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Abstract

Optimizing the Alkaline-Surfactant-Polymer (ASP) injection process remains a persistent challenge in Enhanced Oil Recovery (EOR),
particularly in heterogeneous sandstone reservoirs where traditional reservoir simulators are constrained by high computational demands and
limited flexibility. This study introduces a novel application of the Super Learner (SL) ensemble, a stacking-based machine learning algorithm
integrating multiple base models (XGBoost, SVR, BRR, and Decision Tree), to systematically predict and optimize ASP injection parameters.
Unlike previous approaches, our method blends high-fidelity CMOST simulation data with machine learning precision in which it enables real-
time optimization with field-scale relevance. Using 500 simulation scenarios validated by laboratory input, the SL model achieved exceptional
predictive performance (R? = 0.988, RMSE = 0.304), outperforming all individual learners. The optimal recovery factor (RF) of 79.49% was
obtained with the finely tuned concentrations of surfactant (5483.29 ppm), polymer (2242.61 ppm), SO+* (5610.15 ppm), CO5*>" (7053.59 ppm),
and Na' (9939.35 ppm). Remarkably, the SL approach could reduce optimization time from 10 hours (CMOST) to under 1 minute; this
underscored its potential for real-time operational deployment. The novelty of this work lies in its integrated use of ensemble learning to capture
the complex and non-linear interactions between ionic chemistry and oil mobilization behavior, offering a field-ready Al framework for rapid
and adaptive EOR design. This approach paves the way for the intelligent optimization of ASP schemes by minimizing the reliance on

computationally intensive simulations while ensuring chemical and economic efficiency in marginal or complex reservoirs.
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1. Introduction

Alkaline, Surfactant, Polymer (ASP) injection is widely
recognized as one of the most effective techniques in Chemical
Enhanced Oil Recovery (EOR)[1,2,3,4]. This method leverages
the synergistic effects of alkalis, surfactants, and polymers to
significantly enhance oil recovery. The role of alkali
component is crucial as it increases the pH of the injected fluid,
thereby reducing surfactant adsorption and generating in-situ
surfactants in acidic crude oil conditions [5,6]. This process, in
turn, leads to a greater reduction in interfacial tension (IFT) and
alters wettability, making the oil more mobilizable. Surfactants
further decrease the IFT between crude oil and the injected
fluids, enabling any trapped oil droplets to flow with greater
ease. In contrast, polymers increase the viscosity of the injected
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fluid, which improves the mobility ratio between the displacing
water and reservoir oil; this then leads to more uniform sweep
efficiency and reduced channeling.

Sandstone reservoirs, known for their diverse mineral
composition, provide favorable conditions for ASP injection
due to their relatively low adsorption of anionic (negatively
charged) compounds [7,8,9].

However, implementing ASP injection at the field scale can
pose several challenges, including high chemical costs,
operational complexity, and uncertainties in terms of reservoir
conditions [7,10,11]. It is therefore deemed essential to design
an ASP injection scheme that can effectively balance
maximizing recovery with minimizing costs and complexities.

Traditionally, conventional reservoirs simulation models
have been utilized to optimize ASP injection with the Recovery
Factor (RF) used as the primary decision variable [1,2,10,12].
These conventional models, however, encounter significant
limitations when applied to the complex and large-scale nature
of EOR datasets. They often require extensive computational
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resources, are time-consuming, and introduce various
uncertainties [10,12]. To address these challenges, Artificial
Intelligence (AI) and Machine Learning (ML) techniques have
emerged as effective alternatives for the optimization of EOR
processes. Compared to traditional approaches, Al-driven
methods excel in processing large datasets, identifying intricate
non-linear  relationships, and significantly reducing
uncertainties [13,14,15,16].

To make it clearer, Support Vector Machines (SVM) and
Multi-Layer Perceptron Neural Networks (MLP-NN) have
been effectively utilized to predict the efficiency of polymer
flooding and surfactant-polymer flooding. These methods have
demonstrated a strong alignment with field data, facilitating the
precise optimization of injection strategies [17,18].
Furthermore, Least Squares Support Vector Machine
(LSSVM) models, when paired with Genetic Algorithms (GA)
for optimization, have shown remarkable accuracy in
predicting RF and Net Present Value (NPV), and they could
achieve correlation coefficients (R?) greater than 0.993 [13,19].
These studies underscore the advantage of machine learning
models in capturing complex, multi-dimensional, and non-
linear interactions among critical EOR parameters, which seem
be difficult to be achieved by traditional methods.

Building on these advancements, ensemble learning
techniques have garnered interest for their ability to enhance
model robustness by aggregating the predictions of multiple
models. Super Learner (SL), a stacking-based ensemble
method, combines various machine learning algorithms to
reduce biases, minimize variance, and improve prediction
accuracy[20,21]. In the realm of petroleum engineering, it has
proven to be highly effective, surpassing individual models in
predicting any essential reservoir properties, such as dead oil
viscosity and water saturation [22,23].

This study utilized the SL ensemble to optimize the ASP
injection process with three main objectives: (1) to optimize
critical ASP parameters, including sulfate ions (SO4*) from
surfactants, sodium ions and carbonate ions (Na*, CO3%) from
alkali sources, and polymer concentrations [2,9], thereby
maximizing the RF; (2) to compare the performance of the SL
model against traditional models such as Bayesian Ridge,
Support Vector Regression (SVR), and XGBoost, thereby
demonstrating the effectiveness of ensemble learning; and (3)
to identify the optimal conditions for minimizing IFT and
enhancing sweep efficiency, which can have practical
applications in real-world field operations.

