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Abstract -- The most popular filtering method used for solving a Simultaneous Localization and
Mapping is the Extended Kalman Filter. Essentially, it requires prior stochastic knowledge both the
process and measurement noise statistic. In order to avoid this requirement, these noise statistics have
been defined at the beginning and kept to be fixed for the whole process. Indeed, it will satisfy the
desired robustness in the case of simulation. Oppositely, due to the continuous uncertainty affected by
the dynamic system under time integration, this manner is strongly not recommended. The reason is,
improperly defined noise will not only degrade the filter performance but also might lead the filter to
divergence condition. For this reason, there has been a strong manner well-termed as an adaptive-
based strategy that commonly used to equip the classical filter for having an ability to approximate the
noise statistic. Of course, by knowing the closely responsive noise statistic, the robustness and
accuracy of an EKF can increase. However, most of the existed Adaptive-EKF only considered that
the process and measurement noise statistic are characteristically zero-mean and responsive
covariances. Accordingly, the robustness of EKF can still be enhanced. This paper presents a
proposed method named as a MAPAEKF-SLAM algorithm used for solving the SLAM problem of a
mobile robot, Turtlebot2. Sequentially, a classical EKF was estimated using Maximum a Posteriori.
However, due to the existence of unobserved value, EKF was also smoothed one time based on the
fixed-interval smoothing method. This smoothing step aims to keep-up the derivation process under
MAP creation. Realistically, this proposed method was simulated and compared to the conventional
one. Finally, it has been showing better accuracy in terms of Root Mean Square Error (RMSE) of both
Estimated Map Coordinate (EMC) and Estimated Path Coordinate (EPC).
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INTRODUCTION

In a complex environment, a map is useful
for autonomous robot navigation. However, the
robot has no knowledge about the environment
at the beginning. Therefore, to appropriately
perform the navigation tasks, the autonomous
robot should have the ability to build its map and
simultaneously locate its current position. It is
well-known as simultaneous localization and
mapping (SLAM), which was first introduced in
1988 [1][2]. Recently, the SLAM-based mobile
robot navigation has intensively received much

attention because of some challenging factors
such as continuous uncertainty, system
complexity, inaccurate system model, limited
prior information, noise statistics of the process
and measurement, computational cost and filter
divergence which are required to be addressed
[3, 4, 5]. An effort familiarly used to obtain an
effective solution for the SLAM problem is
proposed the probability-based that has been
effectively and commonly used by others
researchers such as Extended Kalman Filter [6,
7, 8].
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Extended Kalman Filter (EKF) has
become a popular choice to solve SLAM
problems. Weingarten and Siegwart [9] used EKF
for solving the full SLAM problem of AUV in
especially estimating the local path traveled by
the robot while forming the scan as well as its
uncertainty and keeping the scans pose.
Weingarten and Siegwart utilized an EKF as the
SLAM-algorithm to track the robot when it moves
and to incrementally update the Symmetric and
Perturbation model (SPmodel) of the 3D
reconstructed stochastic map [9]. Lemaire,
Lacroix, and Sola adopted EKF to solve the
bearing only 3D SLAM by estimating the
parameters used for landmark initialization
process such as the visual point features tracked
in the sequence of the acquired images [10].
Moreover, regarding survey consequences,
Dissanayake, Newman, Clark, Durrant-Whyte,
and Csorba have proven the SLAM problems
with the performance of EKF by developing zero
uncertainty of estimated map and absolute
accuracy of the map [11]. Huang, Mourikis, and
Roumeliotis have demonstrated the
improvement by analyzing the issue of filter
consistency of extended Kalman filter based
SLAM, from an observability perspective [12]. By
examining the observability properties of the
nonlinear SLAM system model with the
linearized error-state model employed in the
EKF.

