

SYSTEM FOR DETERMINING HOUSE CREDIT RECIPIENTS BASED ON DATA OF COOPERATIVE MEMBERS USING SIMPLE ADDITIVE WEIGHTING (SAW)

¹WIWIET HERULAMBANG, ²FARDANTO SETYATAMA, ³M ZULFIKKIH

¹Informatics Engineering Study Program, Faculty of Engineering

Bhayangkara University – Surabaya

Jl. A Yani 114, Surabaya. Telp, 031-8285602

e-mail : ¹herulambang@ubhara.ac.id, ²fardanto@ubhara.ac.id, ³mochzulfikih@gmail.com

ABSTRACT

PMS Employee Cooperative is a savings and loan cooperative which aims to provide storage and loan services to employees who work at PT. Pro Manunggal Solusi and does not yet have a Decision Support System (SPK). A decision support system is needed in determining the eligibility of cooperative loans to employees. This study aims to help simplify and accelerate and minimize errors that occur in the cooperative borrower feasibility assessment process. The method used for this decision is to use the Simple Additive Weighting (SAW) method. Six criteria are used for the loan eligibility assessment process, namely criterion 1 (Loan size), criterion 2 (Loan Purpose), criterion 3 (Salary), criterion 4 (Position), criterion 5 (Age), criterion 6 (Period of service). Based on the results of the calculation, it can be concluded that each loan employee will be approved according to the ranking and is limited by the balance. If the balance is sufficient, the loan will be approved, but if the balance is less, the loan will be rejected. Of the total value of the ranking results, loans approved with a sufficient balance were Susanto (0.82) with a 12.13% chance, Sentot Sudiyantono (0.80) with a probability of 11.83%, and Siswandi (0.73) with big chance 10.80%..

Keywords: Decision Support System, Simple Additive Weighting.

1) INTRODUCTION

The development of information technology has enabled decision making to be carried out quickly and accurately. This also applies to every government and private agency that needs a system to collect, process and review a decision. One of the alternatives most likely to help complete work and handle the flow of large amounts of information, as well as help in making correct and accurate decisions is a computer. Therefore, in an organization the use / utilization of computers should be maximized, including in the cooperative organization.

PMS Employee Cooperative is a savings and loan cooperative which aims to provide storage and loan services to every employee who works at PT. Pro Manunggal Solusi and does not yet have a Decision Support System (SPK). A decision support system is needed in determining the creditworthiness of a cooperative to an employee. Therefore, we need a method that can process the calculation of the loan eligibility weight properly. The method used for making this decision is the Simple Additive Weighting (SAW) method. In connection with this, it is necessary to make a decision support system by analyzing employee data in the cooperative that existed in the previous year. So that a more effective and efficient way is found to assist the cooperative in taking the right assessment for each employee.

In this final project, the topic chosen is "Determination of Home Loan Recipients Based on Data from Cooperative Members Using the Simple Additive Weighting (SAW) Method". With the creation of a loan eligibility decision support system using the SAW method, it is expected to be able to help simplify and accelerate and minimize errors that occur in the process of assessing the feasibility of PMS Employee Cooperative borrowers.

2) METHODOLOGY

a) Literature Review

Designing a Decision Support System for Scholarship Admission with the SAW (Simple Additive Weighting) Method (Sri Eniyati, 2011), Implementation of the Simple Additive Method. Weighting in the Teacher Certification Decision Making System (Youllia Indrawaty, Andriana, Restu Adi Prasetya, 2011), Decision Support System.

3) SYSTEM PLANNING

3.1 Flowchart

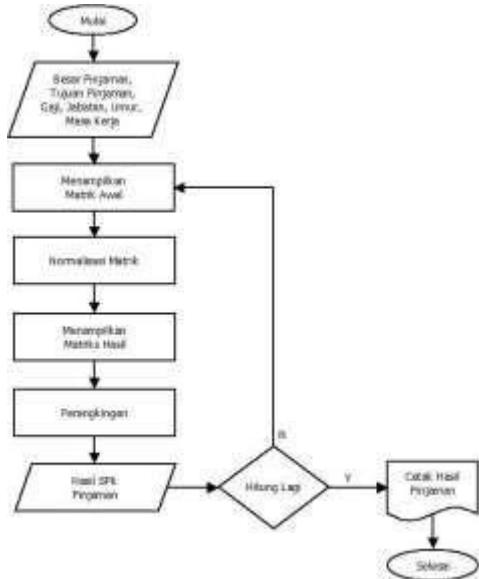


Figure 3.1. Flowchart System

The flowchart above (Figure 3.1) illustrates the flow of the SAW Loan Feasibility DSS process

3.2 Context Diagram

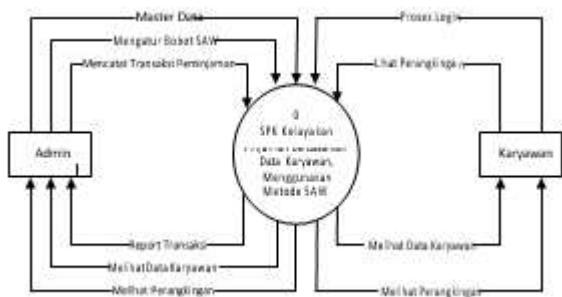


Figure 3.2. Context Diagram

In Figure 3.2 the context diagram shows one user, namely an employee. Before entering the system, you must first login by entering the username and password that have been registered in the database. If you have entered the system, employees can see the ranking results. The admin manages the operation of the decision support system, both creating, changing and storing data needed by the system to process data such as master data, view rankings, adjust SAW weights, view employee data, record borrower transactions, report transactions, and others.

