited a tendency toward water wettability with the 

intersection of the relative permeability curves for water and oil 

occurred at a water saturation of 0.52. Table 1 shows that the 

oil had a gravity value of 25°API (American Petroleum 

Institute), classifying it as heavy-medium oil. 

 

Fig. 1. Correlation of the relative permeability 

Table 1. Reservoir rock properties data [25,26] 

Parameter Value Unit 

Oil Gravity 25 oAPI 

Gas Oil Ratio 250 SCF/stb 

Bubble Point Pressure 350 psi 

Salinity 20000 ppm 

µo at Initial Pressure 0.82 cp 

Reservoir Temperature 173 oC 

Reservoir Depth 5400-5512 ft 

Reservoir Pressure 1615 psi 

Rock Compressibility 1.39 x 10-5 psi-1 

Formation Volume Factor 1.105 Bbl/stb 

2.2.2. Hydrocarbon components 

The oil was sourced from the Central Sumatra Basin field 

with hydrocarbons characterized by a high C7+ content. Table 

2 presents the mole percentage values of each hydrocarbon 

component used in this study. 

2.2.3. Reservoir model 

The model was based on a Cartesian grid conceptual 

framework featuring a heterogeneous distribution of rock 

types. Although it consisted of five layers, as presented in Table 

3, it effectively simulated the layering observed in the field with 

the dimensions of 1,000 ft in length and 200 ft in width. Fig. 2 

depicts the 3D grid distribution with depths in the range of 

5,400 to 5,512 ft, porosity values between 0.15 and 0.3, and 

permeability spanning from 100 to 300 md [25,26]. Table 4 

presents the field initialization with an Original Oil In Place 

(OOIP) estimate of 0.49 MMbbl. 

Fig. 2 displays a three-dimensional permeability model of a 

reservoir that illustrates  the spatial distribution of permeability 
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values within a specific section of the reservoir as of January 1, 

2021. The model employed a color-coded scheme to represent 

various permeability ranges, offering essential insights into the 

reservoir's flow characteristics. Segmented into distinct blocks, 

each block was assigned a color that corresponded to its 

permeability. The legend on the right side of the figure detailed 

the permeability values associated with each hue. 

Table 2. Hydrocarbon components 

Components Concentration mole (Mole%) 

H2S 0 

CO2 0.3783 

N2 0.4645 

CH4 11.2789 

C2H6 0.1622 

C3H8 0.2503 

i-C4H10 0.1832 

n-C4H10 0.4448 

i-C5H12 2.3216 

n-C5H12 2.6256 

C6H14 13.2666 

C7H16 68.6240 

 Table 3. Model grid properties 

Grid Properties Description 

Grid Type Cartesian 

Layers Count 5 

Total Block 50 

Width 200 ft 

Length 1000 ft 

Table 4. Initial reservoir volume 

Parameter Value 

Original Oil in Place 0.491 MMbbl 

Gross Formation Volume 28 MMSCF 

Formation Pore Volume 6.442 MMSCF 

 

Fig. 2. Cartesian cross section model (permeability) 

The model revealed a layered distribution of permeability 

with the lower layers predominantly displaying blue and cyan 

tones (indicative of lower permeability values), while the upper 

layers exhibited red and orangish shades (denoting higher 

permeability). This suggests the presence of a heterogeneous 

reservoir, characterized by vertical variations in permeability 

that may result from differing rock types or varying 

depositional environments. The differing colors and 

permeability values across the model signified that the 

reservoir's heterogeneity stems from variations in rock 

properties such as grain size, sorting, and cementation, all of 

which influence porosity and permeability.  

Notably, the existence of distinct high-permeability zones 

(highlighted in red) and low-permeability zones (shown in 

blue) indicated that fluid flow within the reservoir was likely to 

be non-uniform, potentially presenting challenges for efficient 

sweep during fluid injection for EOR. 

The black arrows positioned atop certain blocks indicated 

the probable points of injection or production. These may 

represent injection wells, where fluid is pumped into the 

reservoir to displace oil, or production wells, where oil is 

extracted. The strategic placement of these arrows in the higher 

permeability regions is likely intentional as higher permeability 

facilitates more efficient fluid flow and aids in maintaining 

reservoir pressure. 

2.2.4. Base case initialization 

The initial fractional composition of the sandstone reservoir 

comprised 80% Barite and 20% Kaolinite. Table 5 outlines the 

chemical composition of the ASP base case, detailing the 

specific elements used in its formulation. 

Table 5. ASP composition [27] 

Parameter Value (ppm) 

Alkaline (Na2CO3) 10,000 

Surfactant (Base + SO4
2-) 15,000 

Polymer (Base) 2,000 

 

The production history of the reservoir extends over five 

years from 2020 to 2025, initially relying on primary recovery 

methods. In 2025, an ASP injection strategy is implemented, 

which continues for one year until 2026.  

Following the ASP injection phase, operations transition to 

waterflooding by 2026. This waterflooding phase acts as a post-

chemical injection flushing mechanism, designed to mobilize 

and recover any residual oil that has been displaced by the 

chemical process.  

This integrated approach combines the enhanced 

mobilization capabilities of ASP injection with the flushing 

efficiency of waterflooding, all aimed at maximizing oil 

recovery from the sandstone reservoir throughout the 

operational period. 