The observable subspace of the standard
EKF is constantly of higher dimension than the
observable subspace of the underlying nonlinear
system. Ahmad and Namerikawa declared that
EKF based mobile robot localization with
intermittent measurements is examined by
analyzing the measurement innovation
characteristics [13]. The uncertainties bound the
estimation by analyzing the measurement
innovation to preserve good estimations,
although sometimes measurement data are
missing. They also have proposed the
theoretical analysis of the EKF to show the
situations during the problem that occurred.
Besides, the Jacobian transformation s
considered one of the main factors to affect the
estimation performance. In addition, initial state
covariance, process, and measurement noises
must be less to execute better estimation results.
Wang, Wu, Zhou, and He have used State
Transformation Extended Kalman Filter (ST-
EKF) mechanization method to resolve the
inconsistency problem of EKF, which is
improving the propagation rates of the system
matrix and the error covariance matrix [14].
However, these proposed methods cannot
estimate the noise statistics. Besides that, an

EKF has complications of a slow convergence
rate, low accuracy, and poor numerical stability
as mentioned by Gadsdenin 2011 [3, 5, 15]. For
this reason, the adaptive-based approaches
have been popularly attempted and utilized
nowadays.

Akhlaghi, Zhou, and Huan have proposed
the AEKF, which can approximate covariance
matrices of the process and measurement noise
statistics. It was conducted by referring to
innovation and residual for improving the
dynamic state estimation accuracy of EKF [16].
Jetto, Longhi, and Venturini have proposed an
adaptive EKF for optimizing the linearization
between KF and EKF [17]. They believed that it
could be conducted by adjusting the input and
measurement noise covariance matrices.
Chatterjee and Matsuno have proposed the
AEKF based on neuro-fuzzy to estimate the
elements of covariance matrices [18]. It aims to
reduce the mismatch between the theoretical
and actual covariance of the innovation
sequences. Moreover, Yuzhen, Quande, and
Benfa have proposed AEKF by using the Sage-
Husa time-varying noise estimator and Taylor
series of sampling time in AEKF to estimate
observation noise in real-time [19]. It aims to
overcome the linearization error and enhance
environmental adaptability.

Similarly, to provide proper filtering
method-based solution for the SLAM problem,
this paper also presents a proposed method
named as A MAPAEKF based SLAM algorithm
(MAPAEKF-SLAM  Algorithm). Initially, the
classical EKF was estimated by utilizing the
creation of Maximum a Posterior (MAP) aims to
approximate the posterior values of both the
process and measurement noise statistic with
their corresponding covariances. A smoothed
EKF estimate value continuously tuned the
suboptimal estimated values. It is obtained
based on a fixed-point smoothing method as
utilized by Caballero, Hermoso, Jiménez, and
Linares in 2003 [20] as well as by Gao, Li, Zhou,
and Li in 2015 [21]. Next, the estimated values
were mathematically derived to obtain the time-
varying noise statistic. However, due to the
complexity of deriving these parameters, some
certain approach was also involved.

Moreover, the proposed method is
approached to address the SLAM problem of the
wheeled mobile robot. Then it was utilized and
validated under the robot navigation
performance. Adaptively, the role of Maximum a
Posterior was used to estimate the unknown
parameter of a classical EKF for both the
process and measurement noise statistic with
their corresponding covariances. Henceforth, it
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is termed as MAPAEKF-SLAM. It was simulated
and compared with the classical algorithm in
terms of RMSE of estimating both path and map
namely, EPC and EMC, respectively. The
comparative simulated result has been
realistically proving that the proposed method
has good and better accuracy, stability and
effectiveness.

The rest parts of this paper are organized
as follows. Section Il contains a classical EKF.
Section Ill presents the adaptive EKF with
process derivation of the first solution given by
MAP, improved/modified EKF, weight exponent
method. Section IV presents the MAPAEKF-
SLAM algorithm which is expanded with the
discussion of the motion model, direct point-
based observation, and inverse point-based
observation. Section V presents some
comparative results and discussion. Section VI
presents the conclusion.

METHOD
Classical Extended Kalman Filter (EKF)
Through this paper, EKF is considered as
the main filtering method used to estimate the path
traveled by the robot when it moves. Besides that,
it is utilized to locate all the features on the
environment at the same time. Since the
localization of the robot is only for recording the
current pose of the robot and single-location of the
feature/landmark, it can declare that this work is
focused on solving the online SLAM problem.