3.3 DFD Level 1

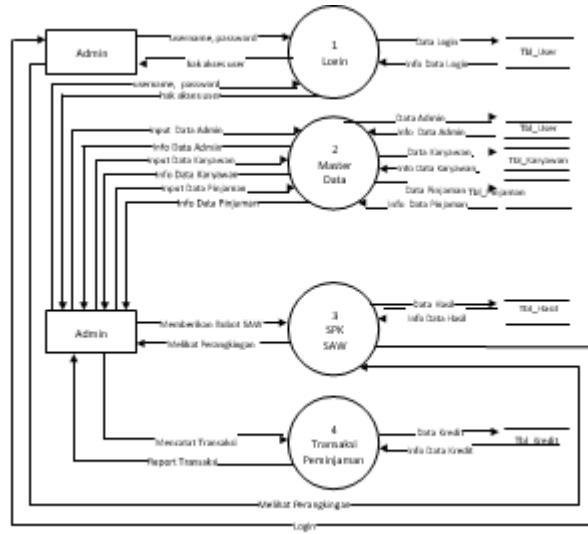


Figure 3.3. *DFD Level 1*

DFD Level 1 above (Figure 3.3) Calculating Normalized Matrices 3.4 is a comprehensive picture of Tbl_Results Result Ranking Calculates the Normalization of Each Element flow of the system to be made. For an explanation of DFD Level 1 in the loan eligibility system using the SAW method are as follows:

- a. The flow of the employee and admin login process enters the username and password then the system processes it by checking the data in the database. If the data is correct or valid, the admin and employees will go to the next page, according to the access rights they have.
- b. Employees can see the ranking results.
- c. Admin can control the flow of application calculations by determining the SPK and managing the data needed by the system such as employee data, loan data, SAW weight data, yield data, transaction data, and credit data. The SAW calculation process starts when the admin enters the data for each employee who applies for a loan into the system.

3.4 DFD Level 2 Process 2 The SAW SPK Process

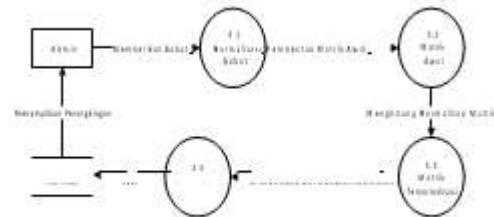


Figure 3.4. DFD Level 2 Process 2 SPK SAW Process

Figure 3.4. is DFD Level 2 which is the translation of DFD Level 1. The first stage is the admin gives weight to carry out the weight normalization process. After forming the initial matrix, then calculating the normalized matrix to produce a normalized matrix. The normalization results are then displayed in the ranking process after calculating the normalization of each element. Then display the ranking in the results table that will be displayed by the admin.

3.6 ERD (Entity Relationship Diagram)

ERD (Entity Relationship Diagram) contains a collection of tables, where each table has a unique name and structure. In each table, each data record organized in the same structure has a key field that will be a link between existing tables and those related to each other. This system has 9 entities / tables, namely user, credit, employees, installments, finance, submissions, SPK weights, matrices, and results.

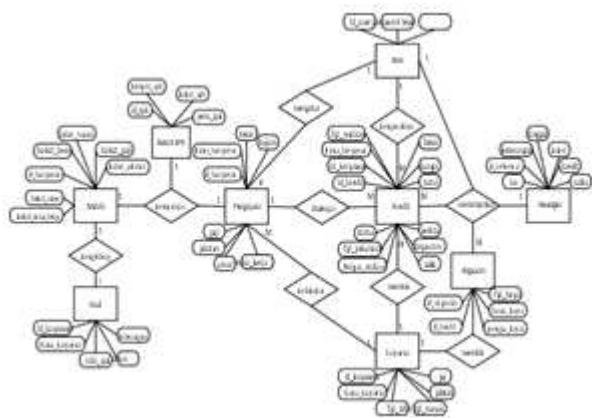


Figure 3.6. ERD (Entity Relationship Diagram)

3.7 Calculation of Finding Weight

The criteria for evaluating employees who are eligible for a loan are as follows:

- a) Loan size = 0.2 (cost)
- b) Loan Objectives = 0.2 (benefit)
- c) Salary = 0.1 (benefit)
- d) Position = 0.2 (benefit)
- e) Age = 0.1 (benefit)
- f) Working period = 0.2 (benefit)

Table 3.1. Employee Evaluation / Assessment Data

Nama Karyawan	KRITERIA					
	Besar	Tujuan	Gaji	Jabatan	Umur	Masa Kerja
Jujuk Wikno Handoko (Karyawan 1)	5 juta	Keperluan Modal	10 juta	Plant Manager	59	34
Subandi (Karyawan 2)	3 juta	Kredit Barang	5 juta	Production Supervisor Area	61	34
Susanto (Karyawan 3)	2,5 juta	Keperluan Dapurat Kesehatan	2,8 juta	Checker Bahan Packing dan Baku	46	26
Bambang Hermanto (Karyawan 4)	1,5 juta	Keperluan Konsumtif	2,7 juta	Helper	32	8
Wayan Suartama (Karyawan 5)	5 juta	Keperluan Modal	10 juta	Production Manager	51	32

From the assessment table, a rating table of the suitability of each alternative can be made for each criterion.

Table 3.2. Match Rating Table

Nama Karyawan	KRITERIA					
	Besar	Tujuan	Gaji	Jabatan	Umur	Masa Kerja
Karyawan 1	2	3	1	1	2	6
Karyawan 2	4	2	2	3	2	6
Karyawan 3	5	5	4	6	3	5
Karyawan 4	6	1	4	6	4	2
Karyawan 5	2	3	1	1	2	6

Completion steps:

- 1) Weight vector: $W = [(0,2), (0,2), (0,1), (0,2), (0,1), (0,2)]$
- 2) Decision Matrix X based on the weight criteria:

$$X = \begin{pmatrix} 2 & 3 & 1 & 1 & 2 & 6 \\ 4 & 2 & 2 & 3 & 2 & 6 \\ 5 & 5 & 4 & 6 & 3 & 5 \\ 6 & 1 & 4 & 6 & 4 & 2 \\ 2 & 3 & 1 & 1 & 2 & 6 \end{pmatrix}$$

3) Matrix Normalization X Using equation 1:

Alternative Employees 1

$$r11 = \frac{\text{Min}(2;4;5;6;2)}{2} = 1$$

$$r12 = \frac{3}{\text{Max}(3;2;5;1;3)} = 0,6$$

$$r13 = \frac{1}{\text{Max}(1;2;4;4;1)} = 0,25$$

$$r14 = \frac{1}{\text{Max}(1;3;6;6;1)} = 0,17$$

$$r15 = \frac{2}{\text{Max}(2;2;3;4;2)} = 0,5$$

$$r16 = \frac{6}{\text{Max}(6;6;5;2;6)} = 1$$

Alternative Employees 2

$$r21 = \frac{\text{Min}(2;4;5;6;2)}{4} = 0,5$$

$$r22 = \frac{2}{\text{Max}(3;2;5;1;3)} = 0,4$$

$$r23 = \frac{2}{\text{Max}(1;2;4;4;1)} = 0,5$$

$$r24 = \frac{3}{\text{Max}(1;3;6;6;1)} = 0,5$$

$$r25 = \frac{2}{\text{Max}(2;2;3;4;2)} = 0,5$$

$$r26 = \frac{6}{\text{Max}(6;6;5;2;6)} = 1$$

Alternative Employees 3

$$r31 = \frac{\text{Min}(2;4;5;6;2)}{5} = 0,4$$

$$r32 = \frac{5}{\text{Max}(3;2;5;1;3)} = 1$$

$$r33 = \frac{4}{\text{Max}(1;2;4;4;1)} = 1$$

$$r34 = \frac{6}{\text{Max}(1;3;6;6;1)} = 1$$

$$r35 = \frac{3}{\text{Max}(2;2;3;4;2)} = 0,75$$

$$r36 = \frac{5}{\text{Max}(6;6;5;2;6)} = 0,83$$

Alternative Employees 3

$$r31 = \frac{\text{Min}(2;4;5;6;2)}{5} = 0,4$$

$$r32 = \frac{5}{\text{Max}(3;2;5;1;3)} = 1$$

$$r33 = \frac{4}{\text{Max}(1;2;4;4;1)} = 1$$

$$r34 = \frac{6}{\text{Max}(1;3;6;6;1)} = 1$$

$$r35 = \frac{3}{\text{Max}(2;2;3;4;2)} = 0,75$$

$$r36 = \frac{5}{\text{Max}(6;6;5;2;6)} = 0,83$$

Alternative Employees 4

$$r41 = \frac{\text{Min}(2;4;5;6;2)}{6} = 0,33$$

$$r42 = \frac{1}{\text{Max}(3;2;5;1;3)} = 0,2$$

$$r43 = \frac{4}{\text{Max}(1;2;4;4;1)} = 1$$

$$r44 = \frac{6}{\text{Max}(1;3;6;6;1)} = 1$$

$$r45 = \frac{4}{\text{Max}(2;2;3;4;2)} = 1$$

$$r46 = \frac{2}{\text{Max}(6;6;5;2;6)} = 0,33$$

Alternative Employees 5

$$r51 = \frac{\text{Min}(2;4;5;6;2)}{2} = 1$$

$$r52 = \frac{3}{\text{Max}(3;2;5;1;3)} = 0,6$$

$$r53 = \frac{1}{\text{Max}(1;2;4;4;1)} = 0,25$$

$$r54 = \frac{1}{\text{Max}(1;3;6;6;1)} = 0,17$$

$$r55 = \frac{2}{\text{Max}(2;2;3;4;2)} = 0,5$$

$$r56 = \frac{6}{\text{Max}(6;6;5;2;6)} = 1$$

From the results of the above calculations, it is obtained the normalized matrix R, namely :

$$R = \left\{ \begin{array}{cccccc} 1 & 0,6 & 0,25 & 0,17 & 0,5 & 1 \\ 0,5 & 0,4 & 0,5 & 0,5 & 0,5 & 1 \\ 0,4 & 1 & 1 & 1 & 0,75 & 0,83 \\ 0,33 & 0,2 & 1 & 1 & 1 & 0,33 \\ 1 & 0,6 & 0,25 & 0,17 & 0,5 & 1 \end{array} \right\}$$

4) Looking for the best alternative using equation 2

$$V1 = (1 \times 0,2) + (0,6 \times 0,2) + (0,25 \times 0,1) + \\ (0,17 \times 0,2) + (0,5 \times 0,1) + (1 \times 0,2) = \\ 0,628333$$

$$V2 = (0,5 \times 0,2) + (0,4 \times 0,2) + (0,5 \times 0,1) + \\ (0,5 \times 0,2) + (0,5 \times 0,1) + (1 \times 0,2) \\ = 0,58$$

$$V3 = (0,4 \times 0,2) + (1 \times 0,2) + (1 \times 0,1) + \\ (1 \times 0,2) + (0,75 \times 0,1) + (0,83 \times \\ 0,2) = 0,821667$$

$$V4 = (0,33 \times 0,2) + (0,2 \times 0,2) + (1 \times 0,1) + \\ (1 \times 0,2) + (1 \times 0,1) + (0,33 \times 0,2) = \\ 0,573333$$

$$V5 = (1 \times 0,2) + (0,6 \times 0,2) + (0,25 \times 0,1) + \\ (0,17 \times 0,2) + (0,5 \times 0,1) + (1 \times 0,2) \\ = 0,628333$$

So the result of the ranking value is :

Rank 1: V3 = Susanto (Employee 3)

Rank 2: V1 = Refer to Wikno Handoko (Employee 1)

Rank 3: V5 = Wayan Suartana (Employee 5)

Rank 4: V2 = Subandi (Employee 2) Rank 5: V4 = Bambang Hermanto (Employee 4)

5) Conclusions based on cooperative balances. The balance amount is 10,000,000.

Rangking	Nama Karyawan	Hasil SPK	Besar Pinjaman	Saldo Koperasi	Keterangan
1	Susanto	0,82	2,5 juta	7,5 juta	pinjaman disetujui
2	Jujuk Wikno Handoko	0,62	5 juta	-2,5 juta	pinjaman disetujui
3	Wayan Suartana	0,62	5 juta	-2,5 juta	pinjaman ditolak/saldo koperasi kurang
4	Subandi	0,58	3 juta	-5,5 juta	pinjaman ditolak/saldo koperasi kurang
5	Bambang Hermanto	0,57	1,5 juta	-7 juta	pinjaman ditolak/saldo koperasi kurang

6) Loan Realization Plan

Nama Karyawan	Besar Pinjaman	Bunga	Total	Angsuran per bulan	Waktu (bulan)
Susanto	2,5 juta	300 ribu	2,8 juta	233.333	12
Jujuk Wikno Handoko	5 juta	900 ribu	5,9 juta	327.728	18

