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ABSTRACT

Tomato leaves (Solanum lycopersicum) are susceptible to various diseases that significantly impact both yield and
quality in agricultural production. To enhance the effectiveness of precision agriculture, deep learning-based image
classification techniques have emerged as reliable tools for automatically detecting disease symptoms. In this
study, two deep learning models are investigated for this purpose: a custom-built Convolutional Neural Network
(CNN) and the ResNet18 architecture, which leverages transfer learning. The experimental workflow encompasses
preprocessing of input images, data augmentation strategies, architectural development of the custom CNN, and
the fine-tuning phase of the ResNetl18 model. The evaluation was conducted on a validation dataset comprising
1,000 images evenly distributed across ten disease categories. Results show that the ResNet18 model attained a
validation accuracy of 74%, whereas the custom CNN model achieved 55%. While the latter demonstrated lower
predictive performance, it offers advantages in computational simplicity and execution speed. These findings
suggest that transfer learning with ResNet18 is more suitable for complex, multi-class classification problems on
limited datasets, whereas the lightweight CNN model may be better positioned for deployment on low-resource,
edge-based agricultural systems.
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1. Introduction

Tomato (Solanum lycopersicum) is a horticultural crop with substantial economic significance and
is extensively cultivated across various regions in Indonesia. Despite its agricultural importance, crop
productivity is frequently hampered by leaf diseases, including bacterial spot, early and late blight, leaf
mold, mosaic virus, septoria leaf spot, spider mite infestations, target spot, and yellow leaf curl virus
[1]. These diseases not only manifest as visible damage on the foliage but also negatively impact both
crop quality and yield. Traditionally, disease detection in crops has relied on manual inspection by
farmers or agricultural advisors. However, this method is inherently subjective and susceptible to
inconsistencies, as it depends heavily on individual skill and experience in identifying disease symptoms
[2]. With the progression of precision agriculture, the use of artificial intelligence—especially deep
learning—has gained traction as a promising solution. Among various Al techniques, Convolutional
Neural Networks (CNNs) have been recognized for their ability to enhance diagnostic accuracy and
efficiency [3]. One well-regarded model for image-based classification is ResNet18, which leverages
residual learning to extract intricate features and mitigate the vanishing gradient problem that commonly
arises in deep neural networks [4]. Alternatively, custom-designed CNNs offer greater adaptability to
the specific nature of a dataset, although they often require intensive hyperparameter tuning to reach
optimal performance levels [5]. Furthermore, employing strategies such as data augmentation and
transfer learning has proven beneficial, especially when working with relatively small datasets [6]. In
light of these considerations, this study explores and compares the performance of two deep learning
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frameworks; ResNet18 utilizing transfer learning and a handcrafted CNN, for classifying various tomato
leaf diseases. The models are quantitatively evaluated based on four key metrics: accuracy, precision,
recall, and F1-score. The ultimate goal is to contribute to the development of a robust, image-driven
diagnostic system that can support precision agriculture practices in Indonesia [7].

2. Method

This study followed a structured sequence of steps encompassing data acquisition, preprocessing of
images, model development, and performance evaluation in classification tasks. Figure 1 primary aim
was to examine and contrast two deep learning strategies namely, a manually constructed Convolutional
Neural Network (CNN) and the ResNet18 architecture enhanced through transfer learning in classifying
tomato leaf diseases. The dataset employed in this study was sourced from the publicly available Tomato
Leaf Disease Dataset on Kaggle. It comprises ten disease categories, including bacterial spot, early
blight, and yellow leaf curl virus. The dataset was partitioned into training and validation sets, with each
class evenly represented. During the preprocessing phase, all images were resized to 224x224 pixels
and standardized using ImageNet normalization parameters [8], ensuring input compatibility with
ResNetl8. Increase the model’s generalization capability and minimize overfitting, data augmentation
techniques such as random rotations, horizontal flips, and other variations were applied to the training
set. ResNet18 was utilized as a pretrained backbone within a transfer learning framework, where only
the final classification layer was replaced and retrained according to the number of output classes. The
earlier layers remained fixed to function as generic feature extractors [6]. Model training was carried
out in Google Colab, taking advantage of the T4 GPU for improved computational speed [7], Both
models were trained for 10 epochs using the Adam optimizer, a batch size of 32, a learning rate of 0.001,
and CrossEntropyLoss as the loss function. Performance assessment, the models were evaluated using
standard classification metrics: accuracy, precision, recall, and Fl-score, alongside the use of a
confusion matrix to further analyze class-wise prediction outcomes.
Problems
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Dataset