By integrating laboratory-scale data, and simulation model
data with advanced ML techniques, this study presents a novel
framework aimed at bridging the gap between experimental
and field-scale optimization of ASP injection, ultimately
contributing to improved and more efficient oil recovery.

2. Materials and Methods
2.1. Experimental setup
2.1.1. Data collection
The study commenced with the creation of a Cartesian
reservoir model specifically designed to simulate the behavior

of oil reservoirs during ASP injection. This model represented
the reservoir as a grid of cells to facilitate a detailed analysis of

fluid dynamics and chemical interactions [2,9,24]. Multiple
scenarios were executed using the model to explore various
combinations of injection parameters, resulting in a diverse
dataset. The collected data then underwent processing to ensure
consistency, reliability, and noise reduction; this ultimately
yielded a high-quality dataset suitable for machine learning
applications.

To determine the most significant factors determining oil
recovery, feature selection techniques were employed. The
following features were identified as the ones with the greatest
impact on oil recovery: the concentrations of each chemical
component crucial to modify rock wettability, reduce IFT, and
enhance sweep efficiency. Salinity plays a significant role in
the effectiveness of surfactants by affecting micelle stability
and surfactant solubility, which, in turn, influences IFT
reduction. IFT is a direct measure of the interaction forces
between the oil and the injected water phases; lower IFT values
indicate improved conditions for oil mobilization, making it a
key parameter in evaluating the success of the ASP injection
process.

The selected features served as the inputs for training
various machine learning models with the target variable being
oil RF. These trained models aimed to predict the effectiveness
of different ASP injection scenarios, thereby providing
valuable insights in the optimization of recovery processes.

2.1.2. Machine learning model and super learner ensemble

To capture the complex relationships between ASP injection
parameters and RF, a range of machine learning models was
utilized. Each algorithm offered a distinct approach to
understand the interplay between parameters:

1) Bayesian Ridge Regression (BRR): This probabilistic
model adjusts the regularization strength automatically
based on training data, making it robust against
multicollinearity and able to provide confidence intervals
for predictions. Here, it serves as a baseline to understand
linear trends and parameter uncertainty in the dataset [14].

2) SVR is well-suited to capture non-linear relationships
between features and RF. By utilizing different kernel
functions, it effectively handles high-dimensional data and
provides precise predictions for the complex non-linear
dependencies inherent in ASP injection optimization.

3) Linear Regression (LR) and Decision Tree Regresses
(DTR): These models serve as baseline models for
comparison purposes. LR helps to identify any significant
linear relationships between the features, while the DTR
provides interpretability in identifying parameter splits and
interactions. The Decision Tree model highlights how
parameters, such as chemical concentration, affect RF at
different thresholds.

4) eXtreme Gradient Boosting (XGBoost) Regressor:
XGBoost is a highly regarded gradient boosting algorithm
recognized for its accuracy, efficiency, and capability to
capture complex non-linear interactions among variables.
It employs an ensemble of decision trees to predict RF to
effectively address overfitting through regularization
techniques while considering the effects of various
injection scenarios.
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To enhance predictive performance, the Super Learning
(SL) Ensemble was utilized, leveraging the strengths of
individual models. The SL method, an ensemble stacking
technique, combines predictions from multiple base learners to
reduce bias and variance, purposely to produce more accurate
and generalized outcomes. K-fold -cross-validation was
employed to train the SL ensemble to minimize overfitting and
ensure robustness. By integrating multiple models, the SL
ensemble capitalized on their individual strengths that resulted
in improved overall predictive accuracy. The evaluation
metrics used to assess each model's performance included the
Coefficient of Determination (R?) to measure how well
predictions align with actual results, and Root Mean Square
Error (RMSE) to quantify the magnitude of prediction errors.

2.1.3. Parameter optimization and sensitivity analysis

The SL model was utilized to forecast the RF by examining
various combinations of ASP component concentrations and
salinity levels. The optimization process employed a grid
search technique, which systematically evaluated different
parameter configurations to identify the combination that
produced the highest RF. This approach facilitated an efficient
exploration of the solution space, ensuring the selection of the
most effective injection strategy.

Additionally, a sensitivity analysis was conducted to assess
the relative impact of each parameter on RF. This analysis
yielded valuable insights into the most influential factors,
enabling targeted adjustments to enhance the effectiveness of
ASP injection. The results revealed that certain parameters,
particularly polymer concentration and salinity, had a
significant impact on RF, underscoring the necessity for their
precise management to maximize recovery.

2.1.4. Model calibration and validation

To validate the reliability of the model, results from the SL
were compared with both experimental and simulation data.
The close correlation between model predictions and
experimental outcomes confirmed the SL model's accuracy in
capturing the intricate relationships between injection
parameters and RF. Cross-validation was employed to further
ensure the model's robustness to provide a statistical measure
of its generalizability across diverse datasets.

The model's hyperparameters were iteratively refined to
enhance prediction performance. A number of adjustments
were made to the learning rate, regularization strength, and
other critical hyperparameters to achieve an optimal balance
between accuracy and control overfitting. The final calibrated
model was subsequently utilized to simulate various ASP
injection scenarios, producing the predictions of optimal
recovery and offering insights into the effective use of
chemicals, alongside economic considerations. These
predictions underscored the potential to significantly improve
recovery rates, while minimizing chemical costs and
maximizing operational efficiency.

