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Abstract

The Serayu Watershed is a vital area in Indonesia, where agricultural runoff
contributes to nutrient enrichment in rivers. This study offers novelty as it is
the first to analyze the spatiotemporal distribution of nitrate and phosphate in
the Serayu River over a three-year period (2021-2023). The research aims to
support sustainable watershed management by examining nutrient dynamics and
their correlation with environmental parameters such as dissolved oxygen (DO),
pH, total suspended solids (TSS), and chemical oxygen demand (COD). Water
sampling was conducted at 15 stations across the upstream, midstream, and
downstream segments. Data were analyzed using Microsoft Excel and PAST
4.03, applying Principal Component Analysis (PCA) and biplot methods. Results
showed nitrate levels were highest downstream in 2021, but shifted upstream in
2022-2023, likely due to organic matter decomposition. Phosphate remained
highest midstream throughout the period, linked to domestic activity and land
use. Nitrate levels fluctuated seasonally, especially during the rainy season, while
phosphate levels were relatively stable. Spatial mapping highlighted dynamic
nitrate changes in Banjarnegara and Cilacap, with phosphate distribution
remaining more uniform. Correlation analysis revealed nitrate was related to
TSS and COD in 2021, had no significant correlation in 2022, and was linked

This is an open access article un-
der the CC BY-NC-SA license
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censes/by-nc-sa/4.0/)

with pH in 2023. Phosphate consistently correlated with COD and pH. These
findings emphasize that both natural and human-induced factors drive nutrient
variability in the Serayu watershed, underlining the urgency of integrated
watershed management to control nutrient pollution and protect water quality.
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1. Introduction

Watersheds play a critical role in maintaining
ecological stability and supporting human livelihoods,
yet they are increasingly threatened by anthropogenic
pressures. Common anthropogenic activities occurring
around the river area include the indiscriminate
disposal of domestic waste and agricultural practices.
Residues from agricultural activities, such as fertilizers
and pesticides, are often carried into the river
system through surface runoff during rainfall events,
contributing to the degradation of water quality (Hu,
2018). The Serayu River Basin (SRB), one of the major
watersheds in Central Java, Indonesia, flows through
fiveregencies and is subjectto escalating environmental
stress, particularly nutrient pollution (Bhagawati et
al., 2013). Likewise, the Teteriv River in Ukraine
has experienced increased nutrient concentrations
from anthropogenic activities, leading to heightened
eutrophication risks (Tsyhanenko-Dziubenko er al.,
2023). The excessive use of fertilizers in agriculture,
coupled with domestic wastewater discharges, has led
to increased concentrations of nitrate and phosphate
in the river system. These nutrients degrade water
quality, promote eutrophication, and pose risks to
aquatic biodiversity (Xu ef al., 2022).

Globally, nutrient pollution in freshwater sys-
tems has become a major challenge. Recent studies
have shown that agricultural runoff is a dominant
source of nitrogen and phosphorus compounds, of-
ten leading to oxygen depletion and algal blooms (Li
et al., 2024; Yin et al., 2024). Household detergents
also contribute significantly to phosphate loading in
urban rivers (Wu et al., 2023). In Vietnam, Giao ef al.
(2022) documented how agricultural intensity affects
seasonal nutrient variation. Similar findings have been
reported in China (Li ef a/., 2023; Wang et al., 2023),
India (Ramalingam et al., 2021), Algeria (Ounissi and
Bouchareb, 2013), and Indonesia (Elvania et al., 2019;
Handayani et al., 2023; Lestari et al., 2023; Lukman-
ulhakim et al., 2023; Pratama et al., 2020).