The dataset utilized in this study originates from the Tomato Leaf Disease collection, created by
publicly accessible on the Kaggle platform. It comprises 10 distinct disease categories, with each class
containing 100 images for model training and another 100 for validation, yielding a total of 2,000 images
with equal class distribution. All images were organized using a directory hierarchy that separates
training and validation sets. Each image class is placed into dedicated subfolders, adhering to the
PyTorch ImageFolder format. The raw images are provided in RGB color space and exhibit diverse
native resolutions. During the preprocessing phase, they were resized to a uniform dimension of 224 x
224 pixels to meet the input specification requirements of both the ResNet18 and the custom CNN
architectures.

Model architecture and data transformation

This research follows a structured methodology consisting of several phases, including data
acquisition, image preprocessing, model training, and evaluation of classification performance. The
primary objective is to compare two deep learning models: a manually constructed CNN (Custom CNN)
and ResNet18, which incorporates transfer learning techniques. The dataset employed is the Tomato
Leaf Disease collection retrieved from Kaggle [9], comprising 10 distinct disease categories, with 1,000
images used for training and another 1,000 for validation. The dataset was organized to fit the PyTorch
ImageFolder structure, where each class is allocated to its own subfolder [9] [10]. During preprocessing,
all images were resized to 224x224 pixels and normalized using ImageNet statistical values [11]. to
align with ResNet18 input expectations. For training, augmentation techniques such as +15° random
rotations and horizontal flips were employed to improve generalizability and reduce overfitting risks.
The validation set, in contrast, was only resized and normalized [12].

Distribusi data train:
Tomato Target Spot: lee
Tomato_ Mosalc virus: 1@e
Tomata__ Leaf Mold: 12e

Tomato. Early blight: 1ge
Tomato_ Septoria_leaf spot: 100
Tomato__ Yellow Leaf Curl Virus: 188
Tomato_ Spider mites: 16@
Tomato__ Healthy: 182
Tomata__ Late blight: 188
Temato_ Bacterial spot: 1ee

Distribusl data validation:
Tomato Target _Spot: 168
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Tomato_ Yellow_Leaf Curl Virus: 108
Tomato___ Late_blipght: 18@

Tomato  Healthy: 188
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Figure 2. Dataset distribution

The Custom CNN was developed with an emphasis on simplicity and efficiency. It comprises three
convolutional layers activated with ReLU and followed by max pooling, ending with a fully connected
layer and a softmax output layer. Meanwhile, ResNet18 was applied as a pretrained model where only
the final classification layer was fine-tuned, and the rest of the layers were kept static to act as feature
extractors [ 13]. Both models were trained on Google Colab utilizing a T4 GPU environment [ 14], over
the span of 10 epochs using the Adam optimizer, a batch size of 32, and a learning rate of 0.001. The
loss function adopted was CrossEntropyLoss. Evaluation metrics include accuracy, precision, recall,
and Fl-score, along with a confusion matrix to examine prediction discrepancies across individual
classes. A complete visual representation of the method is presented in Figure 1.