Considering the nonlinear system has a model as
shown below

{xk = f(@k—1,uk) + wr-1

2k = h(zk) + vk @)
where k refers to discrete-time index, = € R" is
state vector, w is control vector, z € R™ is
measurement vector, w € R" and v € R™ are
small adaptive process and measurement noise,
respectively. While, /(-) and (.) are the nonlinear
function and measurement model, respectively.
The characteristic of this dynamic model (1) is
described as follows.

Elwi] = g, Covlwy, w;] = Qrdy;
Elvy] = i, Covvy, v;] = Rydy;
E[wk: T/j] =0

(2)

where 4 is Kronecker delta function. Whereas, £1.]
and Cou[,] are mean and covariance term,
respectively. (2) illustrates that the mean values
of the process and measurement noise are
nonzero mean but instead ¢ and r, respectively.

o1 = f(@p—1jh—1,Uk) + qe1
Pyrjg—1= Fk—IPA:—lM:leE_l + Qr—1
Zxk—1 = R(Zrjk—1) + 7k

€ klk—1 = 2k — Zk[k—1

Sk =HPy;_1HT + Ry,

Ky = Py 1 HTS,

Tppp = Trpp—1 + Kies pjp—1

Pr = (I = Ky H) Py

—_, N~~~ —~ —~ —~
e Lsl

—

where € and R refer to the process and
measurement covariance matrix, respectively.
While F refers to a Jacobian matrix of the
transition function f{.) with respect to prior state
vector “x-1|k—1 and I refers to a Jacobian matrix
of the measurement function "(-) concerning
predicted state vector “k/k—1,

MAP based Adaptive EKF (MAPAEKF)
Classical EKF requires the known noise
statistic and an accurate system model.
Unfortunately, the noise is partially known, and
the model is might change because of continued
uncertainty in time integration. Thus, an
improvement of EKF is required as presented in
this paper. An adaptive filter strategy approached
to the classical EKF aims to provide the ability to
approximate the noise statistic under time
changes. It can be described as follows

e Suboptimal MAP of Adaptive EKF

Initially, a classical EKF was estimated by
using MAP creation, as mentioned on [21, 22, 23,
24, 25]. Assuming that, the unknown parameters
are the process 4x and measurement T noise
statistics with their covariance @x and I,
respectively. Moreover, since @x and i are
considered be a positive definite symmetric
matrix, then the estimated value of 4x, 7, ¢k, and
Ry can be obtained by calculating the maximum
value of the following objective function L as
described below

L :P(Xk:Q:""a Q1 R‘Zk) (11)

where Xk = [21,, 1] and Zk = [21,, 2] Referring

to Bayes rule, (11) can be reformulated as follows

P Xk, g7, Qry Ry, Zi]
plZi]

Since P[Zk] plays no role in optimization, we have

L =p[Zc| Xk, q,7,Q, Rlp[Xk|q, Q,r, Rlplg,r, R, Q]
(13)

Assuming that p[g.r, @, R] can be obtained from
the prior information means it can be regarded as
being a constant. Then the posteriori distribution

(12)

At this point, the classical of EKF can be Pk @@ RIZ] can Dbe calculated by
presented as follows.
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multiplying plZk| Xk, q, 7, Q. B] with

p[Xk,q, 7, Q, R|Z)] as derived below

Note that ¢ and r refer to 4x—1and 7, respectively.
Whereas, 7 and R refer to @r_1 and R,
respectively.

Since (1) is the first-order Markov Process,
then p[Xil¢,@.r, R] can be reformulated as
follows

k
pIXila, Q. R = plao] | [ plailzi = 1,¢.Q]  (14)
i=1

then by assuming that (14) is normally distributed
then it yields

PXxla,m, @ B = ()nﬁw‘ﬂ{— =|lwo — doll%, ]

,Lljl 2m) 2 |Q|2 «p[—%”ay flxi) = all- ]

(2m) % \Q “’p{* ’Z”th — f(@i) —allgy- 1]

1 Sk
= WHDO‘ Q]2

Lp{ [||:co—znup_1+2\m (i) — all?- }}

1 1 k
= — || Z|Q|" =
(27()L| 0|~ 21Q
1 .

cwp{2[||wowo| 1+Zuu— ~ally 1}}
(15)