7) Estimated Balance

- a. Current balance = 2,500,000
- b. Next month = 3,061,111
- c. Balance in 2 months = 3,622,222
- d. Balance in 3 months = 4,183,333
- e. Balance in 4 months = 4,744,444
- f. Balance in 5 months = 5,305,555
- g. Balance in 6 months = 5,866,666
- h. Balance in 12 months = 9,233,333
- i. Balance in 18 months = 11,200,000

4. SYSTEM VIEW

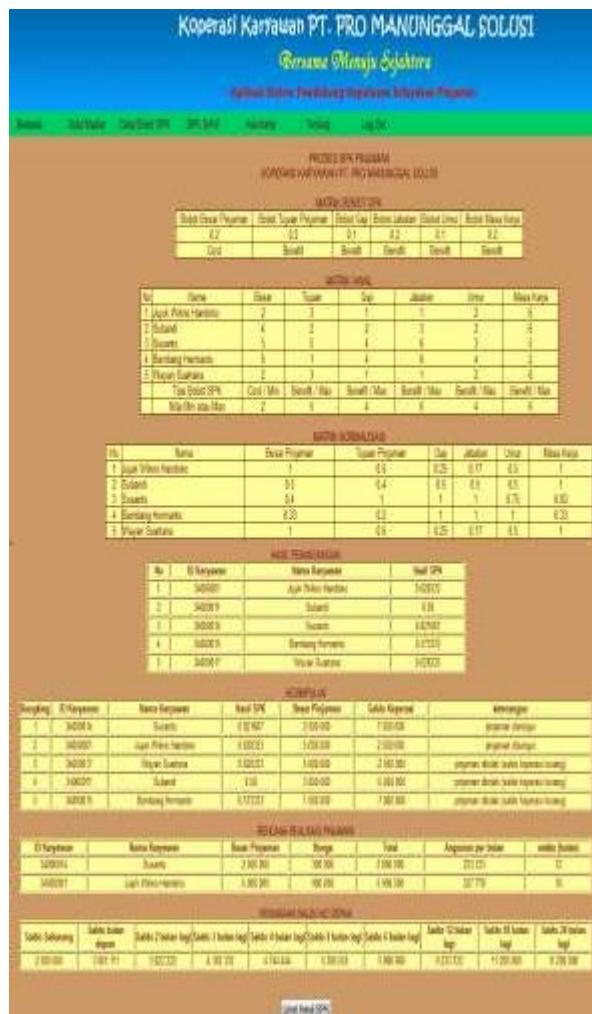


Figure 4.1. *SPK Process Menu Display*

Figure 4.2. *SPK Results Menu Display*

Figure 4.3 *Initial Cash Setting Menu Display*

5. RESULTS AND DISCUSSION

The experiment carried out was to carry out the SPK process on the data of employees who made loan applications. To facilitate understanding in testing, the test is modeled in a table form as follows:

a) Cooperative Data

Table 5.1. is cooperative data containing the name of the cooperative, address, motto and balance of the cooperative.

Table 5.1. Cooperative Data

Nama Koperasi	Alamat	Motto	Saldo Koperasi
Koperasi Karyawan PT. Pro Manunggal Solusi	Jl Camelia 1/10, Garden Dian Regency, Sedati - Juanda, Sidoarjo	Bersama Menuju Sejahtera	10000000

b) SPK Results without Cooperative Balance Limits

Table 5.2. is the result of SPK without limiting the balance of the cooperative, where the cooperative does not limit loans to every employee who applies for a loan. The SPK 1 results table contains the Employee ID, Employee Name, and the SPK Results.

ID Employee	Employee name	SPK Result
34000001	Jujuk Wikno Handoko	0,62
34000011	Subandi	0,58
34000014	Susanto	0,82
34000015	Bambang Hermanto	0,57
34000017	Wayan Suartana	0,62
34000019	Atim Subagyo	0,64
34000020	Budi Santoso	0,66
34000022	Sukahar	0,72
34000024	Sentot Sudiyantono	0,80
34000026	Siswandi	0,73

c) SPK Results with Cooperative Balance Limits

Table 5.3. is the result of SPK with a cooperative balance limit, where the cooperative limits loans to each employee who applies for a loan based on the ranking order and the cooperative balance. The SPK 1 results table contains Rank, Employee ID, Employee Name, SPK Results, Size, Cooperative Balance, and Information.

Table 5.3. *SPK Results 2*

Rangking	ID Karyawan	Nama Karyawan	Ranil SPK	Besar	Saldo Koperasi	Keterangan
1	34000014	Susanto	0,82	2,5 juta	7,5 juta	pinjaman ditetap
2	34000024	Sentot Sudiyantono	0,80	3 juta	4,5 juta	pinjaman ditetap
3	34000026	Siswandi	0,73	1,5 juta	3 juta	pinjaman ditetap
4	34000022	Sukahar	0,72	4 juta	-1 juta	pinjaman ditolak (saldo koperasi kurang)
5	34000020	Budi Santoso	0,66	2 juta	-3 juta	pinjaman ditolak (saldo koperasi kurang)
6	34000019	Atim Subagyo	0,64	3,5 juta	-6,5 juta	pinjaman ditolak (saldo koperasi kurang)
7	34000017	Wayan Suartana	0,62	5 juta	-11,5 juta	pinjaman ditolak (saldo koperasi kurang)

d) Calculations on the Application

1) Loan Data

DATA PINJAMAN REPERMER KEMENPERIN PRO KAMUSKAL INDIA						
No	ID Karyawan	Nama Karyawan	Pekerjaan	Tujuan Pinjaman	Gaji	Jabatan
1	1400001	Joko Wijaya Heribaldi	Rp. 1.000.000	Pengembang Masa	Rp. 10.000.000	Analyst Manager
2	1400002	Sukanto	Rp. 1.000.000	Pembelian Bahan	Rp. 1.000.000	Analyst Supervisor Area
3	1400003	Susanto	Rp. 2.000.000	Pengembang Cetakan	Rp. 2.000.000	Analyst Officer Pancing & Bahan
4	1400004	Bambang Hermanto	Rp. 1.000.000	Pengembang Akademik	Rp. 2.000.000	Analyst Manager
5	1400005	Wijaya Sutardika	Rp. 1.000.000	Pengembang Masa	Rp. 2.000.000	Analyst Manager
6	1400006	Alvin Sutardika	Rp. 2.000.000	Pengembang Akademik	Rp. 2.000.000	Analyst Manager
7	1400007	Budi Santosa	Rp. 2.000.000	Pembelian Bahan	Rp. 2.000.000	Analyst Officer PTPB
8	1400008	Susanto	Rp. 4.000.000	Pengembang Masa	Rp. 2.000.000	Analyst Manager
9	1400009	Bambang Sutardika	Rp. 1.000.000	Pengembang Data Analitik	Rp. 2.000.000	Analyst Data Analyst
10	1400010	Susanto	Rp. 1.000.000	Pengembang Membuat Laporan	Rp. 2.000.000	Analyst Data analysis