Although the effects of nitrate and phosphate on
water quality have been widely reported, most studies
focus on single-point observations or general trends in
major rivers. Very few have analyzed the spatiotempo-
ral distribution of these nutrients in mid-sized tropical
river basins, especially in Indonesia. Furthermore, the
relationship between these nutrients and multiple envi-
ronmental indicators such as dissolved oxygen (DO),
pH, total suspended solids (TSS), and chemical oxygen
demand (COD) remains not well understood, making
it difficult to identify pollution hotspots and predict
ecological risk under varying seasonal and land-use

JIPK: Scientific Journal of Fisheries and Marine

conditions. This study addresses this gap by conduct-
ing a multi-year spatiotemporal assessment combined
with PCA analysis, linking nutrient dynamics to key
environmental parameters (pH, TSS, and COD) in
a tropical watershed context. The lack of integrated
assessments in tropical contexts represents a critical
research gap, and addressing it remains a major chal-
lenge for effective watershed management. This study
specifically addresses that gap by conducting a long-
term spatiotemporal analysis of nitrate and phosphate
distribution in a mid-sized tropical river, the Serayu
River in Indonesia, where such assessments have not
previously been conducted. The findings are expected
to support science-based recommendations for inte-
grated river water quality management.

Therefore, this study aims to map nitrate/phos-
phate distribution, analyse correlations with DO/pH/
TSS/COD, and identify pollution hotspots. The out-
come of this research is expected to contribute to more
effective watershed management by identifying pollu-
tion hotspots and clarifying the interactions between
nutrient pollution and environmental conditions. Ulti-
mately, this work will enrich our understanding of nu-
trient behaviour in tropical river systems, which pres-
ently remains a major challenge in aquatic science.

2. Materials and Methods
2.1 Materials

2.1.1 The equipment

2.5 L water jerry cans, Erlenmeyer flasks,
measuring cylinders, hotplates, pipettes with volumes
of 2 mL, 5 mL, and 10 mL, test tubes, cuvettes, and
COD reactors (Hach DRB200). For nutrient analy-
sis, a nitrate test kit (Hanna Instruments HI781) and
a phosphate test kit (Hanna Instruments HI736) were
utilized. Additional instruments included a pH meter
(Ohaus Starter 3100 series), a water quality checker
(WQQ), desiccators, an oven, Whatman No. 41 filter
paper, petri dishes, tweezers, 100 mL measuring cylin-
ders, labels, markers, tissue paper, latex gloves, gener-
al stationery, and documentation tools.

2.1.2 The materials

The materials used in this study included water
samples collected from the Serayu River Basin, trash
bags, and various chemical reagents for nutrient and
chemical oxygen demand (COD) analyses. These re-
agents consisted of 0.0511 g potassium dichromate
(K2Cr207), 8.35 mL sulfuric acid solution (H2SOa4),
1.655 g mercuric sulfate (HgSO4), 1.012 g silver sul-
fate (Ag2S0s), 100 mL sulfuric acid reagent, digestion



solution reagents, and phosphate low-range (LR) re-
agents. For nitrate analysis, marine nitrate low-range
reagents A (4 mL), B, and C were also used.

2.1.3 Ethical approval

This study does not require ethical approval
because it does not use experimental animals.

2.2 Methods

This study employed a purposive sampling
method to select 18 sampling stations along the Ser-
ayu River Basin, representing upstream, midstream,
and downstream sections. Each sampling station was
analyzed for nitrate and phosphate concentrations to
assess their spatiotemporal distribution. The collected
data were then analyzed using Principal Component
Analysis (PCA) to determine the relationship between
nutrient levels and environmental parameters.

2.2.1 Study area

This study was conducted within the Serayu
River Basin Area (DAS Serayu), located in Central
Java, Indonesia. The data collection focused on six
key water quality parameters: nitrate, phosphate, pH,
total suspended solids (TSS), dissolved oxygen (DO),
and chemical oxygen demand (COD). These data were
collected over a three-year period: 2021, 2022, and
2023. Primary data for the year 2023 were obtained
through field sampling conducted in October 2023.
The data for 2021 and 2022 were obtained from sec-
ondary sources, specifically from the Serayu-Citanduy
Water Resources Management Center (Balai Pengelo-
laan Sumber Daya Air-BPSDA Serayu-Citanduy). The
sampling locations are distributed as follows (Figure

D).

2.3 Analysis Data

The collected data were analyzed using Mic-
rosoft Excel and statistical software, including PAST
version 4.03. To evaluate the patterns and relation-
ships among water quality parameters, specifically
nitrate and phosphate, Principal Component Analysis
(PCA) was employed. This multivariate analysis tech-
nique was used to reduce data dimensionality while
retaining the essential variation in the dataset. PAST
version 4.03 was selected due to its accessibility as
free software and its user-friendly interface, making
it suitable for performing multivariate statistical anal-
yses commonly used in ecological and environmental
studies. Meanwhile, Microsoft Excel was used for pre-
liminary data organization and descriptive analysis, as
it provides appropriate tools for tabulating and visual-
izing basic trends in water quality parameters.