ResNet18 model implementation with transfer learning

In this study, ResNet18 is employed as a pretrained model to perform classification of tomato leaf
diseases using a transfer learning approach. This model was chosen due to its efficiency in computation
and its established performance in a wide range of image classification tasks, including those involving
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plant pathology. The model is compatible with various hardware configurations and is run on a GPU
when available, or on a CPU otherwise. ResNet18 is initialized with ImageNet-pretrained weights,
allowing it to identify essential visual patterns such as shape boundaries, textures, and colors, an
important feature for processing datasets of limited size. The implementation in this study, ResNet18
functions as a feature extractor, in which all convolutional layers are frozen, preserving the learned
parameters. Only the final fully connected layer is adjusted and retrained to align with the ten
classification labels in the dataset. If necessary, the entire model can be fine-tuned by unfreezing all
layers, although this would increase the training time. Because the original ResNet18 is structured for
1,000-class classification, the final classification layer is replaced with a new one whose number of
output units matches the number of disease categories in this task. Once model modification is complete,
it is transferred to the appropriate device (GPU or CPU) for optimal execution during both training and
evaluation, based on the available system resources. The ResNet18 architecture begins with an initial
7%7 convolutional layer, followed by batch normalization and a ReL U activation function. It proceeds
through four residual blocks, with progressively increasing channel dimensions: 64, 128, 256, and
512.Each residual block incorporates skip connections that enable stable backpropagation of gradients
during training. This design choice effectively addresses the vanishing gradient problem, ensuring that
the network can continue learning as it deepens. Each block from layerl to layer4 includes two
convolutional layers and identity connections, facilitating smooth gradient flow during deep network
optimization.

Custom CNN model implementation

Besides employing ResNet18 with a transfer learning scheme, a custom Convolutional Neural
Network was specifically developed to classify tomato leaf diseases. The model was constructed with a
focus on simplicity and efficiency, aiming to accommodate the constraints and unique traits of the
dataset used. The architecture comprises three primary convolutional blocks, each employing filter with
a 3x3 kernel and a padding value of 1. Each convolutional layer is followed by ReLU activation and
2x2 max pooling, which serves to downsample spatial dimensions. The number of filters increases
progressively; 32 filters in the first block, 64 in the second, and 128 in the third, allowing the network
to learn hierarchical features from basic to more complex patterns. After the feature extraction stage, the
output is flattened and fed into a fully connected layer consisting of 256 neurons. To reduce the risk of
overfitting, a dropout layer with a rate of 0.5 is introduced before passing to the final classifier layer.
The final output layer is a linear unit with 10 neurons, each representing one of the target disease classes,
and is followed by a softmax activation function to convert raw outputs into class probabilities. Training,
the model employs the Adam optimizer with the CrossEntropyLoss function. The training was
conducted over 10 epochs, with a batch size of 32 and a learning rate of 0.001. To improve
generalization, data augmentation techniques such as random resized cropping, horizontal flipping, and
random rotation were applied during training. The model was trained on the Google Colab platform
utilizing T4 GPU acceleration, which enhanced training efficiency. While the custom CNN has a simpler
architecture compared to ResNet18, experimental results demonstrate that it can achieve competitive
classification accuracy. With appropriate hyperparameter tuning and sufficient augmentation, this model
offers a viable and computationally lightweight alternative for plant disease detection, especially in
scenarios with limited hardware resources.

Model training process (Epochs)

The training process was performed over 10 epochs, with the objective of refining model
parameters until reaching convergence on the training data. The training log indicated a progressive
reduction in loss values across epochs, accompanied by an increase in prediction accuracy on both the
training and validation sets. During the first epoch, the ResNet18 model utilizing transfer learning
recorded a training loss of 1.7199, a training accuracy of 47.40%, and a validation accuracy of 55.50%.
As training progressed, performance improved; by epoch five, the training loss dropped to 1.1553, with
training and validation accuracies of 69.30% and 68.70%, respectively. By the end of the 10th epoch,
the model achieved a training loss of 0.9147, a training accuracy of 78.80%, and a validation accuracy
of 74.30%.