Figure 5.1. Loan Data

2) SPK Weight Matrix

MATRIZ BOBOT SPK					
Bobot Besar Pinjaman	Bobot Tujuan Pinjaman	Bobot Gaji	Bobot Jabatan	Bobot Umur	Bobot Masa Kerja
0.2	0.2	0.1	0.2	0.1	0.2
Cost	Benefit	Benefit	Benefit	Benefit	Benefit

Figure 5.2. SPK Weight Matrix

3) Initial Matrix

MATRIZ AWAL							
No	Nama	Besar	Tujuan	Gaji	Jabatan	Umur	Masa Kerja
1	Joko Wijaya Heribaldi	2	3	1	1	2	5
2	Sukanto	4	2	2	3	2	6
3	Susanto	5	5	4	6	3	5
4	Bambang Hermanto	6	1	4	6	4	2
5	Wijaya Sutardika	2	3	1	1	2	8
6	Alvin Sutardika	4	1	4	6	4	2
7	Budi Santosa	5	2	4	6	4	3
8	Sukarto	3	3	4	6	4	2
9	Susanty Sutardika	4	5	4	5	3	5
10	Susanto	6	4	4	5	3	5
	Top Bobot SPK, Nilai Min atau Max	Cost / Max	Benefit / Max				
		2	5	4	6	4	6

Figure 5.3. Initial matrix

4) Normalization Matrix

MATRIZ NORMALISASI							
No	Nama	Besar	Tujuan	Gaji	Jabatan	Umur	Masa Kerja
1	Joko Wijaya Heribaldi	1	0.6	0.25	0.12	0.8	1
2	Sukanto	0.5	0.4	0.5	0.5	0.8	1
3	Susanto	0.4	1	1	1	0.75	0.8
4	Bambang Hermanto	0.33	0.7	1	1	0.75	0.8
5	Wijaya Sutardika	1	0.8	0.25	0.12	0.5	1
6	Alvin Sutardika	0.5	0.2	1	1	0.5	1
7	Budi Santosa	0.4	0.4	1	1	0.5	0.5
8	Sukarto	0.67	0.8	1	1	0.5	0.8
9	Susanty Sutardika	0.5	1	1	0.8	0.75	0.8
10	Susanto	0.33	0.6	1	0.8	0.75	0.8

Figure 5.4. Normalization matrix

5) Ranking Results

HASIL PERANKINGAN			
No	ID Karyawan	Nama Karyawan	Hasil SPK
1	34000001	Jujuk Wifina Handoko	0.620333
2	34000011	Sutandi	0.58
3	34000014	Susanto	0.621667
4	34000015	Bambang Hermanto	0.573333
5	34000017	Wayan Surtana	0.620333
6	34000019	Adm Sabagyo	0.64
7	34000020	Budi Santosa	0.66
8	34000022	Sukalat	0.72
9	34000024	Sentot Sudiyantono	0.808333
10	34000026	Siswandi	0.735

Figure 5.5. Ranking Results

6) Conclusion

KESIMPULAN					
Ranking	ID Karyawan	Nama Karyawan	Hasil SPK	Rasio Pekerjaan	Rasio Pengeluaran
1	3400001	Susanti	0.620333	2.40:00	7.00:00
2	34000011	Sentot Sudiyantono	0.808333	2.40:00	4.80:00
3	34000026	Siswandi	0.735	1.60:00	1.60:00
4	34000022	Kukuh	0.72	4.00:00	4.00:00
5	34000017	Budi Santosa	0.66	1.60:00	1.60:00
6	34000019	Adm Sabagyo	0.64	2.00:00	4.00:00
7	34000014	Wayan Surtana	0.621667	1.60:00	1.60:00
8	34000020	Jujuk Wifina Handoko	0.620333	1.60:00	1.60:00
9	34000015	Bambang Hermanto	0.573333	1.60:00	1.60:00
10	34000011	Sutandi	0.58	1.60:00	1.60:00

Figure 5.6. Conclusion

e) Manual Calculation

Completion steps:

- 1) Vector weight: $W = [(0.2), (0.2), (0.1), (0.2), (0.1), (0.2)]$
- 2) X Decision Matrix based on weight criteria:

$$X = \left\{ \begin{array}{cccccc} 2 & 3 & 1 & 1 & 2 & 6 \\ 4 & 2 & 2 & 3 & 2 & 6 \\ 5 & 5 & 4 & 6 & 3 & 5 \\ 6 & 1 & 4 & 6 & 4 & 2 \\ 2 & 3 & 1 & 1 & 2 & 6 \\ 4 & 1 & 4 & 6 & 4 & 3 \\ 5 & 2 & 4 & 6 & 4 & 3 \\ 3 & 3 & 4 & 6 & 4 & 2 \\ 4 & 5 & 4 & 5 & 3 & 5 \\ 6 & 4 & 4 & 5 & 3 & 5 \end{array} \right\}$$

3). Normalization of the X matrix using equation 1:

Alternative Employee 1

$$r11 = \frac{\text{Min}(2;4;5;6;2;4;5;3;4;6)}{2} = 1$$

$$r12 = \frac{3}{\text{Max}(3;2;5;1;3;1;2;3;5;4)} = 0,6$$

$$r13 = \frac{1}{\text{Max}(1;2;4;4;1;4;4;4;4;4)} = 0,25$$

$$r14 = \frac{1}{\text{Max}(1;3;6;6;1;6;6;6;5;5)} = 0,17$$

$$r15 = \frac{2}{\text{Max}(2;2;3;4;2;4;4;4;3;3)} = 0,5$$

$$r16 = \frac{6}{\text{Max}(6;6;5;2;6;3;3;2;5;5)} = 1$$

Alternative Employee 2

$$r21 = \frac{\text{Min}(2;4;5;6;2;4;5;3;4;6)}{4} = 0,5$$

$$r22 = \frac{2}{\text{Max}(3;2;5;1;3;1;2;3;5;4)} = 0,4$$

$$r23 = \frac{2}{\text{Max}(1;2;4;4;1;4;4;4;4)} = 0,5$$

$$r24 = \frac{3}{\text{Max}(1;3;6;6;1;6;6;6;5;5)} = 0,5$$

$$r25 = \frac{2}{\text{Max}(2;2;3;4;2;4;4;4;3;3)} = 0,5$$

$$r26 = \frac{6}{\text{Max}(6;6;5;2;6;3;3;2;5;5)} = 1$$

Alternative Employee 3

$$r31 = \frac{\text{Min}(2;4;5;6;2;4;5;3;4;6)}{5} = 0,4$$

$$r32 = \frac{5}{\text{Max}(3;2;5;1;3;1;2;3;5;4)} = 1$$

$$r33 = \frac{4}{\text{Max}(1;2;4;4;1;4;4;4;4;4)} = 1$$

$$r34 = \frac{6}{\text{Max}(1;3;6;6;1;6;6;6;5;5)} = 1$$

$$r35 = \frac{3}{\text{Max}(2;2;3;4;2;4;4;4;3;3)} = 0,75$$

$$r36 = \frac{5}{\text{Max}(6;6;5;2;6;3;3;2;5;5)} = 0,83$$

Alternative Employee 4

$$r41 = \frac{\text{Min} (2;4;5;6;2;4;5;3;4;6)}{6} = 0,33$$

$$r42 = \frac{1}{\text{Max} (3;2;5;1;3;1;2;3;5;4)} = 0,2$$

$$r43 = \frac{4}{\text{Max} (1;2;4;4;1;4;4;4;4;4)} = 1$$

$$r44 = \frac{6}{\text{Max} (1;3;6;6;1;6;6;6;5;5)} = 1$$

$$r45 = \frac{4}{\text{Max} (2;2;3;4;2;4;4;4;3;3)} = 1$$

$$r46 = \frac{2}{\text{Max} (6;6;5;2;6;3;3;2;5;5)} = 0,33$$

Alternative Employee 5

$$r51 = \frac{\text{Min} (2;4;5;6;2;4;5;3;4;6)}{2} = 1$$

$$r52 = \frac{3}{\text{Max} (3;2;5;1;3;1;2;3;5;4)} = 0,6$$

$$r54 = \frac{1}{\text{Max} (1;3;6;6;1;6;6;6;5;5)} = 0,17$$

$$r55 = \frac{2}{\text{Max} (2;2;3;4;2;4;4;4;3;3)} = 0,5$$

$$r56 = \frac{6}{\text{Max} (6;6;5;2;6;3;3;2;5;5)} = 1$$

...