Principal Component Analysis (PCA) was used
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in this study by considering its basic assumptions,
namely the existence of correlation between vari-
ables, interval or ratio scale data, and the relevance
of dimension reduction to simplify complex data. In
this context, several water quality parameters, such as
nitrate, phosphate, and total suspended solids (TSS),
showed a correlated relationship. In addition, environ-
mental conditions such as community agricultural ac-
tivities in the river basin also affect the values of these
parameters. Therefore, PCA is considered appropriate
to identify the main patterns in the spatial and tempo-
ral distribution of water quality in the study area. A
biplot analysis was then generated using PAST 4.03
to visualize the grouping patterns of sampling points
and to identify correlations among environmental
variables such as nitrate, phosphate, dissolved oxygen
(DO), pH, total suspended solids (TSS), and chemical
oxygen demand (COD). The biplot aids in interpreting
how these variables contribute to spatial and tempo-
ral variability and in determining potential clustering
among observation sites within the Serayu River Ba-
sin. It is important to note that the analysis is based
on secondary data collected during 2021-2022, which
may contain some inconsistencies or gaps due to vari-
ations in data collection methods and environmental
factors. These potential biases should be considered
when interpreting the results.

3. Results and Discussion
3.1 Results
3.1.1 Concentration of nitrate and phosphate

Industrial, domestic, and agricultural activ-
ities often influence the concentration of nitrate and
phosphate in river water. Anthropogenic inputs, such
as fertilizer runoff, significantly contribute to nitro-
gen enrichment (Shuler ef a/., 2017; Ramalingam et
al.,2021), which can lead to water contamination and
promote excessive algal growth (Ding ef al., 2019).
Therefore, monitoring nitrate levels is crucial for the
sustainability of aquatic ecosystems. Observations
from 2021 to 2023, as shown in Figure 2, provide an
overview of nitrate distribution in the Serayu water-
shed.

From 2021 to 2023, phosphate concentrations
were consistently highest in the midstream area (Fig-
ure 3). The high concentration of phosphate in the
middle of the river is caused by community activities,
such as washing with detergents containing phosphate
(Masykur ef al., 2018; Larasati et al., 2021; Setiawati
and Ariani, 2021). This phosphate accumulation can
trigger phytoplankton blooms, which have a negative
impact on water quality and fish metabolism (Rifal,
2013; Ebeling et al., 2006).

Copyright ©2025 Faculty of Fisheries and Marine Universitas Airlangga
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Figure 3. Average concentration of phosphate in water in Serayu Watershed.

3.1.2 Spatio-temporal distribution of nitrate and phos-
phate in Watershed Serayu

3.1.2.1 Nitrate

Nitrate is the predominant form of nitrogen in
natural waters and serves as a key nutrient for the
growth of algae and aquatic plants. However, elevat-
ed nitrate levels exceeding the quality standards may
signal water pollution, typically resulting from anthro-
pogenic sources such as domestic waste, industrial
discharge, agricultural runoff, and livestock activities
(Yogatanny, 2015). Therefore, understanding the spa-
tial and temporal distribution of nitrate is essential for
effective watershed management. This study evaluat-
ed the distribution of nitrate concentrations across the
Serayu watershed from 2021 to 2023, as illustrated in
Figure 4.

3.1.2.2 Phosphate

Phosphate is an essential nutrient that plays a
key role in supporting aquatic productivity and influ-
encing water fertility. However, its concentration in
aquatic systems can vary significantly depending on
the form of the compound and the surrounding envi-
ronmental conditions. Under certain scenarios, phos-
phate levels may exceed safe thresholds, especially
in waters influenced by anthropogenic activities. The
increasing input of nutrients, particularly from urban
and agricultural sources, has raised concerns about
their ecological impacts on freshwater systems (Wang
et al., 2024). Thus, an analysis of the spatio-temporal
distribution of phosphate in the Serayu River Basin is

necessary to assess the dynamics and potential risks,
as illustrated in Figure 5.