2.2. Equations
2.2.1. Data processing

The research was based on secondary data from [25]

establishing a base case that featured a sandstone reservoir
characterized by a relatively tight rock distribution and low
salinity. From the analysis of the reservoir properties, as
presented in Fig. 1, it was evident that the reservoir rock
exhibited a tendency toward water wettability with the
intersection of the relative permeability curves for water and oil
occurred at a water saturation of 0.52. Table 1 shows that the
oil had a gravity value of 25°API (American Petroleum
Institute), classifying it as heavy-medium oil.

X
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Fig. 1. Correlation of the relative permeability

Table 1. Reservoir rock properties data [25,26]

Parameter Value Unit
Oil Gravity 25 °API
Gas Oil Ratio 250 SCF/stb
Bubble Point Pressure 350 psi
Salinity 20000 ppm
po at Initial Pressure 0.82 cp
Reservoir Temperature 173 °C
Reservoir Depth 5400-5512 ft
Reservoir Pressure 1615 psi
Rock Compressibility 1.39x 10° psi!
Formation Volume Factor 1.105 Bbl/stb

2.2.2. Hydrocarbon components

The oil was sourced from the Central Sumatra Basin field
with hydrocarbons characterized by a high C7+ content. Table
2 presents the mole percentage values of each hydrocarbon
component used in this study.

2.2.3. Reservoir model

The model was based on a Cartesian grid conceptual
framework featuring a heterogeneous distribution of rock
types. Although it consisted of five layers, as presented in Table
3, it effectively simulated the layering observed in the field with
the dimensions of 1,000 ft in length and 200 ft in width. Fig. 2
depicts the 3D grid distribution with depths in the range of
5,400 to 5,512 ft, porosity values between 0.15 and 0.3, and
permeability spanning from 100 to 300 md [25,26]. Table 4
presents the field initialization with an Original Oil In Place
(OOIP) estimate of 0.49 MMbbl.

Fig. 2 displays a three-dimensional permeability model of a
reservoir that illustrates the spatial distribution of permeability
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values within a specific section of the reservoir as of January 1,
2021. The model employed a color-coded scheme to represent
various permeability ranges, offering essential insights into the
reservoir's flow characteristics. Segmented into distinct blocks,
each block was assigned a color that corresponded to its
permeability. The legend on the right side of the figure detailed
the permeability values associated with each hue.

Table 2. Hydrocarbon components

Components  Concentration mole (Mole%)
H,S 0
CO» 0.3783
N, 0.4645
CH,4 11.2789
C,Hg 0.1622
CsHs 0.2503
i-C4H)o 0.1832
n-C4Hio 0.4448
i-CsH, 2.3216
n-CsHj, 2.6256
CeHis 13.2666
C7His 68.6240

Table 3. Model grid properties

Grid Properties Description
Grid Type Cartesian
Layers Count 5
Total Block 50
Width 200 ft
Length 1000 ft

Table 4. Initial reservoir volume

Parameter Value
Original Oil in Place 0.491 MMbbl
Gross Formation Volume 28 MMSCF
Formation Pore Volume 6.442 MMSCF

Permeabity | (md)

Permeability | (md) 2021-01-01

Fig. 2. Cartesian cross section model (permeability)

The model revealed a layered distribution of permeability
with the lower layers predominantly displaying blue and cyan
tones (indicative of lower permeability values), while the upper
layers exhibited red and orangish shades (denoting higher
permeability). This suggests the presence of a heterogeneous
reservoir, characterized by vertical variations in permeability
that may result from differing rock types or varying
depositional environments. The differing colors and
permeability values across the model signified that the
reservoir's heterogeneity stems from variations in rock
properties such as grain size, sorting, and cementation, all of
which influence porosity and permeability.

Notably, the existence of distinct high-permeability zones
(highlighted in red) and low-permeability zones (shown in
blue) indicated that fluid flow within the reservoir was likely to
be non-uniform, potentially presenting challenges for efficient
sweep during fluid injection for EOR.

The black arrows positioned atop certain blocks indicated
the probable points of injection or production. These may
represent injection wells, where fluid is pumped into the
reservoir to displace oil, or production wells, where oil is
extracted. The strategic placement of these arrows in the higher
permeability regions is likely intentional as higher permeability
facilitates more efficient fluid flow and aids in maintaining
reservoir pressure.

2.2.4. Base case initialization

The initial fractional composition of the sandstone reservoir
comprised 80% Barite and 20% Kaolinite. Table 5 outlines the
chemical composition of the ASP base case, detailing the
specific elements used in its formulation.

Table 5. ASP composition [27]

Parameter Value (ppm)
Alkaline (Na,COs) 10,000
Surfactant (Base + SO,>) 15,000
Polymer (Base) 2,000

The production history of the reservoir extends over five
years from 2020 to 2025, initially relying on primary recovery
methods. In 2025, an ASP injection strategy is implemented,
which continues for one year until 2026.

Following the ASP injection phase, operations transition to
waterflooding by 2026. This waterflooding phase acts as a post-
chemical injection flushing mechanism, designed to mobilize
and recover any residual oil that has been displaced by the
chemical process.

This integrated approach combines the enhanced
mobilization capabilities of ASP injection with the flushing
efficiency of waterflooding, all aimed at maximizing oil
recovery from the sandstone reservoir throughout the
operational period.