Fig. 3 illustrates the relationship between salinity (ppm) and 

IFT (dyne/cm) for various surfactant concentrations, 

comparing laboratory data with model simulations. It 

highlights the critical role of salinity and surfactant 

concentration in minimizing IFT for EOR. 



152 Putra et al. / Communications in Science and Technology 10(1) (2025) 148–159  

The optimal combination was a 0.05% surfactant 

concentration at 20,500 ppm salinity, achieving the lowest IFT 

(10⁻³ dyne/cm), necessary for mobilizing trapped oil. The IFT 
rose to 102 after water injection but dropped to the critical level 

of 10⁻³ under optimal conditions. The close match between lab 
and model results confirmed the model's reliability for field 

implementation planning. 

 

 

Fig. 3. Salinity variation and IFT base case (CMG) 

 

Table 6. Ionic parameter (sun et al. 2016) 

Variable Name Codes/Symbol Min Max 

SO4
2- (ppm) INJ_SO4 2500 10000 

Na+ (ppm) INJ_Na 2500 10000 

CO3
-2 (ppm) INJ_CO3 2500 10000 

Surfactant (ppm) INJ_SFT 2500 10000 

Polymer (ppm) INJ_Polymer 500 2500 

 

Table 5 presents five parameters, complete with their 

respective minimum and maximum values, which define the 

input range for model evaluation. These parameters are 

essential for determining whether the model meets performance 

standards.  

The RMSE serves as a crucial metric for assessing model 

performance as it quantifies the standard deviation of 

prediction errors, the discrepancies between predicted and 

actual values. A lower RMSE indicates superior model 

accuracy. The formula is: 

 𝑅𝑀ܵܧ =  √∑ (௬೔−௬̂೔)2೙೔=1 ௡    () 

The coefficient of determination (R2) is the criterion for 

usage. It represents the adjacent of the dependent value to the 

best-fitting regression line. It is written as: 

 𝑅2 =  1 + ∑(௬೔−௬̂೔)2∑(௬೔−௬ഢ̅̅̅)2   () 

In addition to a high R2 value, a low error indicates good 

model performance. The R² score ranges from nil to one; 

getting closer to one means that the data model matches the 

actual data. 

2.2.5. Super leaner method 

 

The Enhanced Super Learner (SL) is an ensemble learning 

model, which is distinct from deep learning models. It achieves 

superior accuracy by synthesizing predictions from multiple 

algorithms through comprehensive cross-validation. The key 

points are that the SL consolidates outputs from four 

foundational machine learning algorithms to enhance 

predictive accuracy, which employs cross-validation to ensure 

robust model performance across various datasets, and basic 

machine learning algorithms serve as the core foundation that 

assesses the relationship between measured and predicted 

values for ASP injection using cross plots for each dataset. 

Then, by integrating multiple algorithms and utilizing cross-

validation, the SL minimizes errors and improves prediction 

reliability, particularly in ASP injection modeling. This 

approach is optimal for achieving precision in predictions 

without the computational demands of deep learning models. 

The study focuses on optimizing ASP injection and 

predicting RF values for EOR in sandstone reservoirs, 

highlighting the advantages of artificial intelligence, 

specifically the SL algorithm, over traditional simulation 

methods.  

Key findings included that AI-driven approaches exhibited 

a distinct advantage over conventional simulators when it came 

to modeling complex interactions and optimizing ASP 

parameters. The SL algorithm delivered greater accuracy and 

faster computational speeds, especially when combined with 

CMG reservoir simulation software. Secondly, Four 

foundational algorithms were employed to model the non-

linear interactions of ASP consisting of SVM that effectively 

managed non-linear relationships in high-dimensional datasets, 

XGB that exceled in capturing intricate interactions among 

parameters, Bayesian Framework that provided a means to 

manage uncertainties and offered probabilistic insights, and 

Decision Tree (DT) that ensured simplicity and interpretability 

in the analysis of feature interactions. 

The advantage of the SL Algorithm integrated the strengths 

of the aforementioned base models, producing a robust and 

accurate predictive tool for optimizing RF. It significantly 

reduced computational time compared to traditional simulation 

techniques. The last one was the analysis concentrated on the 

injection concentrations of surfactant, polymer, SO₄²⁻, CO₃²⁻, 
and Na⁺. These parameters played some crucial roles in altering 

wettability, reducing interfacial tension, and controlling 

mobility, all of which were essential for the success of ASP 

injection. 

3. Results and Discussion 

3.1. Base model simulation 

A total of 1,038 simulations were conducted using CMG 

CMOST to produce a comprehensive set of results. From these 

simulations, a representative dataset of 500 samples was 

randomly and evenly selected to ensure a diverse and unbiased 

representation of the parameter space. The RF values observed 

in this dataset ranged from 66.94% to 80.56%, highlighting the 

varying efficiency of different ASP injection parameter 

combinations. The highest RF of 80.56% was achieved with the 
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following injection parameters: surfactant concentration of 

8,500 ppm, polymer concentration of 2,300 ppm, SO4
2- at 2,500 

ppm, CO3
2- at 4,000 ppm, and Na+ at 10000 ppm. These specific 

values represented an optimal configuration for maximizing oil 

recovery within the reservoir. 