Similarly, for p[Z_k|X_k<,q,r,Q,R] we have
p[Zk|Xk:qs?‘~Q1R] - Hp[zi‘w'i:rt R} (16)

i=1
Then assuming that (16) is Gaussian distribution
then

plZk| Xk, q,7.Q, R] =

1 ol L hay — 2
E(%pRl”’w{ 3z = ) = il
k
L R berp| L Rz — 2
= Gz !H exp| QE;HZL B(ei) =7l
(17)
Then by multiplying (15), (17) and

plg.r. Q, Rl we have the following equation

PlZk| Xk q, 7, Q, Rlp[Xklg. Q, 7, Rlplq,r, R, Q)]

k
_k 1
- [_ 5 Z |z — h(xi) — T'H?z—1i|
i=1
1 1k 1
mmﬂ Q| C-LP{ 5{”10 —~Cn||p71+
anﬁ —al3- 1}}
(18)
Next, by supposing that
1 1 1 1
C = mk nk+n ‘P[)l 2I)[q'- T‘! Q? R}Bwp{E
(QTT) 2 (2’1’) 2 (19)
o — 203,
Then (18) can be simplified as follows
k
ko 1 12
L= C|R|"|Q) xp{ - 5[2 2 = ha) = vl +

anz = flwo) - aliy- 1}}
(20)

At this point, the estimated unknown parameter
can be calculated by taking the logarithm of the
objective function L, calculating the first derivative
of logarithm L with respect to ¢,7,(), and R and
equating its derived to be zero. These steps can
be derived as follows.

Since the logarithm of L is

In(L) =In(C) — Et’fn|R| - gin|Q|—

1 .
g[anlf —7ll%- 1+Z\|mf 7i) = all-1]
(21)

then s, 74, Qk,and RA are

Oln(L
e = q =% quk floiow) (22)
) Aln(L
T = 87" A ZZ; ﬂ;‘ (23)

Q c‘)ln A Z ( Lijp — flaio m) — {i— 1) (l‘ﬂk—
f(mifllk) —Qr,—l)T
. (24)
. Aln(L 1
Ry = R —Z (2i = hlzip) —ri) (20—
ol (-

T
— T‘;;.)

h(;ffﬂk)

40
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The complicated multistep smoothing term ik
and Ti-1Jk in (21) - (25) might cause inefficiency
of the MAP estimate. Therefore, to find the
conventional and efficient recursive form the
simplification is needed. Note that the recursive
update process only utilizes the estimated value
at time k-1 and k, hence the simplification can be
conducted by replacing %i—1jx with &;_1); in (22)
and (24) and i« with ;) in (22) - (25). Therefore,
the suboptimal of MAP noise estimator can be
expressed as follows

1k
G =7 ) Tii — f(&io1)i) 26
FT R Uiv1 (26)
L&
T = % Zzi — h(Zy;) (27)
.i:;}
A 1
Qr=+ Z Tijg — F(®io1)) — Gi1 ) ( Bapp—
S o

(29)

As can be analyzed from the sequence equations
above that the estimated value of #i—1i is not
provided obviously by classical EKF. Therefore,
modifying the original forms in (3)-(10) is required
aims to compute the noise statistics estimator
effectively

Modified and Improved EKF

The process of modifying the EKF can be
done by calculating the one-step smoothing of the
EKF gain and its corresponding estimate value
using the fixed point smoothing algorithm [20],
[21], [26]. This process can be summarized as
follows

Tppk—1 = f(Er_1p—1,Ur) + Gro1_
Pyjjmr = Fro1 Peyjp—1 B + Qr
%.kal = h(i"k\k:l) + P

€z k|k—1 = 2k — Zk|k—1

Sy =HPy, H" + Ry,

Ky = P HTS'

Eg_1pk = Eg_1ph1 + Kpls pp

considering that the prior state #x—1x in (36)
replaces the term of . —1|x—1 in the normal EKF,
the rest part of modified EKF are chained as
follows

g1 = [(Tr_1)k> Ur) + Gr1
2k'|k—1 = h(i‘k‘k—l) + T

€2 klk—1 = Zk — Zklk—1

Sy =HPy1H" + Ry,

Ky = Py HTS, ! (41)
Tk = Trjh—1 + Kpes pph—1 (42)
P = (I — Ky H) Py (43)

Now, the estimate value Z;—1: and Z;: can be
adopted from (36) and (42), respectively.