Fig. 3 illustrates the relationship between salinity (ppm) and
IFT (dyne/cm) for wvarious surfactant concentrations,
comparing laboratory data with model simulations. It
highlights the critical role of salinity and surfactant
concentration in minimizing IFT for EOR.
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The optimal combination was a 0.05% surfactant
concentration at 20,500 ppm salinity, achieving the lowest IFT
(107% dyne/cm), necessary for mobilizing trapped oil. The IFT
rose to 102 after water injection but dropped to the critical level
of 107 under optimal conditions. The close match between lab
and model results confirmed the model's reliability for field
implementation planning.
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—— Model Surfactant Wt%=0.05
Fig. 3. Salinity variation and IFT base case (CMG)
Table 6. Ionic parameter (sun et al. 2016)

Variable Name Codes/Symbol Min Max
SO,* (ppm) INJ _SO4 2500 10000
Na* (ppm) INJ Na 2500 10000
CO; (ppm) INJ_CO3 2500 10000
Surfactant (ppm) INJ_SFT 2500 10000
Polymer (ppm) INJ_Polymer 500 2500

Table 5 presents five parameters, complete with their
respective minimum and maximum values, which define the
input range for model evaluation. These parameters are
essential for determining whether the model meets performance
standards.

The RMSE serves as a crucial metric for assessing model
performance as it quantifies the standard deviation of
prediction errors, the discrepancies between predicted and
actual values. A lower RMSE indicates superior model
accuracy. The formula is:

Py
RMSE = /Ll@% (1)

The coefficient of determination (R?) is the criterion for
usage. It represents the adjacent of the dependent value to the
best-fitting regression line. It is written as:

2 _ Ti-9)?
R 1+ Si-y)? 2)

In addition to a high R? value, a low error indicates good
model performance. The R? score ranges from nil to one;
getting closer to one means that the data model matches the
actual data.

2.2.5. Super leaner method

The Enhanced Super Learner (SL) is an ensemble learning
model, which is distinct from deep learning models. It achieves
superior accuracy by synthesizing predictions from multiple
algorithms through comprehensive cross-validation. The key
points are that the SL consolidates outputs from four
foundational machine learning algorithms to enhance
predictive accuracy, which employs cross-validation to ensure
robust model performance across various datasets, and basic
machine learning algorithms serve as the core foundation that
assesses the relationship between measured and predicted
values for ASP injection using cross plots for each dataset.
Then, by integrating multiple algorithms and utilizing cross-
validation, the SL minimizes errors and improves prediction
reliability, particularly in ASP injection modeling. This
approach is optimal for achieving precision in predictions
without the computational demands of deep learning models.

The study focuses on optimizing ASP injection and
predicting RF values for EOR in sandstone reservoirs,
highlighting the advantages of artificial intelligence,
specifically the SL algorithm, over traditional simulation
methods.

Key findings included that Al-driven approaches exhibited
a distinct advantage over conventional simulators when it came
to modeling complex interactions and optimizing ASP
parameters. The SL algorithm delivered greater accuracy and
faster computational speeds, especially when combined with
CMG reservoir simulation software. Secondly, Four
foundational algorithms were employed to model the non-
linear interactions of ASP consisting of SVM that effectively
managed non-linear relationships in high-dimensional datasets,
XGB that exceled in capturing intricate interactions among
parameters, Bayesian Framework that provided a means to
manage uncertainties and offered probabilistic insights, and
Decision Tree (DT) that ensured simplicity and interpretability
in the analysis of feature interactions.

The advantage of the SL Algorithm integrated the strengths
of the aforementioned base models, producing a robust and
accurate predictive tool for optimizing RF. It significantly
reduced computational time compared to traditional simulation
techniques. The last one was the analysis concentrated on the
injection concentrations of surfactant, polymer, SO+*~, COs*,
and Na*. These parameters played some crucial roles in altering
wettability, reducing interfacial tension, and controlling
mobility, all of which were essential for the success of ASP
injection.

3. Results and Discussion
3.1. Base model simulation

A total of 1,038 simulations were conducted using CMG
CMOST to produce a comprehensive set of results. From these
simulations, a representative dataset of 500 samples was
randomly and evenly selected to ensure a diverse and unbiased
representation of the parameter space. The RF values observed
in this dataset ranged from 66.94% to 80.56%, highlighting the
varying efficiency of different ASP injection parameter
combinations. The highest RF of 80.56% was achieved with the
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following injection parameters: surfactant concentration of
8,500 ppm, polymer concentration of 2,300 ppm, SO4* at 2,500
ppm, CO5* at 4,000 ppm, and Na* at 10000 ppm. These specific
values represented an optimal configuration for maximizing oil
recovery within the reservoir.

The observed behavior indicated a correlation between the
dynamics of ion concentrations and oil production rates.
Notably, when the gmol values of these ions increased, oil
production rates significantly rose, suggesting that these ions
positively contributed to improve sweep efficiency, reduce
interfacial tension, or enhance the chemical effectiveness of the
ASP solution. Conversely, when the gmol values decreased, the
oil production rate continued to rise, albeit at a more consistent
and stable rate. This implied that while the presence of these
ions is essential, their impact becomes less pronounced beyond
a certain threshold.

This phenomenon can be attributed to several factors. The
initial increase in ion concentration might enhance wettability
alteration and reduce IFT, thereby facilitating the improved
mobilization of residual oil. However, once the chemical
interactions reach an optimal level, the system attains a balance,
and further changes in ion concentration yield diminishing
returns in oil recovery. This highlights the importance of
meticulously managing the injection strategy to sustain optimal
ion concentrations for maximum efficiency.