The sixth epoch onward, the validation accuracy stabilized in the range of 72-75%, suggesting that
the model had begun to converge. Nevertheless, further improvements could still be attained through
additional training epochs or refinement of hyperparameters. These observations are consistent with
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findings in prior studies, which highlight that a declining loss curve combined with stable validation
performance across epochs serves as a reliable indicator of model convergence. Enhancing the model’s
generalization capability and minimizing overfitting, particularly when applied to unseen or real-world
test data can be addressed using techniques such as learning rate scheduling and early stopping [1].
Moreover, carefully configuring the hyperparameters plays a critical role in achieving optimal model
performance. The full set of hyperparameter values applied to the ResNetl8 and custom CNN
configurations used in this study is detailed in Table 1.

Table 1. Hyperparameter training model ResNet18 and CNN

No Hyperparameter ResNet18 Transfer learning CNN custom
1  Optimization Algoritm adam Adam
2 Learning Rate 0.001 0.001
3 Batch Size 32 32
4 Epoch 10 10
5 Loss Function CrossEntropyLoss CrossEntropyLoss
6 Scheduler none None
7 Dropout - 0.5
8 Data Augmentation Resize, Flip, Rotation, Normalize Resize, Flip, Rotation,
Normalize

3. Results and Discussion

The results demonstrate that the ResNet18 model, trained through transfer learning, achieves strong
validation accuracy, reaching 74%. This suggests that the model possesses robust generalization
capabilities, particularly when handling tomato leaf disease classification involving multiple categories.
On the other hand, the Custom CNN designed with a simpler architecture delivers lower performance,
attaining only 55% accuracy. Despite this, the model still performs relatively well on certain classes,
such as Tomato Yellow Leaf Curl Virus and Mosaic Virus, which achieved F1-scores of 0.66 and 0.75,
respectively. These classes are likely easier to identify due to their more distinctive visual patterns.
Conversely, the lowest scores were recorded for Early Blight (F1-score: 0.50) and Target Spot (F1-
score: 0.27), most likely because of visual overlap with other categories, which complicates feature
extraction. Moreover, the limited ability of the Custom CNN to capture intricate features, along with
potential shortcomings during preprocessing, may have further contributed to the drop in performance.
Taken together, these findings emphasize the practical benefits of employing pretrained models like
ResNetl18, especially when working with small-scale datasets characterized by high inter-class visual
similarity.

Table 2. Classification performance evaluation

Model Accuracy  presisi Recall F1-Score
ResNet18 74% 0.77 0.74 0.73
CNN Custom 55% 0.60 0.55 0.53

Table 2, the ResNet18 model consistently outperforms the Custom CNN across all evaluation
metrics. These findings highlight the substantial advantage offered by leveraging pretrained models
through transfer learning, particularly when working with limited datasets and high inter-class visual
complexity.

Model accuracy

The ResNet18 model, implemented using a transfer learning technique, obtained a validation
accuracy of 74%, demonstrating its capability in handling complex classification tasks. The highest
recognition performance was observed in the Tomato Yellow Leaf Curl Virus category, which achieved
an F1-score of 0.93. This can be attributed to its distinctive visual markers, such as curled leaf structures
and yellow coloration. Additionally, high F1-scores were reported for the Bacterial Spot (0.83) and
Healthy (0.82) categories. On the other hand, the Early Blight class recorded the lowest score at 0.38.
This underperformance may stem from its visual resemblance to other diseases like Target Spot, as well
as issues related to image preprocessing, illumination conditions, and camera capture angles. In contrast,
the CNN Custom model yielded a lower validation accuracy of 55%. While overall accuracy was



ISSN 2087-3336 (Print) | 2721-4729 (Online)
DOI 10.37373/tekno.v13i1.1762

|83

reduced, the model retained the ability to detect visually unique disease patterns. However, it showed
noticeable difficulty in distinguishing categories with overlapping symptoms, such as Target Spot (F1-
score: 0.27) and Septoria Leaf Spot (Fl-score: 0.38). These shortcomings are likely the result of
architectural limitations in feature representation. In summary, ResNetl8 exhibited superior
performance across nearly all classes and evaluation metrics.