The observed behavior indicated a correlation between the 

dynamics of ion concentrations and oil production rates. 

Notably, when the gmol values of these ions increased, oil 

production rates significantly rose, suggesting that these ions 

positively contributed to improve sweep efficiency, reduce 

interfacial tension, or enhance the chemical effectiveness of the 

ASP solution. Conversely, when the gmol values decreased, the 

oil production rate continued to rise, albeit at a more consistent 

and stable rate. This implied that while the presence of these 

ions is essential, their impact becomes less pronounced beyond 

a certain threshold. 

This phenomenon can be attributed to several factors. The 

initial increase in ion concentration might enhance wettability 

alteration and reduce IFT, thereby facilitating the improved 

mobilization of residual oil. However, once the chemical 

interactions reach an optimal level, the system attains a balance, 

and further changes in ion concentration yield diminishing 

returns in oil recovery. This highlights the importance of 

meticulously managing the injection strategy to sustain optimal 

ion concentrations for maximum efficiency. 

Overall, these findings emphasize the significant role that 

chemical interactions and ion exchange play in the success of 

ASP injection. Gaining a deeper understanding of the interplay 

between injection parameters and reservoir chemistry offers 

valuable insights for optimizing the recovery process, ensuring 

that every component of the chemical mixture is utilized to its 

fullest potential for effective and economical enhancement of 

oil production. 

 

 

Fig. 4. Field oil recovery factor over time 

Fig. 4 illustrates the RF over time. The black line depicts the 

increase in RF relative to the base case, while the blue one 

represents the RF growth from various experimental data sets. 

The overall shape of the curve, which transitions from an initial 

rise to a plateau, demonstrated the typical performance of an 

ASP injection process: the initial mobilization of trapped oil 

was followed by a peak in efficiency, culminating in a 

stabilization of recovery. This trend served as a valuable 

illustration of both the short-term and long-term effects of EOR 

techniques on reservoir performance. The pronounced rise 

followed by a plateau aided the authors to understand the 

anticipated yield and plan further interventions if needed. A 

significant increase following the initiation of ASP injection on 

January 1, 2025, suggested that the five parameters had a 

substantial impact on the RF enhancement. 

Fig. 5 through 9 depict the concentration profiles of several 

key parameters, highlighting their dynamic changes over time. 

Notably, the concentrations of SO4
2-, Na+, and CO3

2- displayed 

distinct increasing and decreasing patterns, reflective of 

ongoing ion exchange and interactions between the ASP and 

the reservoir. These ion exchanges were pivotal in modifying 

the chemical environment of the reservoir, which, in turn, 

determined the efficiency of oil displacement and recovery. 

 

Fig. 5. Concentration profile of Na+ 

 

Fig. 5 illustrates the dynamic behavior of Na⁺ concentration 
throughout the study period. Initially, in 2020, the Na⁺ 
concentration was approximately 8e+007 gmole (or 20,000 

ppm). However, it saw a significant decrease, dropping to 

below 1e+007 gmole by 2025. This decline reflected various 

interactions with the reservoir, including adsorption, 

wettability alteration, and the formation of in-situ surfactants. 

By 2025, Na⁺ concentration is predicted to be stable at its 

lowest level, indicating an equilibrium between chemical 

reactions and the availability of ions. From 2026 to 2029, the 

concentration of Na⁺ is predicted to again increase from 9e+006 

to 2.5e+007 gmole (or 2250 to 6250 ppm). This rise is likely 

attributable to ASP injection or ion desorption. The observed 

peaks and troughs during this period highlight the ongoing 

exchanges of ions and the impact of secondary injections that 

support EOR processes. 

After 2029, Na⁺ concentration is projected to decline 

gradually, indicating a stabilization phase and diminishing 

efficiency of ASP, marking a transition toward equilibrium and 

reduced incremental recovery. This fluctuation illustrates the 

complex interplay between injected chemicals, reservoir rocks, 

and fluids during ASP processes. 

Fig. 6 illustrates the concentration of sulfate ions (SO₄²⁻) in 
the reservoir. From 2022 to 2025, sulfate levels remained 

consistently low, suggesting that there were no significant ASP 

components present prior to injection.  

However, started from 2025, there will be a sharp increase 

in sulfate concentration, reaching a peak around 2028. This rise 

indicates active sulfate injection, which enhances oil 

mobilization by reducing IFT, altering wettability, and 

generating in-situ surfactants through reactions with alkali and 

crude oil acids. 

Following 2028, sulfate levels will begin to decline, likely 

due to interactions with reservoir rocks, fluid depletion, or 



154 Putra et al. / Communications in Science and Technology 10(1) (2025) 148–159  

decreased injection rates. This decline signifies a shift towards 

stability, reflecting diminishing returns as the more accessible 

zones have already been impacted. This trend underscores the 

progression toward equilibrium in the EOR process. 

 

Fig. 6. Concentration profile of SO4
2- 

 

Fig. 7. Concentration profile of Surfactant 
 

Fig. 7 illustrates the dynamics of surfactant concentration 

within the reservoir. From 2022 to 2025, the concentrations 

remained close to zero, indicating a lack of significant injection 

during this period. By 2025, surfactant injection commences 

with concentrations peaking around 2028. This peak signifies 

optimal IFT reduction and the maximum effectiveness of oil 

mobilization.  