Time-Varying Noise Statistic of EKF Based on
MAP

As can be seen above that all the
suboptimal values under the mathematical
derivation of MAP creation are clear. Now, both
the mean of the process and measurement noise
statistic and their corresponding covariance in
(26)-(29), respectively, can be derived as follows.
First, by substituting (42) to (26), then

k

Gk = T Z-’fiu = f(@i1p)

i=1

k
1 . . .
=% Z-’Cﬂf—l + Kiez gz — f(&iz1)0)
i=1
Lk
=% Zf(i'i-l\i) + Gic1 + Kiez i1 — f(Fio1pi)
i=1

k
1 .
=% E Kye iji-1 + Gi
Ci=1

(44)
At this point, it is obvious that the corresponding
estimated covariance of 4y is

k
-~ 1 . . N .
Qr = E (-’L'z'h: - .f(:fi—l\i) - Q’) (-’L'z'|.!.~ - f(?l:i—lﬁ) -
=1
1 - T
=% Z (K-iez.i +q— Q) (K-iez.i +q— Q)
i=1
1 k T
=7 ; (Kie.i) (Kie;)
L
S ¢ T KT
=7 ; Kie. ie; K]
(45)
Now, by first substituting (42) into (27), it yields
k
. 1 .
Pl = z Z; zi — h(Z3;)
) Y (46)
== ; zi — W@ + Kies )

then by deriving and recalling the definition of €:in
(39), it is obtained

T
q)
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.,

I
ol
M’-‘

— h(??‘?) + Hﬁ’iez,i

<.-
Il

1
E Cz,?’ +r; + HKe, ;

(- HE, i)z +Ti

‘M:r I\M?s-

-
I
—

Enl e

Obviously, the estimated corresponding
covariance of measurement noise is then

- 1 R T
Ry = E Lz; (zi - h‘(-’Et’H) -r )(72 - h( 1|1) - Ti)

=r*||—'

(I — K;H)e, el (I — K,H)T

§
)’
E

??*Iv—‘

(48)

Note that the existence of # on the original
function of f(.) can be ignored at this estimation
process because it is known. Besides that, it does
not play any role in the optimization as well.
Finally, the recursive noise statistic and their
corresponding covariance can be presented as
follows

. . 1, .
G = Gr—1 + — (Krez )
Pio= oot 7 [(I ~ HEKp)es

However, to obtain the corresponding recursive
covariance of (49) and (50), some derivation is
required. This process can be presented as
follows

Since the update covariance (43) is originally
adopted from the following Joseph form

Py = (I = KpH) Py (I — KiH)' + Ky Ry K
(51)
then the recursive of the form (45) can be
alternatively reformatted as follows (see appendix
A)
k
= ZP”L-FHK Pz|z 1+

i=1
Py 1HTK — Qi
k

= Qk 1+k[Pk\k+HRAPA|A 1+

— FP, FT
—1]i—1 (52)

PAMM H" — FPe 1 F]

(1 KHeZ,—l-?,—T)((I—K,—H)ez,,—

Similarly, for the recursive covariance of the
measurement noise statistic can be obtained as
follows (see appendix B)
k
1 -
Ry = k ; HR.‘?‘,—lHT +R; — Hﬁiez,iﬁ’zf*
KTHT + HEK;e. el

e il T KTHT

k—

= H
A k1+k

e. kel KT HT + HE e, pel ) K] H"]

[HPM VHT = HE e, et o~

(53)

A MAP Based AEKF-SLAM Algorithm

The proposed method is applied for solving
the SLAM problem of wheeled mobile robots.
Henceforth it is termed as AEKF-SLAM Algorithm
Based on MAP-WE. Basically, it can be solved by
locating the current robot position and gathering

the information of features in a certain
environment. Therefore, the movement and
observation method is required. Both are
discussed in the following subsection.
Motion Model

A

Ty U =1
TR = (54)

{Jrﬁ vy 7 Uy

By supposing that, the robot is simulated and
initially located in a certain planar environment.
Then the kinematic configuration of the robot
movement can be shown in Figure 1.