Overall, these findings emphasize the significant role that
chemical interactions and ion exchange play in the success of
ASP injection. Gaining a deeper understanding of the interplay
between injection parameters and reservoir chemistry offers
valuable insights for optimizing the recovery process, ensuring
that every component of the chemical mixture is utilized to its
fullest potential for effective and economical enhancement of
oil production.
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Fig. 4. Field oil recovery factor over time

Fig. 4 illustrates the RF over time. The black line depicts the
increase in RF relative to the base case, while the blue one
represents the RF growth from various experimental data sets.
The overall shape of the curve, which transitions from an initial
rise to a plateau, demonstrated the typical performance of an
ASP injection process: the initial mobilization of trapped oil
was followed by a peak in efficiency, culminating in a
stabilization of recovery. This trend served as a valuable
illustration of both the short-term and long-term effects of EOR
techniques on reservoir performance. The pronounced rise
followed by a plateau aided the authors to understand the
anticipated yield and plan further interventions if needed. A

significant increase following the initiation of ASP injection on
January 1, 2025, suggested that the five parameters had a
substantial impact on the RF enhancement.

Fig. 5 through 9 depict the concentration profiles of several
key parameters, highlighting their dynamic changes over time.
Notably, the concentrations of SO4*, Na*, and CO;* displayed
distinct increasing and decreasing patterns, reflective of
ongoing ion exchange and interactions between the ASP and
the reservoir. These ion exchanges were pivotal in modifying
the chemical environment of the reservoir, which, in turn,
determined the efficiency of oil displacement and recovery.
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Fig. 5. Concentration profile of Na*

Fig. 5 illustrates the dynamic behavior of Na* concentration
throughout the study period. Initially, in 2020, the Na*
concentration was approximately 8e+007 gmole (or 20,000
ppm). However, it saw a significant decrease, dropping to
below 1e+007 gmole by 2025. This decline reflected various
interactions with the reservoir, including adsorption,
wettability alteration, and the formation of in-situ surfactants.

By 2025, Na*" concentration is predicted to be stable at its
lowest level, indicating an equilibrium between chemical
reactions and the availability of ions. From 2026 to 2029, the
concentration of Na* is predicted to again increase from 9¢+006
to 2.5e+007 gmole (or 2250 to 6250 ppm). This rise is likely
attributable to ASP injection or ion desorption. The observed
peaks and troughs during this period highlight the ongoing
exchanges of ions and the impact of secondary injections that
support EOR processes.

After 2029, Na' concentration is projected to decline
gradually, indicating a stabilization phase and diminishing
efficiency of ASP, marking a transition toward equilibrium and
reduced incremental recovery. This fluctuation illustrates the
complex interplay between injected chemicals, reservoir rocks,
and fluids during ASP processes.

Fig. 6 illustrates the concentration of sulfate ions (SO+*) in
the reservoir. From 2022 to 2025, sulfate levels remained
consistently low, suggesting that there were no significant ASP
components present prior to injection.

However, started from 2025, there will be a sharp increase
in sulfate concentration, reaching a peak around 2028. This rise
indicates active sulfate injection, which enhances oil
mobilization by reducing IFT, altering wettability, and
generating in-situ surfactants through reactions with alkali and
crude oil acids.

Following 2028, sulfate levels will begin to decline, likely
due to interactions with reservoir rocks, fluid depletion, or
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decreased injection rates. This decline signifies a shift towards
stability, reflecting diminishing returns as the more accessible
zones have already been impacted. This trend underscores the
progression toward equilibrium in the EOR process.
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3 1,264006

Aqueous Component M,

2022 2023 2024 2025 2026 2027 2028 2029 2030
Aqueous Component Moles SCTR{Surfact), MODEL BARU.sr3  (Year)

Fig. 7. Concentration profile of Surfactant

Fig. 7 illustrates the dynamics of surfactant concentration
within the reservoir. From 2022 to 2025, the concentrations
remained close to zero, indicating a lack of significant injection
during this period. By 2025, surfactant injection commences
with concentrations peaking around 2028. This peak signifies
optimal IFT reduction and the maximum effectiveness of oil
mobilization.

Following 2028, surfactant levels begin to decline, likely
due to adsorption onto reservoir rocks, depletion from various
reactions, or a transition to a different EOR phase, such as water
flooding. This decline suggests diminishing returns from
further injection and a move toward equilibrium.
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Fig. 8. Concentration profile of CO;*

From 2022 to 2025, as illustrated in Fig. 8, carbonate ions
(COs*) remained at negligible levels, indicating a lack of active
injection. However, by 2025, carbonate concentrations rise
sharply, and reach a peak by 2028. This increase is attributed
to the reactions between injected alkali (such as Na.COs) and
naturally occurring acids, which enhance pH control and
improve surfactant effectiveness by reducing IFT.

The peak observed by 2028 represents an optimal carbonate
activity, leading to improved oil recovery through alterations in
wettability and a reduction in surfactant adsorption. Following
this peak, carbonate levels gradually decline as a result of
consumption in reactions (such as the formation of CaCOs
precipitates) or reduced injection rates, marking a transition to
equilibrium and diminishing returns.
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Fig. 9. Concentration profile of polymer+

From 2022 to 2025, polymer concentration remained close
to zero, indicating that no injection occurred during this period
(see Fig. 9). Beginning by 2025, polymer levels increase
significantly, reaching a peak by 2028. This peak signifies an
optimal polymer injection, enhancing viscosity to improve
sweep efficiency and minimize fingering.