Following 2028, surfactant levels begin to decline, likely 

due to adsorption onto reservoir rocks, depletion from various 

reactions, or a transition to a different EOR phase, such as water 

flooding. This decline suggests diminishing returns from 

further injection and a move toward equilibrium. 

 

 

Fig. 8. Concentration profile of CO3²
- 

From 2022 to 2025, as illustrated in Fig. 8, carbonate ions 

(CO₃²⁻) remained at negligible levels, indicating a lack of active 

injection. However, by 2025, carbonate concentrations rise 

sharply, and reach a peak by 2028. This increase is attributed 

to the reactions between injected alkali (such as Na₂CO₃) and 
naturally occurring acids, which enhance pH control and 

improve surfactant effectiveness by reducing IFT. 

The peak observed by 2028 represents an optimal carbonate 

activity, leading to improved oil recovery through alterations in 

wettability and a reduction in surfactant adsorption. Following 

this peak, carbonate levels gradually decline as a result of 

consumption in reactions (such as the formation of CaCO₃ 
precipitates) or reduced injection rates, marking a transition to 

equilibrium and diminishing returns. 

 

Fig. 9. Concentration profile of polymer+ 

From 2022 to 2025, polymer concentration remained close 

to zero, indicating that no injection occurred during this period 

(see Fig. 9). Beginning by 2025, polymer levels increase 

significantly, reaching a peak by 2028. This peak signifies an 

optimal polymer injection, enhancing viscosity to improve 

sweep efficiency and minimize fingering.  

Following 2028, polymer concentration begins to decline 

due to degradation, consumption, or reduced injection rates. 

This decline indicates a transition to a maintenance phase that 

relies on the previously established effects for ongoing oil 

recovery. 

 

 

Fig. 10. Five key parameters of ASP injection 

 

Fig. 10 illustrates the contributions of various injection 

parameters to the RF. The green bars indicate the direct effects, 

while the red ones denote the interaction effects. 

Of the major parameters, Polymer played a crucial role, 

accounting for 53% of the contribution. It significantly 

enhanced viscosity and sweep efficiency, exhibiting minimal 
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interaction effects at 0.069%, thereby functioning 

predominantly in isolation. Sodium, contributing 42%, was 

vital for altering wettability and improving surfactant 

performance, displaying a higher interaction effect of 0.78%. 

This suggests a synergistic relationship with other components, 

such as surfactants. 

Turning to the minor parameters, the Surfactant contributed 

only 2.8%, proven effective in reducing IFT, but its impact was 

limited due to already optimized wettability conditions. 

Sulphate (-0.18%) and Carbonate (-0.05%) demonstrated 

negligible or even negative effects, likely caused by 

precipitation or scaling issues, which necessitate careful 

management to prevent impeding recovery. 

Given that Polymer and Sodium largely operated 

independently, optimizing each parameter individually could 

be highly effective. By prioritizing Polymer and Sodium, we 

could maximize the RF while minimizing reliance on less 

impactful elements like Sulphate and Carbonate. It was crucial 

to avoid the excessive use of surfactants and to properly 

manage Sulphate and Carbonate as their mismanagement might 

diminish efficiency. This highlights the importance of balanced 

injection strategies. 

Table 7. Five parameters of ASP flooding optimization 

 
Ranking Features Effect 

1 INJ_Polymer 0.5306 

2 INJ_Na 0.4278 

3 INJ_Surf 0.0280 

4 INJ_SO4 0.0068 

5 INJ_CO3 0.0001 

 

Fig. 10 and Table 7 examine the influence of five parameters 

on the RF based on 500 CMOST simulation runs. Polymer 

(Impact: 0.5306) became the most influential parameter, 

enhancing viscosity and sweep efficiency, which helped to 

prevent channeling and ensured uniform oil displacement. This 

was critical for mobility control during ASP injection. Ionic 

Na⁺ (Impact: 0.4278) ranked as the second most important 

factor, as it optimized salinity to reduce IFT and maximize 

surfactant efficiency, thereby significantly improving oil 

mobilization. 

Surfactant (Impact: 0.0280) had a limited effect, likely due 

to already optimized wettability, suggesting that further 

additions may yield diminishing returns. Both Ionic SO₄²⁻ 
(Impact: 0.0068) and CO₃²⁻ (Impact: 0.0001) showed minimal 

impact, indicating their limited role in altering wettability or 

facilitating chemical interactions, which helped to mitigate 

risks such as scaling or inefficiencies. 

3.2. Super learner ensemble 

Fig. 11 illustrates the correlation among various injection 

components and the RF. Each cell in the matrix displays the 

correlation coefficient between two parameters with the values 

in the range of -1 to +1. A positive correlation indicates that as 

one variable increases, other is likely to increase as well, 

whereas a negative correlation suggests that as one variable 

rises, other tends to decrease. The color bar on the right reflects 

the strength of the correlation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Mathematical correlation of parameters 

 

Polymer (0.66) exhibited a strong positive correlation with 

RF, emphasizing its significant role in enhancing sweep 

efficiency and mobilizing oil. While, Sodium (0.53) showed a 

moderately strong correlation, highlighting its importance in 

optimizing salinity, reducing IFT, and improving surfactant 

efficiency. Surfactant (0.18) demonstrated a weak correlation, 

suggesting that its efficacy largely depended on the 

contributions from both polymer and sodium. CO3
2- (-0.062) 

displayed a weak negative correlation, which may indicate 

potential challenges such as precipitation or scaling. SO4
2- (-

0.0075) had a negligible negative correlation, suggesting 

minimal or slight adverse effects on RF. 