Y
W'
¥r f
0 % & %

Figure 1. Kinematic Configuration

Now, considering % and ¥r are the spatial position
and 4, is the orientation or the robot heading, then
the state vector of the robot position can be
expressed by zp = [:Er,yr,f?.r]T. The robot moves
based on the odometry and differential steering
system, then since the control vector contains
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two-element vectors represented by u = [u,., ]
for right wheel ur and left wheel velocity 1, then
the motion model is expressed as follows

) _J:al'k- mr’ﬁ_lrﬁ‘ C(_)Swik‘—l)
Th = yﬁk = y,.ik_l +uv |sin(8._1)| (55)
_g-r,k_ 9#,&—1 0
Tr= |Yrk (56)
07 ]
P (Rr + %) (sin(85,_, + @) — sin(a

= yﬁkA + | (R + 22) (= cos(88,_; + a) + cos(

r.k—1 0

. . . !
where k is discrete time index, fi» = . represent

the radius caused by the motion, ¥, is the width
of the robot, and .* and .¥ are linear and
nonlinear motion model respect to the measured
velocity v = [v,,1;]T. The motion is unpredictable
since the small noise follows the motion control.
For this reason, the different types of motion
models are introduced. Thus, the measured right-
wheel ¥ and left-wheel velocity "1 can be
regarded as follows with the existence of the
small perturbation n = [n,., n;]”

v=u+n (57)
ny = Gy + Co(up — uy) (58)
ny = Guy + Ca(u — uy)

where ¢; is the moving factor and ¢z is the turning
factor.

Direct Point-Based Observation
Considering that, the state vectors are
composed of the robot =& and landmark state

T't. — [a,,:'- Ti ]T .
T, "L *Lyl | Therefore, a full state vector is
T m

— ; 1 1 T 7
€T = [.’1’37‘, Yrs BT"”I:L,:'L" xL,y’ sy “‘«'mL,:'I,'" 'TL,-y] for "I“L,.'c

and 7.y represent the i-th landmark position for
1=1,2,...,m,

YA

XL x

=Y

Figure 2. New Detected Landmark

Figure 2 illustrates when the robot’s laser scanner
detects the i-th landmark. Since it = [Tts: yis]"
refer to the position of the laser scanner, the direct
point-based observation model can be calculated
as follows

ws| [ cos(0;.)

|:yi.5':| - _yr-:| + djs [QZR(GT):I (59)
(Si \/(TET - 9:13)2 + (Tf[,g - yl‘s)2

gi | — L L —Uls 60
[”SL] ar(:tcm( I—l’—f : zi) (60)

where d, is the displacement of laser scanner and
54 and 3% are the distance and bearing sensed
by laser scanner. Next, by considering that the
measurement is followed by small perturbation
r = [rs,75)" then we have

_[or] [
“ﬂﬂ*M

Now it can be noted that since (54) - (61) are
gained, both state transition in (30) and (37) and
measurement function in (32) and (38) are
satisfied.

(61)

Inverse Point-Based Observation

A new observed landmark should be
initialized and added to the state vector . It can
be conducted by using the inverse observation
concept. It initiates the mapping process by
utilizing the information of the current robot and
landmark position. It can be written as follows

(62)

Izﬁw — h_]‘ (:BR,fm Zi)

e | i [cos(0;)cos(8Y) — sin(8,)sin(5})
ol T T 0L | cos(8,)cos(BL) + cos(B,)sin(35)
(63)
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At this point, the completeness of MAPAEKF and
SLAM are fully derived. Moreover, the flowchart
of the whole process above can be graphically
concluded as shown in Figure 3.

start

Initiltazation ‘

0, By, djo, Fo, Qo, Ra, Wi dis

-
-
ModiJied - EKF W
k-1 = FlEr—1jk—1. 1) + i1
Pt = Feoa Proapemt Py + Qe
B1 = Bl 1) +
Cz k|k—1 = 2k “k|k—1
S = HPyyjy 7 + R

Ky = Py HTS!