Confusion matrix

The confusion matrix serves as a key diagnostic tool, offering a detailed overview of the model's ability
to differentiate between multiple classes in a classification setting. In this study, two confusion matrices
were analyzed to compare the predictive behavior of the ResNet18 model (utilizing transfer learning)
and the Custom CNN. Figure 5 illustrates the confusion matrix for the ResNetl8 model, which
demonstrates robust classification results across most disease categories. High prediction accuracy was
observed for Tomato Healthy (90 correct predictions), Tomato Bacterial Spot (75 correct), and
Tomato Yellow Leaf Curl Virus (88 correct). Nonetheless, the model struggled to distinguish
Early Blight, often misclassifying it as Target Spot or Late Blight, revealing the difficulty of
identifying diseases with overlapping visual symptoms. In contrast, Figure 6 shows the confusion matrix
for the Custom CNN. This model achieved impressive accuracy for certain categories, such as
Tomato Mosaic_Virus and Tomato Healthy, which reached 100% and 98%, respectively. However, its
overall misclassification rate was higher than that of ResNet18, particularly in the Target Spot category,
which was frequently confused with Early Blight. This may stem from limitations in the Custom CNN’s
capacity to capture intricate visual cues possibly due to its relatively shallow network depth and simpler
design. Figure 3 a comparison of the two matrices highlights essential differences in model behavior:
while ResNet18 exhibits more consistent and generalized performance across classes, Figure 4 the
Custom CNN appears more effective for certain specific categories but lacks reliability in handling
visually similar cases. These findings emphasize the necessity of thoughtful architecture selection and
strategic data augmentation when designing robust plant disease recognition systems.

Detailed Classification Report:

precision recall fl-score support

Tomato___Bacterial_spot .93 8.75 0.83 1ee
Tomato___Early_blight 6.81 8.25 @.38 iea
Tomato___Healthy 8.75 8.90 e.82 1ee

Tomato__ Late_blight @.81 8.71 8.76 iee
Tonoto___Leaf_Hold 8.73 8.77 8.75 1ee

Tomato__ Masalc_wlrus 8.64 2.98 8.75 1ee
Tomato_ Septoria_leaf_spot @.67 B.76 8.71 1e9
Tomato___Spilder_mltes 0.84 8.73 9.78 1
Tomato__ Target_Spot a.54 8.78 0.64 iee
Tomato__ Yellow Leaf_Curl_Virus 8.98 8.88 8.93 1@
accuracy 8.74 leao

macro avg .77 B.74 @.73 lege

weighted avg .77 B.74 e.73 laee

Figure 3. Per-class classification report using ResN_etl 8 tranéfer learning model

Classificatlion Report CNM Custom:

precision recall fl-score support

Tomato_ Bacterial_spot 8.B6 B.68 8.76 186
Tomato__ Early blight 8.47 .54 8.58 188
Tomato  Healthy 8.48 B8.98 8.57 168
Tomato___Late_blight 8.57 B.56 8.57 188
Tomato_ Leat_Mold a.77 B8.34 8.47 186
Tomato_ Mosaic virus a8.61 1.88 8.75 188

Tomato  Septoria leaf_spot 8.53 B8.38 8.38 168
Tomato_ Spider _mites 8.35 8.37 8.36 18a
Tomato__ Target Spot 8.5 8.18 8.27 1680
Tomato_ Yellow Leaf Curl Virus a8.87 8.53 8.66 188

Figure 4. Per-class classification report using custom CNN Model
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Confusion Matrix
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Figure 5. Confusion matrix visualization of ResNet18 model predictions on the tomato leaf disease
validation data

Model prediction on test images (ResNet18)

Figure 7 illustrates the classification outcomes of the ResNet18 model when applied to several
tomato leaf images sourced from the validation set. Overall, the model demonstrates a solid
classification ability, correctly identifying most samples based on their ground-truth labels, with
particularly strong performance in the Tomato Bacterial spot category. Green-labeled predictions in
the figure indicate accurate classification and reflect the model’s effectiveness in detecting unique visual
traits, such as dark circular lesions with pronounced contrast.