The interactions between polymer and sodium (0.085) 

revealed a weak synergy, where sodium's effect on wettability 

alterations complemented the viscosity effect of polymer but 

functioned mostly independently. The relationship between 

sodium and surfactant (0.082) also showed a weak interaction, 

indicating that sodium optimized pH levels for surfactant 

activity though its amplifying effects were found limited. In 

contrast, the negative correlation between polymer and 

surfactant (-0.045) suggests that the increased levels of polymer 

may reduce the concentration or impact required for surfactant 

effectiveness. 

Overall, the dominance of polymer and sodium demonstrated 

the strongest positive correlations with RF, underscoring their 

critical roles in viscosity control and salinity optimization. To 

achieve maximum efficiency, it was focused on polymer and 

sodium while managing carbonate and sulphate levels to 

mitigate negative impacts such as scaling. Nevertheless, most of 

parameters operated independently with limited synergy, which 

simplified the optimization process for EOR design. 

3.3. Key driver of oil recovery 

Of the five key parameters affecting RF, INJ_POLYMER 

became the primary factor. It had the most significant impact, 

enhancing sweep efficiency by increasing the viscosity of the 



156 Putra et al. / Communications in Science and Technology 10(1) (2025) 148–159  

injected fluid. INJ_Na was also essential, playing a vital role in 

altering wettability and optimizing surfactant activity. 

In contrast, the effects of INJ_CO3 and INJ_SO4 were found 

minimal, characterized by weak or negative correlations. These 

parameters provided little to no benefit and may even impede 

recovery, necessitating their limited use. 

There was an interdependency between INJ_Na and 

INJ_POLYMER that demonstrated slight synergy; however, it 

was more critical to optimize each parameter individually. The 

benefits of surfactant injection showed limited reliance on these 

interactions, reinforcing the importance of independent 

optimization. 

The SL algorithm featured a predictive model built using 

ASP injection parameters as the input and RF as the output. 

Multiple base learners were trained and evaluated based on R² 

(prediction accuracy) and RMSE (error magnitude). The most 

effective learners were then integrated into the SL ensemble to 

enhance the accuracy of RF predictions. 

 

 

Fig. 12. Comparison of R2 and RMSE for Each Learner 

 

Fig. 12 illustrates the performance of several machine 

learning models—Bayesian Ridge, SVR, Linear Regression, 

Decision Tree Regressor, XGBoost Regressor, and the Super 

Learner Ensemble (SLE), using an EOR dataset. It provides a 

comparison of R² and RMSE for each model. These metrics are 

crucial for assessing the predictive capacity of each model, with 

R² representing the proportion of variance accounted for by the 

model and RMSE indicating the average magnitude of the 

prediction errors. 

In the figure, R² is depicted by the blue line, while RMSE is 

represented by the red one. A higher R² value suggests greater 

model accuracy, reflecting how well the predicted values 

correspond to the actual values. Conversely, a lower RMSE 

value signifies better performance, as it indicates that the 

average error in predictions is small. 

The model comparison revealed that Bayesian Ridge 

achieved an R² of approximately 0.9 and an RMSE of around 3. 

This relatively high R² value (~0.9) indicated that the model 

captured a significant portion of the variability in the data. 

However, the RMSE was notably high at around 3, suggesting 

considerable prediction errors. Despite explaining a large 

fraction of the variance, these high prediction errors implied that 

the model may be prone to overfitting or may struggle to 

effectively manage complex non-linear relationships. 

SVR demonstrated an R² value of approximately 0.7 and a 

RMSE of about 2.5. Although SVR had a lower R² than 

Bayesian Ridge, indicating it accounted for less variance in the 

data, its RMSE was slightly better, suggesting it managed 

prediction errors more effectively. SVR may excel at capturing 

non-linear relationships, which could lead to reduced error rates 

despite its lower R². However, there is a concern that it may 

struggle to fully capture the complexities of the dataset. 

Linear Regression showed a moderate performance with an 

R² around 0.5 and an RMSE of approximately 2. This model 

explained about half of the variance in the data, indicating that 

it struggled with non-linear patterns. The RMSE value hinted at 

limited effectiveness in minimizing prediction errors, making 

Linear Regression less suitable for more intricate datasets. 

The Decision Tree Regressor had an R² of approximately 0.3 

and an RMSE of around 1.5. This model's lower R² indicated 

that it captured relatively little variance in the data. However, 

the RMSE suggested that it had lower prediction errors 

compared to other models discussed. The combination of a low 

R² and a relatively lower RMSE implied that the Decision Tree 

may be overfitting to specific data points, resulting in a model 

that performed well in certain cases but lacked overall reliability 

across the dataset. 