Following 2028, polymer concentration begins to decline
due to degradation, consumption, or reduced injection rates.
This decline indicates a transition to a maintenance phase that
relies on the previously established effects for ongoing oil
recovery.

Parameter

INJ_CO3 {DIPe%

10 5 2 I3 ) 3% ) 4 E] 560
Effects (%)

Fig. 10. Five key parameters of ASP injection

Fig. 10 illustrates the contributions of various injection
parameters to the RF. The green bars indicate the direct effects,
while the red ones denote the interaction effects.

Of the major parameters, Polymer played a crucial role,
accounting for 53% of the contribution. It significantly
enhanced viscosity and sweep efficiency, exhibiting minimal
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interaction  effects at 0.069%, thereby functioning
predominantly in isolation. Sodium, contributing 42%, was
vital for altering wettability and improving surfactant
performance, displaying a higher interaction effect of 0.78%.
This suggests a synergistic relationship with other components,
such as surfactants.

Turning to the minor parameters, the Surfactant contributed
only 2.8%, proven effective in reducing IFT, but its impact was
limited due to already optimized wettability conditions.
Sulphate (-0.18%) and Carbonate (-0.05%) demonstrated
negligible or even negative effects, likely caused by
precipitation or scaling issues, which necessitate careful
management to prevent impeding recovery.

Given that Polymer and Sodium largely operated
independently, optimizing each parameter individually could
be highly effective. By prioritizing Polymer and Sodium, we
could maximize the RF while minimizing reliance on less
impactful elements like Sulphate and Carbonate. It was crucial
to avoid the excessive use of surfactants and to properly
manage Sulphate and Carbonate as their mismanagement might
diminish efficiency. This highlights the importance of balanced
injection strategies.

Table 7. Five parameters of ASP flooding optimization

Ranking Features Effect
1 INJ_Polymer 0.5306
2 INJ_Na 0.4278
3 INJ_Surf 0.0280
4 INJ_SO4 0.0068
5 INJ_CO3 0.0001

Fig. 10 and Table 7 examine the influence of five parameters
on the RF based on 500 CMOST simulation runs. Polymer
(Impact: 0.5306) became the most influential parameter,
enhancing viscosity and sweep efficiency, which helped to
prevent channeling and ensured uniform oil displacement. This
was critical for mobility control during ASP injection. Ionic
Na' (Impact: 0.4278) ranked as the second most important
factor, as it optimized salinity to reduce IFT and maximize
surfactant efficiency, thereby significantly improving oil
mobilization.

Surfactant (Impact: 0.0280) had a limited effect, likely due
to already optimized wettability, suggesting that further
additions may yield diminishing returns. Both Ionic SO+
(Impact: 0.0068) and COs*>" (Impact: 0.0001) showed minimal
impact, indicating their limited role in altering wettability or
facilitating chemical interactions, which helped to mitigate
risks such as scaling or inefficiencies.

3.2. Super learner ensemble

Fig. 11 illustrates the correlation among various injection
components and the RF. Each cell in the matrix displays the
correlation coefficient between two parameters with the values
in the range of -1 to +1. A positive correlation indicates that as
one variable increases, other is likely to increase as well,

whereas a negative correlation suggests that as one variable
rises, other tends to decrease. The color bar on the right reflects
the strength of the correlation.
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Fig. 11. Mathematical correlation of parameters

Polymer (0.66) exhibited a strong positive correlation with
RF, emphasizing its significant role in enhancing sweep
efficiency and mobilizing oil. While, Sodium (0.53) showed a
moderately strong correlation, highlighting its importance in
optimizing salinity, reducing IFT, and improving surfactant
efficiency. Surfactant (0.18) demonstrated a weak correlation,
suggesting that its efficacy largely depended on the
contributions from both polymer and sodium. CO;> (-0.062)
displayed a weak negative correlation, which may indicate
potential challenges such as precipitation or scaling. SO4* (-
0.0075) had a negligible negative correlation, suggesting
minimal or slight adverse effects on RF.

The interactions between polymer and sodium (0.085)
revealed a weak synergy, where sodium's effect on wettability
alterations complemented the viscosity effect of polymer but
functioned mostly independently. The relationship between
sodium and surfactant (0.082) also showed a weak interaction,
indicating that sodium optimized pH levels for surfactant
activity though its amplifying effects were found limited. In
contrast, the negative correlation between polymer and
surfactant (-0.045) suggests that the increased levels of polymer
may reduce the concentration or impact required for surfactant
effectiveness.

Overall, the dominance of polymer and sodium demonstrated
the strongest positive correlations with RF, underscoring their
critical roles in viscosity control and salinity optimization. To
achieve maximum efficiency, it was focused on polymer and
sodium while managing carbonate and sulphate levels to
mitigate negative impacts such as scaling. Nevertheless, most of
parameters operated independently with limited synergy, which
simplified the optimization process for EOR design.

3.3. Key driver of oil recovery

Of the five key parameters affecting RF, INJ POLYMER
became the primary factor. It had the most significant impact,
enhancing sweep efficiency by increasing the viscosity of the
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injected fluid. INJ Na was also essential, playing a vital role in
altering wettability and optimizing surfactant activity.

In contrast, the effects of INJ_CO3 and INJ _SO4 were found
minimal, characterized by weak or negative correlations. These
parameters provided little to no benefit and may even impede
recovery, necessitating their limited use.