Confusion Matrix - CNN Custom
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Figure 6. Confusion matrix visualization of custom CNN model predictions on the tomato leaf disease
validation data.

Despite these strengths, some misclassification cases were observed. For instance, an image labeled
as Tomato Bacterial spot was misidentified as Tomato Early blight, highlighted in red within the
visualization. These inaccuracies likely stem from visual symptom overlap between disease types such
as irregular dark spots—which can challenge the model, particularly under high intra-class variability.
This observation is consistent with the claim [13], who noted that one major difficulty in tomato leaf
disease identification lies in the visual similarity between disease classes. Factors such as image
resolution, lighting conditions, and camera perspective can significantly influence model accuracy in
real-world environments [15]. In summary, the visual evidence aligns with earlier quantitative results,
reinforcing that while ResNet18 performs reliably on distinct disease classes, it still requires refinement
for better differentiation of visually similar cases. Future work may focus on improving the network’s



ISSN 2087-3336 (Print) | 2721-4729 (Online)
DOI 10.37373/tekno.v13i1.1762

|85

structural design, leveraging ensemble learning methods, or adopting multiview imagig strategies to
enhance prediction reliability in practical scenarios.

Pred: Tnmatu:Bacterlalrsﬁn[ Pred: Tomam:ﬁa:[erialjsﬁn[ Pred: Tnmatn:ﬁa:[erlaljsfm[
. | .
Label: Tomato__ Bacterial_spot Label: Tomato___Bacterial_spot Label: Tomato__ Bacterial_spot

Pred: Tomato__ Bacterial_spot

Pred: Tomato__ Bacterial spot
es [ Terminal +

Figure 7. ResNet18 prediction on Bacterial spot leaf images. Green text shows correct predictions; red
text indicates misclassification as Early blight due to symptom similarity.

Pred: Tomato__ Septoria_leaf spot

A, a

Model prediction on test images (CNN Custom)

To assess its capability in classifying disease types based on visual cues, the CNN Custom model
was evaluated using multiple images from the Tomato Bacterial spot category. Figure 8 illustrates the
prediction outcomes, where each image is annotated with its actual label alongside the model's
prediction. Correct classifications are highlighted in green, whereas incorrect ones are shown in red. The
majority of samples were accurately identified, showcasing the model's ability to detect distinctive
features of the Bacterial spot class such as the presence of dark, circular lesions on the leaf surface. This
qualitative observation is consistent with earlier numerical results, where the same class achieved an F1-
score of 0.76. However, one notable error occurred when an image belonging to the Bacterial spot
category was misclassified as Early blight. This confusion likely stems from the overlapping visual
characteristics shared between the two diseases, such as spot texture or variations in leaf coloration.
Similar misclassification challenges have been discussed in earlier studies, including those [13], who
emphasized that visual similarities in tomato leaf disease symptoms can hinder accurate automated
recognition. Identified several influencing factors such as lighting inconsistencies, image quality, and
differences in camera angles—that can impact model performance in visual recognition tasks al [15].
Visual interpretation methods like this are essential for complementing quantitative metrics, offering
more comprehensive insights into the model’s operational behavior under real-world imaging scenarios
and helping identify aspects that warrant further refinement.