In contrast, XGBoost Regressor exhibited a high R² value of 

approximately 0.95 and a significantly lowered RMSE of about 

0.75. This indicated that XGBoost explained nearly all the 

variance in the data while maintaining minimal prediction 

errors. Utilizing a boosted decision tree approach, XGBoost 

effectively captured complex patterns, making it the most 

accurate model among those evaluated. Its high R² and low 

RMSE positioned it as an optimal choice for complex EOR 

predictions. 

The SLE achieved an R² of approximately 1 and an RMSE 

of around 0.1, making it the top-performing model. This 

indicated that the ensemble effectively explained nearly all the 

variance in the data and had an exceptionally low average 

prediction error. By combining the strengths of multiple models, 

the SLE created a robust predictor that captured both linear and 

non-linear relationships while addressing complexities that 

individual models might overlook. This demonstrated the power 

of ensembling, as it leveraged the advantages of various 

algorithms for superior performance. 

In Fig. 12, the SLE model exhibited the highest performance 

of all the base learner models, achieving an R² value of 0.988. 

This indicated a near-perfect fit between the predicted and actual 

data, reflecting the model's excellent capability to capture 

complex non-linear relationships between the input parameters 

and the resultant RF values. Additionally, the SLE model 

recorded the lowest RMSE of 0.304, indicating that it made the 

most accurate predictions with minimal error compared to other 

models. 

Using the SLE model, the prediction of the optimal RF value 

was conducted by inputting the minimum and maximum values 

of the injection parameters, including surfactant, polymer, SO4, 

CO3
2-, and Na+ concentrations. This approach allowed for a 

comprehensive evaluation of potential outcomes, ultimately 

helping in identifying the parameter configuration that 

maximized RF. The SLE model's high R² and low RMSE values 

highlighted its reliability and precision in optimizing ASP 

injection scenarios, providing valuable insights for EOR. 

For optimization using the SLE algorithm, as illustrated in 

Fig. 4, 500 new datasets were randomly generated with the 

maximum and minimum parameter values adjusted to align with 
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the original range utilized for generating datasets in CMOST. 

This methodology facilitated a thorough exploration of potential 

scenarios to identify the optimal parameters for ASP injection. 

Following the optimization, as displayed in Fig. 6, the RF was 

determined to be 79.49% with the following corresponding 

injection parameters: surfactants at 5483.29 ppm, polymers at 

2242.61 ppm, SO4
- at 5610.15 ppm, CO3

2- at 7053.59 ppm, and 

Na+ at 9939.35 ppm. 

The optimization process was also implemented using 

Python programming, achieving the highest RF value of 79.49% 

in less than one minute of computational time. In contrast, the 

CMOST software required approximately 10 hours to generate 

and optimize the Design of Experiments (DoE), ultimately 

arriving at the RF value of 80.65%. This stark difference in 

computational time underscores the efficiency of machine 

learning approaches, such as the SL algorithm, for rapid 

optimization. 

The findings suggest that, under comparable reservoir 

conditions, researchers and engineers are able to leverage 

machine learning models to predict RF values much more 

swiftly by directly inputting the optimized parameters. This 

enhanced optimization capability not only saves time but also 

allows for increased iterations, thereby improving decision-

making processes and the feasibility of ASP injection projects. 

As for the SLE, it stood out as the best model, achieving the 

highest R² value of 0.988 and the lowest RMSE of 0.304. It 

effectively captured complex non-linear interactions in ASP 

injection. By integrating multiple learners, the ensemble 

mitigated biases and variances, making it the most dependable 

predictor for RF optimization. 

XGBoost, as the Premier Individual Model, stood out among 

individual models, achieving a high R² of approximately 0.95 

and a low RMSE of roughly 0.75. It exceled in managing non-

linear EOR data although it did not match the precision of the 

ensemble approach. 

Insights into key parameters: (1) Polymer (2242.61 ppm) 

was the most influential factor as it enhanced sweep efficiency 

by improving viscosity and regulating fluid mobility. (2) Na⁺ 
(9939.35 ppm) was found essential for altering wettability, 

optimizing surfactant efficiency, and pH balance. (3) Surfactant 

(5483.29 ppm) was effective in reducing IFT, thereby 

mobilizing trapped oil. (4) CO₃²⁻ (7053.59 ppm) facilitated pH 

control and promoted the formation of HCO₃⁻, enhancing 

wettability and the performance of surfactants. (5)SO₄²⁻ 
(5610.15 ppm) stabilized chemical mixtures, contributing to 

IFT reduction. 

Ionic Interactions and Chemical Dynamics showed that the 

generation of HCO₃⁻ ions through the reactions of CO₃²⁻ played 

a crucial role in pH adjustment, minimizing surfactant 

adsorption, and producing in-situ surfactants that improved 

reservoir wettability and efficiency. 

Practical Applications displayed efficiency and scalability in 

which the SLE optimized ASP injection with remarkable speed, 

achieving RF of 79.49% under a minute, compared to 

CMOST’s lengthy 10-hour process. Its accuracy and rapid 

execution enabled effective field-scale adaptation. 

The SLE exceled in predicting and optimizing RF, 

underscoring the vital contributions of polymer and Na⁺ in 
augmenting ASP efficiency. By integrating chemical insights 

with machine learning precision, this method guarantees high 

recovery rates, time efficiency, and scalability for real-world 

EOR applications. These findings highlight the significance of 

managing ionic interactions and utilizing advanced machine 

learning models to transform oil recovery strategies. 