Er-aje = Tpoifh-1 + Koo g

-1 = f(2y

1k ) + Gt
k=1 = MEppk—1) + T imerement = |,
Bz k|k-1 2k — 2k|k-1

S = H Pyt T + Ri

Ki = Py (HTS;? T
By = Brjper + Kkl hms
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Figure 3. MAPAEKF-SLAM Algorithm

RESULTS AND DISCUSSION

In order to verify the effectiveness and
accuracy, the proposed method was realistically
simulated. It was compared with the classical
algorithm, EKF-SLAM algorithm, in terms of
RMSE of EPC and EMC. Initially, some
parameters related to the robot were defined as
follows

W, = 33¢cm, dis = ldcm

Note that these parameters are adopted from the

real robot platform that is Turtlebot2.
Furthermore, the initial state and its error

covariance were also defined as follows

00 0
B = KO Py=10 0 0
(%) 00 0

According to the initial noise statistic, different
SLAM-based algorithm was performed and
compared. They can be presented as follows

15t Test
The initial process and measurement noise
statistic are considered as follows

180 0

0.15 (0.15)? 0
Fo = . - 2
"~ (%) o (%)
Then the result of the EKF-SLAM and MAPAEKF-

SLAM algorithm can be compared based on
Figure 4.

X (0.02)? 0
éﬂ: |:0192:| rQU: [ T 2]

tf%f}:

Figure 4. SLAM-Algorithm Performance ('st Test)

Figure 4 illustrates the performance of
EKF and MAPAEKF. They are applied to an
autonomous wheeled mobile robot for solving the
SLAM problem. It depicts that the MAPAEKF-
SLAM gives a better solution proven by the
successful in following the reference path. For
more detall, it can be analyzed by the following
result.

Figure 5. RMSE of Estimated Path ('st Test)

Figure 5 shows the RMSE of different
performed algorithm in estimating the path.
Comparing to the conventional approach,
MAPAEKF-SLAM algorithm has a better accuracy
pointed by the smaller RMSE in almost all
benchmarks. Furthermore, an effort to provide
more comparative result, the different RMSE of
estimated map is also presented as follows.
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Figure 6. RMSE of Estimated MAP (st Test)

Figure 6 shows the different quality of EKF
and MAPAEKF-SLAM algorithm in estimating the
location of the landmark. According to this figure,
the proposed method shows better performance in
the estimated map for x-coordinate and y-
coordinate. To confirm this statement, Table 1 is
presented

Table 1. Different SLAM Algorithm in Term of
Root Mean Square Error of Estimated Path and

Map
: RMSE of
RMSE of Estimated Path :

SLAM Coordinate Estimated Map

Alg. Coordinate

X y 0 X y
EKF  9.2529 10.825 0.1041 8.0529 10.686
AEKF 8.3448 9.1613 0.1010 8.0533 9.5750

2" Test

Relatively, the small noise statistic both the
process and measurement are unknown. For this
reason, their initial predetermined value might be
either small or large. Thus, the second case with
the increment on those values was considered as
well. It aims to validate the suitability of the
proposed method for the dynamic system with the
large uncertainty and unavoidable noise of the
sensor and actuator. The initial process and
measurement noise are considered as follows

) 0.03 . (0.03)? 0 ,
ol @[’y

[ 0.3 (0.3)? 0 ]

'f() — - . 2

(#) 0 ()

Like the previous experiment, the general
performance of the EKF and MAPAEKF-SLAM

algorithm is evaluated from the following graphical
performance.

n

st):

Figure 7. SLAM-Algorithm Performance (2" Test)

Figure 7 depicts that the increment of the
initial noise statistic does not affect the stability of
MAPAEKF-SLAM. Therefore, it can be noted that
the proposed method provides a more stable filter
compared with the EKF-SLAM algorithm. For the
2nd Test, the EKF and MAPAEKF-SLAM are also
performed and compared in terms of RMSE. It is
depicted in Figure 8.

Figure 9. RMSE of Estimated MAP (2™ Test)

According to Figure 8, the MAPAEKEF-
SLAM algorithm shows its effectiveness in
locating the current robot position. It is proven by
the smaller RMSE for almost all the benchmark.
Then, it can be noted that the accuracy of the
MAPAEKF-SLAM algorithm is guaranteed even
though there exists a noise statistic increment.
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Additionally, the result of the estimated map is also
presented as shown in Figure 9.