There was an interdependency between INJ Na and
INJ POLYMER that demonstrated slight synergy; however, it
was more critical to optimize each parameter individually. The
benefits of surfactant injection showed limited reliance on these
interactions, reinforcing the importance of independent
optimization.

The SL algorithm featured a predictive model built using
ASP injection parameters as the input and RF as the output.
Multiple base learners were trained and evaluated based on R?
(prediction accuracy) and RMSE (error magnitude). The most
effective learners were then integrated into the SL ensemble to
enhance the accuracy of RF predictions.
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Fig. 12. Comparison of R? and RMSE for Each Learner

Fig. 12 illustrates the performance of several machine
learning models—Bayesian Ridge, SVR, Linear Regression,
Decision Tree Regressor, XGBoost Regressor, and the Super
Learner Ensemble (SLE), using an EOR dataset. It provides a
comparison of R? and RMSE for each model. These metrics are
crucial for assessing the predictive capacity of each model, with
R? representing the proportion of variance accounted for by the
model and RMSE indicating the average magnitude of the
prediction errors.

In the figure, R? is depicted by the blue line, while RMSE is
represented by the red one. A higher R? value suggests greater
model accuracy, reflecting how well the predicted values
correspond to the actual values. Conversely, a lower RMSE
value signifies better performance, as it indicates that the
average error in predictions is small.

The model comparison revealed that Bayesian Ridge
achieved an R? of approximately 0.9 and an RMSE of around 3.
This relatively high R? value (~0.9) indicated that the model
captured a significant portion of the variability in the data.
However, the RMSE was notably high at around 3, suggesting
considerable prediction errors. Despite explaining a large
fraction of the variance, these high prediction errors implied that
the model may be prone to overfitting or may struggle to
effectively manage complex non-linear relationships.

SVR demonstrated an R? value of approximately 0.7 and a
RMSE of about 2.5. Although SVR had a lower R? than
Bayesian Ridge, indicating it accounted for less variance in the

data, its RMSE was slightly better, suggesting it managed
prediction errors more effectively. SVR may excel at capturing
non-linear relationships, which could lead to reduced error rates
despite its lower R2. However, there is a concern that it may
struggle to fully capture the complexities of the dataset.

Linear Regression showed a moderate performance with an
R? around 0.5 and an RMSE of approximately 2. This model
explained about half of the variance in the data, indicating that
it struggled with non-linear patterns. The RMSE value hinted at
limited effectiveness in minimizing prediction errors, making
Linear Regression less suitable for more intricate datasets.

The Decision Tree Regressor had an R? of approximately 0.3
and an RMSE of around 1.5. This model's lower R? indicated
that it captured relatively little variance in the data. However,
the RMSE suggested that it had lower prediction errors
compared to other models discussed. The combination of a low
R? and a relatively lower RMSE implied that the Decision Tree
may be overfitting to specific data points, resulting in a model
that performed well in certain cases but lacked overall reliability
across the dataset.

In contrast, XGBoost Regressor exhibited a high R? value of
approximately 0.95 and a significantly lowered RMSE of about
0.75. This indicated that XGBoost explained nearly all the
variance in the data while maintaining minimal prediction
errors. Utilizing a boosted decision tree approach, XGBoost
effectively captured complex patterns, making it the most
accurate model among those evaluated. Its high R? and low
RMSE positioned it as an optimal choice for complex EOR
predictions.

The SLE achieved an R? of approximately 1 and an RMSE
of around 0.1, making it the top-performing model. This
indicated that the ensemble effectively explained nearly all the
variance in the data and had an exceptionally low average
prediction error. By combining the strengths of multiple models,
the SLE created a robust predictor that captured both linear and
non-linear relationships while addressing complexities that
individual models might overlook. This demonstrated the power
of ensembling, as it leveraged the advantages of various
algorithms for superior performance.

In Fig. 12, the SLE model exhibited the highest performance
of all the base learner models, achieving an R? value of 0.988.
This indicated a near-perfect fit between the predicted and actual
data, reflecting the model's excellent capability to capture
complex non-linear relationships between the input parameters
and the resultant RF values. Additionally, the SLE model
recorded the lowest RMSE of 0.304, indicating that it made the
most accurate predictions with minimal error compared to other
models.

Using the SLE model, the prediction of the optimal RF value
was conducted by inputting the minimum and maximum values
of the injection parameters, including surfactant, polymer, SO,
COs*, and Na'" concentrations. This approach allowed for a
comprehensive evaluation of potential outcomes, ultimately
helping in identifying the parameter configuration that
maximized RF. The SLE model's high R? and low RMSE values
highlighted its reliability and precision in optimizing ASP
injection scenarios, providing valuable insights for EOR.

For optimization using the SLE algorithm, as illustrated in
Fig. 4, 500 new datasets were randomly generated with the
maximum and minimum parameter values adjusted to align with
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the original range utilized for generating datasets in CMOST.
This methodology facilitated a thorough exploration of potential
scenarios to identify the optimal parameters for ASP injection.
Following the optimization, as displayed in Fig. 6, the RF was
determined to be 79.49% with the following corresponding
injection parameters: surfactants at 5483.29 ppm, polymers at
2242.61 ppm, SOy at 5610.15 ppm, CO3* at 7053.59 ppm, and
Na* at 9939.35 ppm.

