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Vision impairment from cataract and glaucoma remains a leading global
health challenge, with 2.2 billion people affected worldwide and Indonesia
registering the highest prevalence in Southeast Asia and second highest
globally (Ministry of Health, 2017-2030 Roadmap; WHO 2023). Early,
accurate detection is essential to prevent irreversible blindness. In this study,
we develop and evaluate a native-architecture Convolutional Neural Network
(CNN) to classify cataract and glaucoma using three novel non-fundus (“real-
eye”) image subsets. Trained for 100 epochs on a balanced dataset, our CNN
achieves 98.67 % accuracy, precision of 98.8 %, and recall of 98.5 % on a
held-out test set. The resulting TensorFlow-saved model is deployed in the
browser via TensorFlow.js, enabling real-time, platform-agnostic inference
without specialized hardware. This work demonstrates that non-fundus

imaging, combined with lightweight CNN design and web deployment, can
provide a practical, high-accuracy tool for early eye-disease screening in low-
resource settings.

zain.elibrahimy@gmail.com

1. Introduction

Vision impairment affects some 2.2 billion people worldwide, with cataract and glaucoma as the two
leading causes of preventable blindness[1]. In Indonesia alone, 3 % of the population suffers from
vision impairment the highest rate in Southeast Asia and second highest globally driven chiefly by
cataracts and, to a lesser extent, glaucoma[2],[3]. Early, accurate screening is therefore critical to
reduce the social and economic burden of vision loss[4][5].

Convolutional Neural Networks (CNNs) have shown great promise in medical image classification.
AlexNet achieved 98.37 % accuracy on cataract versus normal fundus images but suffers from a
large model size and slow inference [6], [7]. MobileNetV2 prioritizes speed and model compactness
achieving 72 % accuracy yet sacrifices some classification performance [8]. Conversely, bespoke
“native” CNN architectures can be highly efficient on constrained hardware, but often at the cost of
reduced accuracy and flexibility [9], [10], [11].

Moreover, most prior work relies on high-resolution fundus photography, requiring specialized
equipment and limiting accessibility in low-resource settings. Non-fundus (“real-eye”) imaging via
standard digital or smartphone cameras remains underexplored despite its potential for widespread
screening [12], [13], [14].

To bridge this gap, we propose a lightweight, native-architecture CNN that classifies three non-
fundus (real-eye) image classes—cataract, glaucoma, and normal—collected via standard digital
cameras. Our pipeline resizes each image to 100x100 pixels, applies repeated convolution and
MaxPooling layers, and uses ReLU and Softmax activations over 100 training epochs, achieving
98.67 % accuracy on a balanced 3 000-image dataset. Crucially, we export the trained model to
TensorFlow.js, enabling in-browser inference without dedicated GPU hardware.
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2. Method

The methodology of this research is structured into three distinct components: Research Method,
Data Collection Method, and Data Analysis Method.

2.1 Research Method

The research methodology adopted in this study is an experimental method with an objective
quantitative approach, involving the development and evaluation of a Convolutional Neural Network
(CNN) model.

2.2 Data Collection Method

A comprehensive literature review served as the primary data collection method in this research, with
the aim of tackling eye disease-related challenges and implementing deep learning techniques using
classification methods to identify the optimal model based on training outcomes. The literature
review encompassed a wide range of sources, including academic journals, electronic books, and
relevant websites.

2.3 Data Analysis Method

Data analysis is employed to tackle the research problem by utilizing the gathered data and
information. The data analysis methodology comprises the following stages:

Figure 1. Workflow of Data Analysis

2.3.1 Datasets

The data collection process involved gathering a total of 3000 images in .jpg format. These images
comprised cataract, glaucoma, and normal eye images, acquired on February 28, 2024, from the
Roboflow.com platform[15].

Figure 2. Normal and Cataract Eye Dataset

2.3.2 Preprocessing

Preprocessing is an essential phase in data preparation, aimed at addressing potential problems that
could impair the effectiveness of data processing. This stage encompasses various techniques,
including rescaling, shearing, zooming, and horizontal flipping.