Similarly, Figure 8 shows that the
MAPAEKF-SLAM has a better solution of
estimating the map for x-coordinate and y-
coordinate significantly. Therefore, it can be noted
that the MAPAEKF-SLAM algorithm performed
well in estimating the landmark. It is confirmed by
Table 2.

Table 2. Different SLAM Algorithm in Term of
Root Mean Square Error of Estimated Path and
Map (2M Test)

. RMSE of
RMSE of Estimated Path .
SLAM . Estimated Map
Alg. Coordinate Coordinate
X y 0 X y
EKF 7.6909 89144 0.1013 6.8211  8.9208
AEKF 48565 3.9445 0.1009 7.5220 5.3381

Table.2 shows clearly that the MAPAEKF-SLAM
algorithm provides a stable filter. Additionally,
according to the result of the 1st and 2nd Test
presented above, it can be noted that the
MAPAEKF-SLAM has better quality in providing
solutions under noise statistics increment.

CONCLUSION

This paper presents a proposed method
termed as the MAPAEKF-SLAM algorithm. The
contributions can be summarized as follows:
estimating the noise statistic; improving the
normal EKF based on one-step smoothing
method; deriving the suboptimal estimate values
under the creation of Maximum a Posteriori
(MAP), the proposed method has been regarded
to be able to solve SLAM problem even when the
unknown noise statistic is large. Based on the
compared result and discussion presented in the
previous section, its robustness and effectiveness
have been validated.
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APPENDIX | Mathematical Derivation of The
Process and Measurement Noise Statistic

Appendix A
P = (I — KgH)Pypor (I — K H)T + Ky Ry K

= (Peje—1 — KeHPy-1)(I — K H)T + Ky,
RiLK!

= Pyjj—1 — KxHPypo1 — Prppor H' K} +
KiHPy— HT K + KR K

(A1)
Alternatively, it can be rewritten as followed

Py = Pt — KxHPyj 1 — Pop 1 HTK] + 2)
Kip(HPyo 1 H” + Rp)K]

Now it is clear that (A2) contains 5. Moreover, the
expectation of Sy is [%.k\kqﬁimk,_ll Therefore,

the derivation of suboptimal Q can be
mathematically derived as follows
Ko pia1€n g1 Ki = Puop — KiH Pyjr1— (A3)

Pk\k:leTK.g

Then by substituting (31) and substituting the
complete form into (45), it yields

k
- 1
Qr = E;Pi\i‘i‘HKiPﬂ-i—l‘i‘ (Ad)

Py H'Kl — FP_y;  FT — Qi

Appendix B
(I=KiH)ez pp-1¢2 g1 (I — KxH)T
= (ea.k|k;—|€§;k|k—1 - HKk@z:k\k—ﬂf*
K H)")
= (ez_km_leikw,l — HK e k162 jp1—
Coplb—1Crpp_ (I — K H) K H +
HEKye ppp—16l (I — K H)TKEHT
(B1)

Since [€Z:A~\k_1efkm,1] is partially reversed to the
original form before taking the expectation of S, it
is obvious that the following form is the alternative
equation of (B1)

(I-KipH)e g€l (I — KR H)T
= HPyyp 1 H + Ry — HK e, per€2 jp1—
Efz.k\k—lﬁfzk\kfl(f ~ KpH)'K{H +
HEK e, g€l e (I — K )T KTHT
(B2)
Then by substituting (B2) into (48), it yields

k
Rp= 23 (I—KiH)e,;el (I - K;H)"  (B3)
i=1

| =

46  H. Suwoyo et al., A MAPAEKF-SLAM Algorithm with Recursive Mean and Covariance of ...



p-ISSN: 1410-2331 e-ISSN: 2460-1217

k
- 1
Re =+ > HPy;_1H+ Ri 1 — HK e jel ,—

i=1
B4
e.iel (I — K;H)YTKTHT + (B4)

HEe. el (I - K,;H)" KT HT

Note that the time index of €zklk-1 is the
representation of ©:i out of the summation
operation. It can be simply represented as €:z.k as
well.
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