3.1.3 Relationship between nitrate and phosphate
with environmental factors using principal component
analysis (PCA)

Principal Component Analysis (PCA) is a mul-
tivariate statistical technique used to identify patterns
in data and explore relationships among several inter-
related variables. PCA is particularly effective in en-
vironmental studies to determine correlations among
water quality parameters by reducing data dimension-
ality while retaining most of the variation present in
the dataset (Chamidy ez a/., 2020). In this study, PCA
was applied to analyze the relationship between nitrate
and phosphate with other environmental factors such
as Total Suspended Solids (TSS) and Chemical Oxy-
gen Demand (COD) for the years 2021 and 2022, and
with Dissolved Oxygen (DO), pH, TSS, and COD for
2023. This analysis utilized a biplot representation to
interpret the relationships between parameters, where
the angles between vectors indicate the nature and
strength of their correlation (Kristiana er a/., 2020).
An acute angle (<90°) suggests a positive correlation,
a right angle (~90°) indicates no correlation, and an
obtuse angle (>90°) indicates a negative correlation
(Ikhtifari and Prasetyo, 2020). Additionally, vectors
pointing in the same direction represent parameters
that vary similarly across sampling stations. The PCA
biplot for 2021 is displayed in Figure 6. Furthermore,
the 2022 PCA biplot graph is presented in Figure 7.

The PCA biplot for 2023, presented in Figure

Copyright ©2025 Faculty of Fisheries and Marine Universitas Airlangga
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8, shows a cumulative covariance of 59.247%., indi-
cating that the two principal components account for a
considerable proportion of the variance in the dataset.

3.2 Discussion

3.2.1 Concentration of nitrate and phosphate
3.2.1.1 Nitrate

In 2021, the highest nitrate concentrations
were recorded in the downstream region, while in 2022
and 2023, concentrations were highest in the upstream
areas. Elevated nitrate levels upstream are not solely
attributed to anthropogenic waste but are also linked
to the decomposition of organic matter from aquatic
plants (Yanti, 2017; Kumar ef al., 2024). Furthermore,
microbial degradation of phytoplankton in bottom wa-
ters under hypoxic conditions contributes to increased
nutrient concentrations (Shulkin ez a/., 2018). The up
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Figure 7. PCA biplot graph 2022.

stream area of the Serayu River remains relatively nat-
ural, with minimal infrastructure development, allow-
ing for the growth of diverse plant species (Nugroho ef
al., 2021). Field observations confirmed the presence
of substantial vegetation in the upstream region, par-
ticularly at the Serayu Tengah station, where decaying
plant matter contributes to nutrient enrichment (Kari-
na et al., 2022).

In 2022, nitrate concentrations showed fluctu-
ations from upstream to downstream. These variations
may result from the denitrification process, which is
influenced by dissolved oxygen levels. Low DO in
downstream areas can promote nitrate reduction into
gaseous nitrogen forms through sequential microbial
processes (Arnanda, 2023). Additionally, accumula-
tion of nitrate from upstream, combined with down-
stream anthropogenic activities such as domestic
waste disposal and agricultural runoff, contributes to
elevated concentrations in lower river segments (Hu,
2018; Hidayati ef al., 2022). Ultimately, the accumu-
lated nutrients are transported to the river mouth and
into the sea, potentially influencing marine primary
production, as nitrogen acts as a limiting nutrient in
marine environments (Correll, 1996).

3.2.1.2 Phosphate

Related to the phosphate concentrations, the
pattern is closely linked to dense residential zones
and intensive domestic activities, including the use of
phosphate-based detergents (Mahyudin ef al., 2015;
Masykur et al., 2018; Setiawati and Ariani, 2021).
If unmanaged, these sources can increase phosphate
concentrations in surface waters, leading to eutrophi-
cation and degradation of aquatic ecosystems (Wu et

756
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al., 2023). Additionally, phosphate pollution has been
associated with metabolic disruption in fish and broad-
er ecological impacts (Ebeling ez al., 2006).