2.3.3 Classification

Classification encompasses the convolution stage, utilizing image input. The convolution process
involves applying filter values to a matrix, considering the three red, green, and blue channels of
image pixels.
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Figure 3. Image Pixel Values and Kernel Test Matrix

Figure 3 depicts the computational procedure for each channel (red, green, and blue) involving
multiplication with a 3x3 kernel or filter. This iterative process involves shifting the kernel by 1 stride
in each channel, generating the calculated values for each channel. The image pixel values are
extracted using Google Colab to obtain the pixel values for each channel separately.
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Figure 4. Convolutional Calculation with Filter 3x3

The convolution calculation is carried out on each channel matrix by multiplying a 3x3 matrix
element-wise according to its rows and columns, followed by summation to produce a result value
of 436. This process is executed with a stride of 1 from left to right.
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Figure 5. Activation of RGB Convolutional Values with ReLU

Following the convolution computation, the values from each channel are aggregated to yield the
total RGB convolution value. Subsequently, ReLU activation is applied. During ReLU activation, all
negative values are transformed into 0, producing the convolution outcome for figure 5.
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Figure 6. Pooling Layer

The max-pooling stage employs a 2x2 kernel and selects the maximum value at each stride position.
This max-pooling operation utilizes a stride of 2, resulting in the output being fed into the dropout
layer. The dropout phase serves to reduce the complexity of the constructed model by eliminating
unused neural networks.
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Figure 7. Flatten Layer

The flatten layer serves to convert a multidimensional matrix into a one-dimensional matrix or vector.
This operation transforms the output of the 2x2x32 dropout layer into a new vector, as illustrated in
Figure 7.
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Figure 8. Illustration of Fully Connected Layers.
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The following equation (1), (2), (3) is the hidden layer formula [16], [17]. The output values obtained
from the flatten operation will be processed by the fully connected layer, utilizing computations from
each of its hidden layers.

R, = (240%0,1) + (264*0,1) + (307*0,1) + (312*0,1) = 112,3
R, = (240%0,4) + (264*0,4) + (307*0,4) + (312%0,4) = 449,2
R; = (240%0,5) + (264*0,5) + (307*0,5) + (312*0,5) = 561,5
R = (240%0,3) + (264*0,3) + (307%0,3) + (312*0,3) = 336,9

The first hidden layer undergoes multiplication with distinct weight values, yielding the values from
the preceding computation. Subsequently, the results of this hidden layer calculation are further
multiplied using different weight values to produce the values Si, S», S3, S4 which constitute the next
hidden layer.

S1 = (112,3%0,3) + (449,2%0,3) + (561,5%0,3) + (336,9%0,3) = 437,97
Sy = (112,3%0,5) + (449,2%0,5) + (561,5%0,5) + (336,9%0,5) = 729,95
Sy = (112,3%0,2) + (449,2*0,2) + (561,5%0,2) + (336,9%0,2) = 291,98
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Sy = (112,3%0,4) + (449,2%0,4) + (561,5%0,4) + (336,9%0,4) = 583,96

Every neuron in Si, Sz, S3, S4 will undergo multiplication with distinct weights once more, leading
to the generation of the values Cataract, Glaucoma, and Normal.

Cataract = (437,97%0,5) + (729,95%0,5) + (291,98*0,5) + (583,96*0,5) = 1021,93
Glaucoma = (437,97%0,3) + (729,95%0,3) + (291,98*0,3) + (583,96*0,3) = 613,158
Normal = (437,97%0,1) + (729,95%0,1) + (291,98*0,1) + (583,96*0,1) = 204,386

The subsequent stage entails computing the softmax activation employing the exponential formula:
Cataract divided by the sum of cataract + glaucoma + normal. This procedure is executed thrice, once
each for cataract, glaucoma, and normal.
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3. Results and Discussion

Subsequent to achieving uniform image sizes, the image data distribution will advance to the
classification stage. This stage in the research utilizes several parameters outlined in Table 1.

Table 1. Hyperparameters Employed

Params
Image Dimensions Epoch Batch Size Optimizer
100 x 100px 100 32 RMSprop

Utilizing the parameters employed in conjunction with the Native CNN architecture and the
implemented model, the outcomes are depicted in Figure 9.
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Figure 9. Accuracy and Loss Trajectory

Utilizing Convolutional Neural Network (CNN) for eye disease classification, a remarkable accuracy
0f 98.67% is attained, as illustrated in Figure 9.

The following equation (4) is the exponential formula for softmax activation. Consequently, the
weight value corresponding to the probability of cataract emerges as the largest, at 0.5, implying that
the input image depicts a cataract.
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Figure 10. Employing TensorBoard for Model Monitoring

An evaluation of the classification algorithm was conducted using a sample dataset of 10 instances.
The results demonstrated a classification testing accuracy of 98.67%. The saved model will be
deployed as a web application utilizing TensorFlow.js.

4. Conclusion

This study investigates eye disease classification using the Convolutional Neural Network (CNN)
method with a native CNN architecture. The study's novel contribution lies in the utilization of three
non-fundus image classes: cataract, glaucoma, and normal. The preprocessing stage involves resizing
images to 100x100 pixels. The CNN model is implemented using 100 epochs for its hyperparameters.
The achieved classification accuracy is 98.67%.
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