$$r61 = \frac{\text{Min} (2;4;5;6;2;4;5;3;4;6)}{4} = 0,5$$

$$r62 = \frac{1}{\text{Max} (3;2;5;1;3;1;2;3;5;4)} = 0,2$$

$$r63 = \frac{4}{\text{Max} (1;2;4;4;1;4;4;4;4;4)} = 1$$

$$r64 = \frac{6}{\text{Max} (1;3;6;6;1;6;6;6;5;5)} = 1$$

$$r65 = \frac{4}{\text{Max} (2;2;3;4;2;4;4;4;3;3)} = 1$$

$$r66 = \frac{3}{\text{Max} (6;6;5;2;6;3;3;2;5;5)} = 0,5$$

Alternative Employee 6

$$r61 = \frac{\text{Min} (2;4;5;6;2;4;5;3;4;6)}{4} = 0,5$$

$$r62 = \frac{1}{\text{Max} (3;2;5;1;3;1;2;3;5;4)} = 0,2$$

$$r63 = \frac{4}{\text{Max} (1;2;4;4;1;4;4;4;4;4)} = 1$$

$$r64 = \frac{6}{\text{Max} (1;3;6;6;1;6;6;6;5;5)} = 1$$

$$r65 = \frac{4}{\text{Max} (2;2;3;4;2;4;4;4;3;3)} = 1$$

$$r66 = \frac{3}{\text{Max} (6;6;5;2;6;3;3;2;5;5)} = 0,5$$

Alternative Employee 7

$$r71 = \frac{\text{Min} (2;4;5;6;2;4;5;3;4;6)}{5} = 0,4$$

$$r72 = \frac{2}{\text{Max} (3;2;5;1;3;1;2;3;5;4)} = 0,4$$

$$r73 = \frac{4}{\text{Max} (1;2;4;4;1;4;4;4;4;4)} = 1$$

$$r74 = \frac{6}{\text{Max} (1;3;6;6;1;6;6;6;5;5)} = 1$$

$$r75 = \frac{4}{\text{Max} (2;2;3;4;2;4;4;4;3;3)} = 1$$

$$r76 = \frac{3}{\text{Max} (6;6;5;2;6;3;3;2;5;5)} = 0,5$$

Alternative Employee8

$$r81 = \frac{\text{Min} (2;4;5;6;2;4;5;3;4;6)}{3} = 0,67$$

$$r82 = \frac{3}{\text{Max} (3;2;5;1;3;1;2;3;5;4)} = 0,6$$

$$r83 = \frac{4}{\text{Max} (1;2;4;4;1;4;4;4;4;4)} = 1$$

$$r84 = \frac{6}{\text{Max} (1;3;6;6;1;6;6;6;5;5)} = 1$$

$$r85 = \frac{4}{\text{Max} (2;2;3;4;2;4;4;4;3;3)} = 1$$

$$r86 = \frac{2}{\text{Max} (6;6;5;2;6;3;3;2;5;5)} = 0,33$$

Alternative Employee 9

$$r91 = \frac{\text{Min}(2;4;5;6;2;4;5;3;4;6)}{4} = 0,5$$

$$r92 = \frac{5}{\text{Max}(3;2;5;1;3;1;2;3;5;4)} = 1$$

$$r93 = \frac{4}{\text{Max}(1;2;4;4;1;4;4;4;4;4)} = 1$$

$$r94 = \frac{5}{\text{Max}(1;3;6;6;1;6;6;6;5;5)} = 0,83$$

$$r95 = \frac{3}{\text{Max}(2;2;3;4;2;4;4;4;3;3)} = 0,75$$

$$r96 = \frac{5}{\text{Max}(6;6;5;2;6;3;3;2;5;5)} = 0,83$$

Alternative Employee 10

$$r101 = \frac{\text{Min}(2;4;5;6;2;4;5;3;4;6)}{6} = 0,33$$

$$r102 = \frac{4}{\text{Max}(3;2;5;1;3;1;2;3;5;4)} = 0,8$$

$$r103 = \frac{4}{\text{Max}(1;2;4;4;1;4;4;4;4;4)} = 1$$

$$r104 = \frac{5}{\text{Max}(1;3;6;6;1;6;6;6;5;5)} = 0,83$$

$$r105 = \frac{3}{\text{Max}(2;2;3;4;2;4;4;4;3;3)} = 0,75$$

$$r106 = \frac{5}{\text{Max}(6;6;5;2;6;3;3;2;5;5)} = 0,83$$

From the results of the above calculations, the normalized matrix R is obtained, namely:

$$R = \left(\begin{array}{cccccc} 1 & 0,6 & 0,25 & 0,17 & 0,5 & 1 \\ 0,5 & 0,4 & 0,5 & 0,5 & 0,5 & 1 \\ 0,4 & 1 & 1 & 1 & 0,75 & 0,83 \\ 0,33 & 0,2 & 1 & 1 & 1 & 0,83 \\ 1 & 0,6 & 0,25 & 0,17 & 0,5 & 1 \\ 0,5 & 0,2 & 1 & 1 & 1 & 0,5 \\ 0,4 & 0,4 & 1 & 1 & 1 & 0,5 \\ 0,67 & 0,6 & 1 & 1 & 1 & 0,33 \\ 0,5 & 1 & 1 & 0,83 & 0,75 & 0,83 \\ 0,33 & 0,8 & 1 & 0,83 & 0,75 & 0,83 \end{array} \right)$$

4) Finding the best alternative using equation 2

$$V1 = (1 \times 0,2) + (0,6 \times 0,2) + (0,25 \times 0,1) +$$

$$(0,17 \times 0,2) + (0,5 \times 0,1) + (1 \times 0,2) = 0,62$$

$$V2 = (0,5 \times 0,2) + (0,4 \times 0,2) + (0,5 \times 0,1)$$

$$+ (0,5 \times 0,2) + (0,5 \times 0,1) + (1 \times 0,2) =$$

$$0,58$$

$$\begin{aligned}
 V3 &= (0,4 \times 0,2) + (1 \times 0,2) + (1 \times 0,1) + (1 \\
 &\times 0,2) + (0,75 \times 0,1) + (0,83 \times 0,2) = 0,82 \\
 V4 &= (0,33 \times 0,2) + (0,2 \times 0,2) + (1 \times 0,1) \\
 &+ (1 \times 0,2) + (1 \times 0,1) + (0,83 \times 0,2) = 0,57 \\
 V5 &= (1 \times 0,2) + (0,6 \times 0,2) + (0,25 \times 0,1) + \\
 &(0,17 \times 0,2) + (0,5 \times 0,1) + (1 \times 0,2) = 0,62 \\
 V6 &= (0,5 \times 0,2) + (0,2 \times 0,2) + (1 \times 0,1) + \\
 &(1 \times 0,2) + (1 \times 0,1) + (0,5 \times 0,2) = 0,64 \\
 V7 &= (0,4 \times 0,2) + (0,4 \times 0,2) + (1 \times 0,1) + \\
 &(1 \times 0,2) + (1 \times 0,1) + (0,5 \times 0,2) = 0,66 \\
 V8 &= (0,67 \times 0,2) + (0,6 \times 0,2) + (1 \times 0,1) \\
 &+ (1 \times 0,2) + (1 \times 0,1) + (0,33 \times 0,2) = 0,72 \\
 V9 &= (0,5 \times 0,2) + (1 \times 0,2) + (1 \times 0,1) + \\
 &(0,83 \times 0,2) + (0,75 \times 0,1) + (0,83 \times 0,2) = \\
 &0,80 \\
 V10 &= (0,33 \times 0,2) + (0,8 \times 0,2) + (1 \times 0,1) \\
 &+ (0,83 \times 0,2) + (0,75 \times 0,1) + (0,83 \times 0,2) \\
 &= 0,73
 \end{aligned}$$

So the ranking results are: Rank 1: Susanto (Employee 3)

Rank 2: Sentot Sudiyantono (Employee 9)

Rank 3: Siswandi (Employee 10)

Rank 4: Sukahar (Employee 8) Rank 5: Budi Santoso (Employee 7) Rank 6: Atim Subagyo (Employee 6) Rank 7: Wayan Suartana (Employee 5)

Rank 8: Refer to Wikno Handoko (Employee 1)

Rank 9: Subandi (Employee 2) Rank 10: Bambang Hermanto (Employee 4)

5) Percentage of Opportunities The percentage of opportunities for each loan application, namely:

Table 5.4. Percentage Table

No.	Nama Karyawan	Hasil SPK	Prosentase
1.	Susanto	0,82	12,13 %
2.	Senitot Sudiyantono	0,80	11,83 %
3.	Siswandi	0,73	10,80 %
4.	Sukahar	0,72	10,65 %
5.	Budi Santoso	0,66	9,76 %
6.	Atim Subagyo	0,64	9,46 %
7.	Wayan Suartana	0,62	9,17 %
8.	Jujuk Wikno Handoko	0,62	9,17 %
9.	Subandi	0,58	8,57 %
10.	Bambang Hermanto	0,57	8,43 %

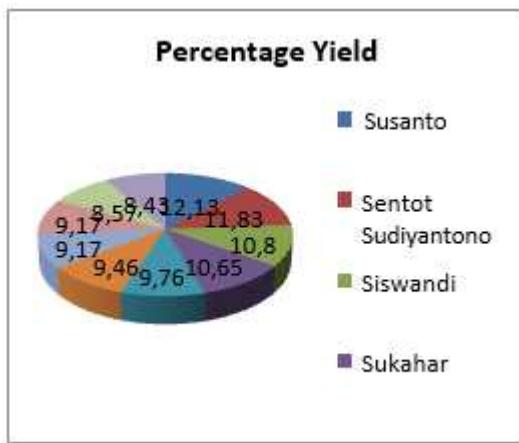


Figure 5.7. Pie Chart

f. Analysis of the SPK Results

The analysis carried out is to manually match the SAW calculation results using this application system whether it is appropriate or not. From the results of the above calculations, it can be seen that the results obtained from the application system are in accordance with the SAW calculation manually.