Community activities that result in the direct
discharge of phosphate-containing waste into rivers
are significant contributors to nutrient enrichment and
eutrophication (Chen et al., 2019; Chen et al., 2020,
Guo et al., 2021; Li et al., 2021). Phosphate, as a lim-
iting nutrient in many freshwater systems, plays a crit-
ical role in regulating the growth of primary producers
such as algae and aquatic plants. When phosphate in-
put increases beyond the assimilation capacity of the
ecosystem, it stimulates excessive algal growth, which
can alter ecological balance, reduce water quality, and
deplete dissolved oxygen through subsequent decom-
position processes (Kesena, 2015).

Sources of phosphate in riverine environments
are primarily linked to household waste, particular-
ly from detergents, dishwashing agents, and human
waste. In densely populated areas along riverbanks,
continuous input of domestic waste into the water
body creates persistent nutrient loading. This long-
term enrichment, if unmanaged, accelerates eutrophi-
cation, characterized by murky waters, fish kills, and
biodiversity loss (Correll, 1996).

3.2.2 Spatio-temporal distribution of nitrate and phos-
phate in Watershed Serayu

3.2.2.1 Nitrate

In 2021, the highest nitrate concentration was
recorded at Station B (Merawu) with 4.230 mg/L,
followed by Station P (Tajum Hulu). These values
represent the average concentrations obtained from
sampling in March, September, and November. The
elevated nitrate levels at Station B coincided with high
concentrations of total suspended solids (TSS) at 3.67
mg/L. and chemical oxygen demand (COD) at 90.65
mg/L at nearby Station P. The catchment surround-
ing the Merawu River is characterized by extensive
plantations and dense residential settlements, which
contribute organic and nutrient-rich waste to the riv-
er. Similar findings were reported in previous studies
(Rizki et al., 2015; Lee et al., 2020), indicating that
mixed land uses such as agriculture and settlements
significantly contribute to nitrate loading in river sys-
tems.

The lowest nitrate concentration in 2021 was
at station J (Upstream Banjaran), with a concentration
0t 0.823 mg/L, and K (Downstream Banjaran) of 0.903
mg/L, and N (Logawa) of 0.823 mg/L. The low nitrate
concentration in the Banjaran River may be due to the
still low use of agricultural land (Jarvie et al., 2018).
The still low concentration in the Logawa River also

JIPK | Vol 17 No 3. October 2025 | Spatio-Temporal Distribution of Nitrate and Phosphate in Serayu Watershed...

indicates little contribution from land activities, such
as household waste disposal, mining activities, and
livestock waste disposal, which are usually sources of
nitrate pollution in waters (Ramalingam ef a/., 2021).

Conversely, the lowest nitrate concentrations
in 2021 were observed at Station J (Upstream Banja-
ran), Station K (Downstream Banjaran), and Station
N (Logawa), with values ranging from 0.823 to 0.903
mg/L. These relatively low concentrations are most
likely attributed to the limited anthropogenic pressure
in these areas. The Banjaran River segment, particular-
ly in its upstream and downstream stretches, traverses
regions with sparse agricultural activity, minimal res-
idential development, and low levels of industrial or
livestock operations. As a result, there is reduced input
of nitrogen-rich substances such as fertilizer residues,
untreated domestic wastewater, and organic livestock
waste, which are commonly known contributors to ni-
trate enrichment in aquatic ecosystems (Ramalingam
et al., 2021). Additionally, these stations may benefit
from natural buffer zones, such as riparian vegetation
and forested catchments, which serve important eco-
logical functions in mitigating nutrient runoff (Mayer
et al., 2007). Vegetative buffers can trap and utilize
nitrogen before it enters the river, thus acting as a nat-
ural filter. The hydrological characteristics of these
segments, such as slower surface runoff, higher infil-
tration rates, and lower erosion potential, may further
support the retention of nitrate within soils rather than
allowing it to leach into water bodies.