4. Conclusion 

This study confirms that the SL ensemble algorithm is a 

powerful and efficient tool for optimizing ASP injection in 

sandstone reservoirs. By integrating the predictive strengths of 

multiple base models, which are XGBoost, SVR, Bayesian 

Ridge, and Decision Tree, the SL model achieved near-perfect 

predictive accuracy (R² = 0.988) and minimized prediction 

error (RMSE = 0.304), significantly outperforming traditional 

simulators such as CMOST and individual machine learning 

algorithms. Notably, the SL model identified an optimal ASP 

configuration resulting in the RF of 79.49%, all while reducing 

optimization time from 10 hours to less than 1 minute, a leap 

forward in quantitative efficiency. 

Mechanistically, the model uncovered that polymer and 

sodium ions became the primary contributors to recovery 

enhancement, accounting for over 95% of the total impact. 

Polymer concentration notably controlled mobility and sweep 

efficiency, while sodium ions regulated wettability and 

surfactant performance through salinity and pH adjustment. In 

contrast, surfactant, sulfate, and carbonate ions—though being 

essential for fine-tuning IFT and in-situ surfactant generation—
exerted relatively minor or even adverse effects when used 

excessively, emphasizing the importance of precision dosing 

and balanced chemical interactions. 

The practical field relevance of this work is underscored by 

the model’s rapid execution and scalability. Its ability to 
perform real-time parameter optimization with high accuracy 

has made it suitable for dynamic reservoir management, field 

screening, or economic feasibility evaluations in both mature 

and marginal fields. By offering a data-driven, low-cost, and 

computationally light alternative to conventional ASP 

optimization workflows, this approach represents a significant 

advancement in modern EOR practices. 

For future work, this framework can be expanded by 

incorporating economic metrics (e.g. NPV per chemical unit), 

real-time streaming field data, and uncertainty quantification 

techniques. Additionally, the inclusion of reactive transport 

modeling and integration with smart field operations (digital 

twin environments) will further strengthen its value as an 

intelligent decision-making tool for next-generation ASP 

projects. 
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Glossary of Terms 

Terms Definition Unit 

ASP Alkaline, Surfactant, Polymer  

EOR Enhanced Oil Recovery   

RF Recovery Factor  % 

ML Machine Learning   

IFT Interfacial Tension  dynes/cm 

AI Artificial Intelligence   

SVM Support Vector Machine   

 MLP-NN Multi-Layer Perceptron Neural Networks   

LSSVM Least Squares Support Vector Machine   

GA Genetic Algorithms   

NPV Net Present Value   

R2 Coefficients of Determination  

SL Super Learner   

SLE Super Learner Ensemble  

SVR Support Vector Regression   

XGBoost eXtreme Gradient Boosting  

BRR Bayesian Ridge Regression  

RMSE Root Mean Square Error   

API  American Petroleum Index oAPI 

DoE Design of Experiments   

CMG Computer Modelling Group  

References 

1. D. F. Putra, M. Zaidi, R. I. Aldani, and R. Melysa, “Hybrid-alkali: A 

Synergy of Two Alkalis to Improve Efficiency of Alkali-Surfactant-

Polymer (ASP) Flooding for the Oil Field,” in The 2nd International 

Conference on Design, Energy, Materials and Manufacture 2021 

(ICDEMM 2021), Pekanbaru: AIP Conference Proceedings (2023). 

2. A. M. Nasution and D. F. Putra, “Investigasi Sifat Ion Na(+) & NH4(+) 
Pada Hybrid-Alkali ASP Flooding Menggunakan Simulator CMG GEM 

2020,” Lembaran Publikasi Minyak dan Gas Bum, 56 (2022) 133–145. 

3. C. Sun, H. Guo, Y. Li, G. Jiang, and R. Ma, Alkali Effect on Alkali-

Surfactant-Polymer (ASP) Flooding Enhanced Oil Recovery 

Performance: Two Large-Scale Field Tests Evidence, J. Chem. (2020) 1–
22. 

4. H. Guo, G. Jiang, J. Zhang, J. Hou, K. Song, and Q. Song, Alkali-

surfactant-polymer ASP flooding field test using horizontal wells: Design, 

implementation and evaluation, in Proceedings - SPE Symposium on 

Improved Oil Recovery, Tulsa Oklahoma: SPE, (2020) 1–15. 

5. A. D. K. Wibowo, Investigating potential application of bio-based 

polymeric surfactant using methyl ester from palm oil for chemical 

enhanced oil recovery (CEOR), Commun. Sci. Technol. 8 (2023) 235–242. 

6. A. D. N’diaye, M. S. Kankou, B. Hammouti, A. B. D. Nandiyanto, D. F. 

Al Husaeni, A review of biomaterial as an adsorbent: From the 

bibliometric literature review, the definition of dyes and adsorbent, the 

adsorption phenomena and isotherm models, factors affecting the 

adsorption process, to the use of typha species waste as a low-cost 

adsorbent, Commun. Sci. Technol. 7 (2022) 140–153. 