Whereas in Table 6.2. is the SPK result without the limit of the cooperative balance which only displays the ranking results. In Table 6.3. is the SPK result with a cooperative balance limit stated in the Cooperative Data (Table 6.1.). Each employee loan will be approved according to the rank and limited by the balance. So, after the ranking is done, then the loan size is added up according to the ranking order. From the order of ranking and addition, you can know the loan is approved or rejected. If the balance is sufficient, the loan will be approved, but if the balance is less, the loan will be rejected. Of the total value of the ranking results, loans approved with a sufficient balance were Susanto (0.82) with a 12.13% chance, Sentot Sudiyantono (0.80) with a probability of 11.83%, and Siswandi (0.73) with big chance 10.80% ..

6. CONCLUSIONS AND SUGGESTIONS

6.1 Conclusion

This final project entitled "Decision Support System for Cooperative Loan Feasibility Based on Employee Data, Using Simple Additive Weighting (SAW) Method. Case Study: PT. Pro Manunggal Solusi "aims to determine the creditworthiness of employees, so it can be concluded as follows :

- [1]. Decision support system for loan eligibility for employees at PT. Pro Manunggal This solution can provide appropriate results in making the decision making process more efficient.
- [2]. The Simple Additive Weighting (SAW) method can be used for decision support systems.
- [3]. Application of the Simple Additive Weighting (SAW) method to perform calculations to produce a value in accordance with the needs of the cooperative.

6.2 Suggestion

After evaluating the system as a whole, it is hoped that this final project can be developed further with suggestions for development as follows:

- [1]. For further determination, it is hoped that the system developed will perform other Decision Support System methods besides Simple Additive Weighting (SAW).
- [2]. It is expected that the system developed further does not have a limit of only 6 criteria.

7. REFERENCE

- [1]. Ariyanto, (2012), Sistem Pendukung Keputusan Pemilihan Karyawan Terbaik Dengan Menggunakan Metode SAW (Simple Additive Weighting) (Studi Kasus di Pamella Swalayan, Skripsi, Teknik Informatika, Universitas Islam Negeri Sunan Kalijaga, Yogyakarta.
- [2]. Anggita, S.D. (2012), Analisis Dan Perancangan Sistem Koperasi Simpan Pinjam Pada Koperasi Pegawai Republik Indonesia Tunas Harapan, Skripsi, Sistem Informasi, Sekolah Tinggi Manajemen Informatika dan Komputer, Yogyakarta.
- [3]. Ayudya, S. (2013), Sistem Informasi Koperasi Simpan Pinjam Studi Kasus Pada Koperasi Karyawan PT.DOK & Perkapalan Surabaya, Ilmu Komputer, Universitas Narotama, Surabaya.
- [4]. Basinu, I. (2014), Sistem Pendukung Keputusan Penilaian Kinerja Supervisor untuk Promosi Store Manager dengan Metode Simple Additive Weighting (SAW), Skripsi, Teknik Informatika, Universitas Muhammadiyah Maluku Utara, Ternate.
- [5]. Eniyati, S. (2011), Perancangan Sistem Pendukung Pengambilan Keputusan untuk Penerimaan Beasiswa dengan Metode SAW (Simple Additive Weighting, Teknologi Informasi Dinamik, ISSN : 0854-9524 Volume 16, No.2, Juli 2011.
- [6]. Fithri, D.L. dan Latifah, N. (2012), Sistem Pendukung Keputusan Untuk Pemberian Bantuan Usaha Mikro Dengan Metode Simple Additive Weighting, Majalah Ilmiah Informatika, Vol. 3 No. 2, Mei 2012. Indrawaty, Y., Andriana dan Prasetya,
- [7]. R.A. (2011), Implementasi Metode Simple Additive Weighting Pada Sistem Pengambilan Keputusan Sertifikasi Guru, Informatika, No.2, Vol.2, Mei – Agustus 2011.
- [8]. Kamaludin, A. (2012), Sistem Pendukung Keputusan Dalam Pemilihan Alternatif Alat Kontrasepsi Menggunakan Metode Simple Additive Weighting, Teknik Informatika, Universitas Islam Negeri Sunan Gunung Djati, Bandung.
- [9]. Kusumadewi, Sri., Hartati, S., Harjoko, A., dan Wardoyo, R. (2006), Fuzzy Multi Attribute Decision Making (Fuzzy MADM), Graha Ilmu: Yogyakarta.
- [10]. Marimin, (2004), Teknik dan Aplikasi Pengambilan Keputusan Kriteria Majemuk, Grasindo: Jakarta.
- [11]. Oktaputra, A.W. dan Noersasongko, E. (2014, Sistem Pendukung Keputusan Kelayakan Pemberian Kredit Motor Menggunakan Metode Simple Additive Weighting Pada Perusahaan Leasing HD Finance, SPK Kelayakan Pemberian Kredit Motor, Sistem Informasi, Universitas Dian Nuswantoro, Semarang
- [12]. Ritonga, A.N. dan Lestari, S. (2012), Perancangan Sistem Pendukung Keputusan Pengangkutan Calon Kepala Sekolah Negeri Bandar Lampung Dengan Metode SAW, Jurnal Informatika, Vol. 12, No. 2, Desember 2012.
- [13]. Sumarlinda, S. dan Yulianto, P. (2013), Sistem Pendukung Keputusan Penentuan Plafon Kredit Dengan Fuzzy MADM (Multiple Attribute Decision Making) Menggunakan Metode SAW (Simple Additive Weighting) di PD. BPR BKK, Duta.com, ISSN : 2086-9436 Volume 5 Nomor 1 September 2013.
- [14]. Usito, N.J. (2013), Sistem Pendukung Keputusan Penilaian Proses Belajar Mengajar Menggunakan Metode Simple Additive Weighting (SAW), Tesis Ph.D., Universitas Diponegoro, Semarang.