In 2022, the spatial distribution of nitrate
across Stations A to Q indicated that the highest con-
centration occurred at Station A (Upstream Serayu)
with 3.06 mg/L, followed closely by Station B (Mer-
awu) at 3.723 mg/L. Total Suspended Solids (TSS)
were also consistently high across most sampling lo-
cations, with an average of 0.93 mg/L, reflecting po-
tential sediment and nutrient runoff. The recurrent el-
evation of nitrate levels at these two upstream stations
suggests persistent and significant nutrient input from
surrounding land use, particularly agricultural planta-
tions (Xu et al., 2022). These areas are known for in-
tensive farming activities, which often involve the lib-
eral use of nitrogen-based fertilizers such as urea and
NPK. The relationship between upstream agricultural
practices and elevated nutrient concentrations is well
documented, where fertilizers not absorbed by plants
are susceptible to leaching and surface runoff, espe-
cially during rainfall events. These excess nutrients
are eventually transported into adjacent water bodies,
contributing to eutrophication and water quality deg-
radation (Zhang et al., 2015). Such conditions are ex-
acerbated in sloped agricultural landscapes, as found
in parts of the upper Serayu catchment, where erosion

Copyright ©2025 Faculty of Fisheries and Marine Universitas Airlangga
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and rapid runoff accelerate nutrient loss.

Historical monitoring data support these find-
ings. For instance, nitrate concentrations at the Serayu
Movable Dam in 2016 averaged 17.54 mg/L, high-
lighting the chronic nutrient stress affecting the wa-
tershed (Arinda ef al., 2023). The persistence of high
nitrate concentrations over the years emphasizes the
need for improved land management strategies, such
as buffer strips, controlled fertilizer application, and
soil conservation practices, to mitigate nutrient trans-
port from agricultural zones.

The 2023 data revealed an even higher nitrate
concentration at Station A (4.85 mg/L) and Station
B (6.883 mg/L), while Station N (Logawa) again re-
corded the lowest concentration. Sampling conduct-
ed in March, July, and October consistently showed
that Stations A and B remained nitrate hotspots. This
recurring pattern suggests the presence of stable and
significant sources of nitrate in these areas. In the
Merawu catchment, extensive agricultural land, par-
ticularly potato farming, is prominent (Wulandari,
2007; Prastia, 2015). Potato cultivation in the upper
Serayu region often relies heavily on fertilizers such
as urea and NPK, which, if not managed using conser-
vation principles, increase nitrate leaching into nearby
water bodies (Sutrisna and Surdianto, 2014). These
findings are consistent with reports indicating that in-
tensified fertilizer application directly elevates nitrate
concentrations in aquatic systems, leading to water
quality deterioration (Chen e a/., 2021).

Spatial distribution maps across the three
years highlighted color-coded changes, particularly in
Banjarnegara and Cilacap regencies. In Banjarnegara,
areas ranged from green to yellow in 2021 but turned
red in 2022 and 2023, indicating a significant increase
in nitrate concentration. Cilacap exhibited fluctuation
from yellow-green to red in 2021, green in 2022, and
remained green in 2023. These temporal shifts align
with seasonal agricultural cycles, especially during
the rainy season, when fertilizer application and runoff
intensify (Wu et a/., 2023). Rainfall acts as a key driv-
er for nutrient transport, with intensive farming com-
bined with high rainfall accelerating nitrogen leaching
and distribution in river systems (Xie ef al., 2021).

3.2.2.2 Phosphate

In 2021, phosphate distribution patterns re-
vealed the highest concentrations at several down-
stream stations. Specifically, Station F (Pelus down-
stream) recorded a concentration of 0.370 mg/L,
Station H (Gawe upstream) at 0.433 mg/L, and Sta-
tion M (Kranji downstream) at 0.447 mg/L. These val-
ues were derived from average measurements taken
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in March, September, and November. The elevated
concentrations in downstream areas suggest that sur-
face runoff, particularly from urban and agricultural
zones, acts as a primary contributor to phosphate load-
ing in these river segments (Contreras et al., 2024).
Such runoff typically carries residues from fertilizers,
household detergents, and untreated waste, which ac-
cumulate along the river course and lead to nutrient
enrichment in lower catchment zones.

Conversely, the lowest phosphate concen-
trations were recorded in Station G (Central Serayu
River) at 0.080 mg/L and Station D (Klawing down-
stream) at 0.090 mg/L. The low concentration in the
central region of the Serayu River may be attributed to
limited anthropogenic influence and minimal agricul-
tural runoff, particularly from areas with less intensive
land use. Reduced exposure to phosphorus-contain-
ing materials decreases the risk of eutrophication and
helps maintain ecological balance. Moreover, minimal
phosphate levels may indicate reduced accumulation
of organic matter or waste residues that are common-
ly linked to the degradation of aquatic environments
and the potential harm to aquatic biota (Elvania et a/.,
2019).