The optimization process was also implemented using
Python programming, achieving the highest RF value of 79.49%
in less than one minute of computational time. In contrast, the
CMOST software required approximately 10 hours to generate
and optimize the Design of Experiments (DoE), ultimately
arriving at the RF value of 80.65%. This stark difference in
computational time underscores the efficiency of machine
learning approaches, such as the SL algorithm, for rapid
optimization.

The findings suggest that, under comparable reservoir
conditions, researchers and engineers are able to leverage
machine learning models to predict RF values much more
swiftly by directly inputting the optimized parameters. This
enhanced optimization capability not only saves time but also
allows for increased iterations, thereby improving decision-
making processes and the feasibility of ASP injection projects.

As for the SLE, it stood out as the best model, achieving the
highest R? value of 0.988 and the lowest RMSE of 0.304. It
effectively captured complex non-linear interactions in ASP
injection. By integrating multiple learners, the ensemble
mitigated biases and variances, making it the most dependable
predictor for RF optimization.

XGBoost, as the Premier Individual Model, stood out among
individual models, achieving a high R? of approximately 0.95
and a low RMSE of roughly 0.75. It exceled in managing non-
linear EOR data although it did not match the precision of the
ensemble approach.

Insights into key parameters: (1) Polymer (2242.61 ppm)
was the most influential factor as it enhanced sweep efficiency
by improving viscosity and regulating fluid mobility. (2) Na*
(9939.35 ppm) was found essential for altering wettability,
optimizing surfactant efficiency, and pH balance. (3) Surfactant
(5483.29 ppm) was effective in reducing IFT, thereby
mobilizing trapped oil. (4) COs* (7053.59 ppm) facilitated pH
control and promoted the formation of HCOs, enhancing
wettability and the performance of surfactants. (5)SO+*
(5610.15 ppm) stabilized chemical mixtures, contributing to
IFT reduction.

Ionic Interactions and Chemical Dynamics showed that the
generation of HCOs™ ions through the reactions of COs*~ played
a crucial role in pH adjustment, minimizing surfactant
adsorption, and producing in-situ surfactants that improved
reservoir wettability and efficiency.

Practical Applications displayed efficiency and scalability in
which the SLE optimized ASP injection with remarkable speed,
achieving RF of 79.49% under a minute, compared to
CMOST’s lengthy 10-hour process. Its accuracy and rapid
execution enabled effective field-scale adaptation.

The SLE exceled in predicting and optimizing RF,
underscoring the vital contributions of polymer and Na' in
augmenting ASP efficiency. By integrating chemical insights
with machine learning precision, this method guarantees high

recovery rates, time efficiency, and scalability for real-world
EOR applications. These findings highlight the significance of
managing ionic interactions and utilizing advanced machine
learning models to transform oil recovery strategies.

4. Conclusion

This study confirms that the SL ensemble algorithm is a
powerful and efficient tool for optimizing ASP injection in
sandstone reservoirs. By integrating the predictive strengths of
multiple base models, which are XGBoost, SVR, Bayesian
Ridge, and Decision Tree, the SL model achieved near-perfect
predictive accuracy (R? = 0.988) and minimized prediction
error (RMSE = 0.304), significantly outperforming traditional
simulators such as CMOST and individual machine learning
algorithms. Notably, the SL. model identified an optimal ASP
configuration resulting in the RF of 79.49%, all while reducing
optimization time from 10 hours to less than 1 minute, a leap
forward in quantitative efficiency.

Mechanistically, the model uncovered that polymer and
sodium ions became the primary contributors to recovery
enhancement, accounting for over 95% of the total impact.
Polymer concentration notably controlled mobility and sweep
efficiency, while sodium ions regulated wettability and
surfactant performance through salinity and pH adjustment. In
contrast, surfactant, sulfate, and carbonate ions—though being
essential for fine-tuning IFT and in-situ surfactant generation—
exerted relatively minor or even adverse effects when used
excessively, emphasizing the importance of precision dosing
and balanced chemical interactions.

The practical field relevance of this work is underscored by
the model’s rapid execution and scalability. Its ability to
perform real-time parameter optimization with high accuracy
has made it suitable for dynamic reservoir management, field
screening, or economic feasibility evaluations in both mature
and marginal fields. By offering a data-driven, low-cost, and
computationally light alternative to conventional ASP
optimization workflows, this approach represents a significant
advancement in modern EOR practices.

For future work, this framework can be expanded by
incorporating economic metrics (e.g. NPV per chemical unit),
real-time streaming field data, and uncertainty quantification
techniques. Additionally, the inclusion of reactive transport
modeling and integration with smart field operations (digital
twin environments) will further strengthen its value as an
intelligent decision-making tool for next-generation ASP
projects.
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Glossary of Terms

Terms Definition Unit
ASP Alkaline, Surfactant, Polymer
EOR Enhanced Oil Recovery
RF Recovery Factor %
ML Machine Learning
IFT Interfacial Tension dynes/cm
Al Artificial Intelligence
SVM Support Vector Machine
MLP-NN Multi-Layer Perceptron Neural Networks
LSSVM Least Squares Support Vector Machine
GA Genetic Algorithms
NPV Net Present Value
R? Coefficients of Determination
SL Super Learner
SLE Super Learner Ensemble
SVR Support Vector Regression
XGBoost eXtreme Gradient Boosting
BRR Bayesian Ridge Regression
RMSE Root Mean Square Error
API American Petroleum Index °API
DoE Design of Experiments
CMG Computer Modelling Group
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