3> B prediksi Benar: 24/32 gambar dalam batch

True: Tomato__ Bactenal_spot True- Tomato _Bactenal_spot True: Tomato__ Boctenat_spot

Pret Tomato__Bacterial_ipot Pred Tomato__Bacterial_spot Fred: Tomato__ Bacte
Thue: Tomsto__Bacterial_spot True Tomatn___Bacterial_spot True Tomato_ Boctenial_spot
Pred: Tomato___Early_blaght Pved:- Tomato__ Bactenal_spot fred: Tomato___Bactenal_spot

Figure 8. Example of CNN Custom model predictions on Tomato Bacterial spot class.



86 || Yanto Supriyanto

Automated identification of tomato leaf pathologies using deep learning via ResNet18 and a
Tailored CNN Architecture

Green text indicates correct predictions, while red text indicates misclassifications. One image
labeled Bacterial spot was incorrectly predicted as Early blight.

Comparison with previous studies

These findings reinforce that pretrained deep learning architectures such as ResNet18 generally
outperform custom-designed models like CNNs tailored from scratch, particularly in handling multi-
class classification problems, including those related to tomato leaf disease detection. In this study,
ResNetl8 yielded a validation accuracy of 74%, whereas the CNN Custom achieved only 55%.
Similarly, in terms of average F1-score, ResNet18 reached 0.73, surpassing the CNN Custom’s result
of 0.53. This disparity highlights the advantages offered by pretrained networks like ResNet18, which
benefit from prior exposure to large-scale datasets such as ImageNet, enabling the model to extract and
generalize complex visual patterns more effectively through the use of residual learning blocks.Despite
the performance gap, the custom CNN still proved capable of classifying certain disease categories with
reasonable accuracy particularly those with distinct visual features like Tomato Yellow Leaf Curl Virus.
However, it struggled with classes showing overlapping visual symptoms, such as Early Blight and
Target Spot, which frequently led to misclassifications. This challenge is not unexpected, considering
that the CNN Custom utilizes a more compact and shallow architecture, limiting its representational
capacity for deeper feature extraction. This observation aligns with earlier studies suggesting that
pretrained models are more adept at interpreting heterogeneous and complex imagery. Furthermore, the
application of data augmentation techniques—such as image flipping and random rotation—used in this
experiment, aligns with the findings by Wu et al., who emphasized the value of such transformations
for improving model generalization. Although the CNN Custom’s overall accuracy is lower, it presents
a viable option for deployment in environments with constrained computational resources. Its training
process is faster and less demanding in terms of hardware, making it suitable for edge computing
applications or devices with limited processing power. Looking forward, future studies could investigate
hybrid approaches—such as ensemble techniques or the integration of lightweight pretraining
leveraging the strengths of both pretrained and custom models. Such approaches may lead to the
development of classification frameworks that are not only robust and accurate but also computationally
efficient and adaptable to real-world agricultural scenarios.

Limitations

This study still encounters several challenges that warrant further refinement. Initially, although
the dataset was designed to contain an equal number of images for each class, some instances
particularly in certain categories were not properly processed due to issues during transformation or
preprocessing. As a result, the final class distribution became unbalanced, which had a negative impact
on the model’s performance, especially for underrepresented categories like Early blight, which
recorded an F1-score of only 0.38. The limited data availability in this category hindered the model’s
ability to effectively learn its unique visual traits. Secondly, even though the architecture of the CNN
Custom model has been thoroughly outlined, its experimental outcomes were not comprehensively
incorporated into the earlier stages of analysis. A rigorous side-by-side evaluation of CNN Custom and
ResNetl18 is crucial to fully highlight the advantages and shortcomings of each model. Prior literature
suggests that well-constructed CNN architectures can still deliver competitive results, especially when
backed by proper parameter optimization. Third, the training duration was restricted to 10 epochs due
to computational constraints on the Google Colab environment, which often experienced interruptions
during longer sessions. This raised the possibility that the model failed to reach optimal convergence.
Researchers such as Ahmed et al. recommend adopting incremental training strategies with dynamically
adjusted epoch counts to ensure loss stabilization and model robustness. Fourth, hyperparameter
optimization remains unexplored. Key components like learning rate scheduling, dropout
configurations, and batch normalization have yet to be systematically investigated. Properly calibrating
these elements could potentially enhance the model’s generalization capability across a wider range of
image types. Moreover, ensemble strategies have not yet been applied in this study, even though
combining models—such as through soft voting or stacking between CNN Custom and ResNet18—
may improve classification effectiveness, especially for classes that are harder to identify. Additionally,
the current research lacks empirical testing on lightweight platforms or edge devices, such as
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smartphones or agricultural IoT systems. As a result, the deployment feasibility of the compact CNN
Custom model under real-world conditions remains unverified. Recognizing these constraints, future
work should focus on enhancing the experimental design through dataset enrichment, extended training
durations, advanced hyperparameter tuning, and integration of hybrid modeling techniques. These steps
are expected to yield a classification framework that is not only more accurate but also adaptable and
practical for real-world precision agriculture applications.