7. H. Zhong, T. Yang, H. Yin, J. Lu, K. Zhang, and C. Fu, Role of Alkali type 

in chemical loss and ASP-flooding enhanced oil recovery in Sandstone 

formations, in the SPE Annual Technical Conference and Exhibition, 

Dallas, Texas (2019) 431–445. 

8. H. Zhong, T. Yang, H. Yin, C. Fu, and J. Lu, The Role of Chemicals Loss 

in Sandstone Formation in ASP Flooding Enhanced Oil Recovery, Dallas 

Texas (2018) 1–17. 

9. D. F. Putra et al., Innovating EOR Strategies: Unlocking the Potential of 

Streaming Potential (Electrokinetic) as Sustainable and Ecofriendly 

Surveillance Tools for Monitoring ASP Fluid Front, in The SPE Advances 

in Integrated Reservoir Modelling and Field Development Conference and 

Exhibition, Abu Dhabi, UAE, (2025) 1–13. 

10. H. Guo, Y. Li, Y. Li, D. Kong, B. Li, and F. Wang, Lessons learned from 

ASP flooding tests in China, in The SPE Reservoir Characterisation and 

Simulation Conference and Exhibition, Abu Dhabi UAE (2017) 226–248.  

11. H. Guo et al., ASP Flooding: Theory and Practice Progress in China, J 

Chem, (2017) 1–11. 

12. F. Abadli, Simulation Study of Enhanced Oil Recovery by ASP (Alkaline, 

Surfactant and Polymer) Flooding for Norne Field C-segment, Norwegian 

University of Science and Technology, (2012). 

13. M. A. Ahmadi and M. Pournik, A Predictive Model of Chemical Flooding 

for Enhanced Oil Recovery Purposes: Application of Least Square Support 

Vector Machine, Petroleum, 2 (2016) 177–182. 

14. D. Steineder, G. Vanegas, T. Clemens, and M. Zechner, Deriving 

Alkali Polymer Parameter Distributions from Core Flooding by Applying 

Machine Learning in a Bayesian Framework to Simulate Incremental Oil 

Recovery, in The 82nd EAGE Conference and Exhibition, Virtual: SPE, 

(2020) 1–21. 

15. F. Hadavimoghaddam, M. Ostadhassan, M. A. Sadri, T. Bondarenko, I. 

Chebyshev, and M. Semnani, Prediction of Water Saturation from Well 

Log Data by Machine Learning Algorithms:  Boosting and Super Leaner, 

J. Mar. Sci. Eng. 9 (2021) 1–23. 

16. A. Larestani, S. P. Mousavi, F. Hadavimoghaddam, M. Ostadhassan, and 

A. Hemmati-Sarapardeh, Predicting the Surfactant-Polymer Flooding 

Performance in Chemical Enhanced Oil Recovery: Cascade Neural 

Network and Gradient Boosting Decision Tree, Alex. Eng. J. 61 (2022) 

7715–7731. 

17. M. M. Al-Dousari and A. A. Garrouch, An Artificial Neural 

Network Model for Predicting the Recovery Performance of Surfactant 

Polymer Floods, J. Pet. Sci. Eng. 109 (2013) 51–62. 

18. L. Van Si and B. H. Chon, Artificial Neural Network Model for Alkali-

Surfactant-Polymer Flooding in Viscous Oil Reservoirs: Generation and 

Application, Energies 9 (2016) 1–20. 

19. J. Hou, Z. Guan Li, X. Long Ca, and X. Wang Song, Integrating Genetic 

Algorithm and Support Vector Machine for Polymer Flooding Production 

Performance Prediction, J. Pet. Sci. Eng., 68 (2009) 29–39. 

20. E. C. Polley and M. J. Van Der Laan, Super Learner In Prediction, 

Berkeley, 266 (2010). 

21. M. J. Van Der Laan, E. Polley, and A. Hubbard, Super Leaner, Berkeley, 

222 (2007). 

22. E. Khamehchi, M. R. Mahdiani, M. A. Amooie, and A. Hemmati 

Sarapardeh, Modeling viscosity of light and intermediate dead oil systems 

using advanced computational frameworks and artificial neural networks. 

J. Pet. Sci. Eng. 193 (2020) 107388. 

23. F. Hadavimoghaddam et al., Prediction of Dead Oil Viscosity: Machine 

Learning vs. Classical Correlations, Energies (Basel), 14 (2021) 1–6.  

24. S. Munadi, Seismo-Electric Phenomena from Granite Containing Crude 

Oil, Science Contribution Oil and Gas, 30 (2007) 43–46. 



 Putra et al. / Communications in Science and Technology 10(1) (2025) 148–159 159 

 

25. A. Novriansyah, W. Bae, C. Park, A. K. Permadi, and S. S. Riswati, 

Optimal Design of Alkaline – Surfactant – Polymer Flooding under Low 

Salinity Environment, Polymers (Basel), 12 (2020) 1–11. 

26. E. Effendi, R. Purwaningsih, Pujiarko, E. M. Adji, L. Notman, and J. 

Ewing, Plan of Field Development of Tilan Field, Pekanbaru, 2003. 

27. Q. Sun, T. Ertekin, M. Zhang, and T. On, A Comprehensive Techno-

Economic Assessment of Alkali–Surfactant–Polymer Flooding Processes 

Using Data-Driven approaches, Energy Reports, 7 (2021) 2681–2702.

 

 