In 2022, phosphate data were collected during
three sampling periods: March, July, and September.
The results indicated that the highest phosphate con-
centration was recorded at Station M (Kranji down-
stream), with a value of 0.253 mg/L. Notably, this sta-
tion also exhibited one of the highest Chemical Oxygen
Demand (COD) values among all observed locations
in 2022, reaching 49.09 mg/L. This finding suggests a
potential positive correlation between phosphate and
COD concentrations, which supports previous studies
that link nutrient enrichment with increased organic
pollutant loads in river systems (Lumacla ez al., 2013).
The presence of both high phosphate and COD levels
often indicates input from untreated domestic waste
or organic-rich agricultural runoff. Another area with
elevated phosphate levels was Station J (Banjaran up-
stream). The high concentration at this station is likely
influenced by its proximity to agricultural zones and
residential settlements. Fertilizer use in agriculture
and household waste disposal practices in the sur-
rounding area contribute significantly to phosphate
enrichment in the river.

The concentration recorded in Banjaran up-
stream aligns with findings from previous studies,
such as Samudra ez a/. (2022), which reported an av-
erage phosphate level of 0.264 mg/L in similar envi-
ronmental conditions. The persistent input of nutri-
ent-rich runoff from these anthropogenic sources is a
major factor in sustaining elevated phosphate levels in
this section of the river. On the other hand, the lowest



phosphate concentration in 2022 was observed at Sta-
tion R (Serayu downstream), with an average value of
0.073 mg/L. This relatively low concentration is eco-
logically beneficial, as it supports the maintenance of
aquatic ecosystem stability and reduces the likelihood
of eutrophication (MacDonald and Bennett, 2009).
Low phosphate levels contribute to balanced prima-
ry productivity, limit excessive algal growth, and help
maintain dissolved oxygen levels crucial for aquatic
life. The overall distribution pattern in 2022 empha-
sizes the strong influence of land use and wastewater
input on phosphate levels in riverine environments.
Upstream and agricultural areas are prone to higher
phosphate input due to fertilizer application and hu-
man activities, while certain downstream sections may
show signs of dilution or nutrient attenuation.

In 2023, the highest phosphate concentration
was recorded at Station K (Kranji upstream) with an
average value of 0.353 mg/L, followed by Station L
(Banjaran downstream) with a concentration of 0.307
mg/L. These elevated values are visually represented
by the red indicators on the spatial distribution map
(Figure 4), which highlight zones with significant
phosphate enrichment. The notably high phosphate
concentrations in the Kranji and Banjaran Rivers are
suspected to be strongly influenced by intensive com-
munity activities, particularly unregulated disposal of
solid waste and domestic effluents. During the field
sampling process, large amounts of garbage were vis-
ibly accumulated along both riverbanks, suggesting
poor waste management practices in the surrounding
settlements. This observation is consistent with ear-
lier findings by (Nurnaningsih, 2000), which docu-
mented the use of these rivers as dumping grounds for
household waste. Phosphates from domestic sources
typically originate from detergents, food residues,
and human waste (Ounissi and Bouchareb, 2013).
When discharged directly into water bodies without
adequate treatment, these substances contribute sig-
nificantly to nutrient pollution. The sustained input of
phosphate-rich waste not only increases the nutrient
load in the river but also accelerates eutrophication,
a condition characterized by excessive algal growth,
reduced oxygen levels, and eventual degradation of
aquatic ecosystems (Correll, 1996).

The spatial distribution of phosphate in the
Serayu Watershed over the period of 2021 to 2023
shows a relatively stable pattern, with no significant
year-to-year fluctuations in concentration. This sug-
gests a degree of temporal uniformity in phosphate
levels, where no extreme increases were observed in
any particular year. The coloration on the distribution
maps across the three years supports this observation,
indicating consistent trends without drastic shifts. One
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station that consistently exhibited low phosphate con-
centrations was Station G (Central Serayu). This site
recorded average concentrations of 0.08 mg/L in both
2021 and 2022, and 0.097 mg/L in 2023, remaining
well below critical thresholds. The consistently low
levels at this station are likely due to the limited appli-
cation of phosphate-containing agricultural fertilizers
in the surrounding areas. Unlike regions with inten-
sive agriculture, this part of the watershed appears to
have lower fertilizer runoff, resulting in reduced nutri-
ent loading to the river system.