Deductive arguments and speculation

Drawing from the experimental outcomes and prior analysis, it is evident that employing a transfer
learning framework using ResNet18 offers notable advantages, particularly in classifying tomato leaf
diseases from digital images especially under limited data conditions. The model’s validation accuracy
of 74% and macro F1-score of 0.73 serve as strong indicators of its capability to consistently identify
diverse visual features. This robustness stems largely from its residual block structure, which facilitates
stable gradient propagation, allowing effective parameter optimization in deep networks without
compromising performance. Despite this, the CNN Custom model also demonstrates value, especially
for deployment on devices with restricted computational resources, such as smartphones or IoT
platforms. Owing to its lower parameter count, it exhibits significantly better computational efficiency.
Although this model's performance in the current study was suboptimal, findings from Ahmed et al.
suggest that with careful design and fine-tuning, CNN Custom architectures can achieve accuracy levels
comparable to those of pretrained networks, especially on more homogeneous datasets. A promising
direction for future research involves the development of ensemble models that harness the respective
strengths of both ResNet18 and CNN Custom. Such hybrid frameworks enable the combination of
ResNetl18’s strong feature extraction with the fast inference capabilities of lightweight CNNs.
Techniques like soft voting and stacking have shown efficacy in prior studies for enhancing multi-class
classification in agricultural vision tasks. Further improvements may involve refining CNN Custom
through advanced optimization methods, such as Neural Architecture Search (NAS) or metaheuristic
strategies like Particle Swarm Optimization (PSO). These approaches allow for the design of models
that maintain a practical equilibrium between predictive accuracy and computational efficiency. With
continued refinement, these models are expected to become increasingly adaptive to real-world
environments, thereby supporting the broader application of deep learning systems in precision
agriculture, particularly within the Indonesian context.

4. Conclusion

This research conducted a comparative evaluation between two deep learning-based methods for
identifying tomato leaf diseases through digital imagery: the custom CNN architecture and the
pretrained ResNetl8 model. The experimental analysis demonstrated that ResNetl8 consistently
delivered better results than the CNN Custom model, both in accuracy and overall evaluation metrics.
It achieved a validation accuracy of 74%, reflecting its robustness in recognizing complex visual features
characteristic of various plant diseases. In contrast, the CNN Custom model—built on a simpler
structural design resulted in a lower validation accuracy of 55%. Despite this, it was still capable of
correctly identifying several categories, such as Mosaic Virus and Yellow Leaf Curl Virus. However,
its performance declined when faced with visually similar disease classes like Early Blight and Target
Spot.From these findings, ResNet18 emerges as the more suitable option for tomato leaf disease
detection. Its architectural advantages such as residual connections, the ability to extract rich features
from pretrained ImageNet weights, and a consistent training process—contribute to superior
generalization and predictive accuracy. Nonetheless, the compact and computationally efficient nature
of the custom CNN model retains practical significance for real-world applications on edge computing
devices with limited processing capabilities.
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