Low nutrient input in this area is beneficial
for maintaining water quality and ecological balance.
In contrast, excessive fertilizer use in other areas can
lead to nutrient leaching during rainfall events, where
phosphate is transported into water bodies and poses a
threat to aquatic life by potentially causing eutrophica-
tion and oxygen depletion (Elvania ez a/., 2019). This
preliminary conclusion emphasizes the importance of
monitoring land use activities, especially agricultural
practices, in relation to phosphate pollution, as well as
identifying critical zones that require targeted water-
shed management interventions.

3.2.3 Relationship between nitrate and phosphate
with environmental factors using principal component
analysis (PCA)

The PCA biplot for 2021 shows distinct en-
vironmental characteristics across stations. Nitrate is
strongly associated with TSS and COD, as indicated
by vectors pointing in the same direction and forming
acute angles. This correlation is particularly evident at
Station B (Merawu), where high nitrate concentrations
are accompanied by elevated TSS levels. This condi-
tion may be attributed to high water inflow mobilizing
suspended particles and concurrently transporting ni-
trogen compounds (Paudel ez al., 2019). Ecologically,
this association suggests that areas with high nitrate
and suspended solid concentrations are prone to in-
creased turbidity and nutrient enrichment, which may
promote phytoplankton blooms and subsequent oxy-
gen depletion, adversely affecting aquatic organisms
(Ramayanti and Amna, 2019).

Phosphate, on the other hand, is primarily
correlated with COD, as shown by the acute angle
between their respective vectors. This suggests that
increases in phosphate concentrations are accompa-
nied by increased organic matter, as reflected by COD
values. Such conditions can elevate the risk of oxy-
gen depletion in the water due to the decomposition of
organic matter, potentially leading to hypoxic events
that threaten fish populations and other aquatic life
(Lumaela et al., 2013; Ramayanti and Amna, 2019).
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Station A (Serayu upstream) exhibits domi-
nance of nitrate-related characteristics, while Station
H (Gawe upstream) is characterized by higher phos-
phate levels. These findings support previous studies
(Lumaela et al., 2013), which reported that increases
in nitrate and phosphate are often accompanied by el-
evated COD levels due to their role in contributing
to the organic and nutrient load in aquatic systems,
which can significantly disrupt the ecological balance
of freshwater habitats.

The PCA biplot for 2022 reveals important in-
sights into the relationships between nutrient param-
eters and environmental variables. Phosphate shows
a strong positive correlation with COD, as indicated
by the acute angle (<90°) between their vectors. This
pattern is consistent with previous findings (Lumaela
et al., 2013), suggesting that an increase in phosphate
concentrations is typically accompanied by higher
COD values. Since COD reflects the amount of oxy-
gen required to chemically oxidize organic substances
in water, high COD levels imply high organic pollu-
tion (Indradewi er a/., 2015). Ecologically, this rela-
tionship indicates that areas with simultaneous high
phosphate and organic matter concentrations are at
greater risk of experiencing oxygen depletion due to
the decomposition of organic materials. This condition
can result in hypoxic events, which negatively affect
fish populations and other aquatic organisms, disrupt
food webs, and degrade water quality (Ramayanti and
Amna, 2019).

In contrast, both nitrate and phosphate exhib-
it a negative correlation with Total Suspended Solids
(TSS), shown by the obtuse angle (>90°) between their
respective vectors. This indicates that when TSS lev-
els are high, nitrate and phosphate concentrations tend
to be lower, and vice versa. Ecologically, this inverse
relationship suggests that during periods of high sedi-
ment load such as during floods or land runoff nutrient
concentrations in the water may be diluted or adsorbed
onto suspended particles, potentially reducing the im-
mediate risk of eutrophication but increasing sedimen-
tation problems that can smother benthic habitats and
reduce light penetration for aquatic vegetation (Paudel
etal., 2019).

Stations characterized by high phosphate
dominance include Banjaran upstream, Kranji up-
stream, and Kranji downstream. These areas are likely
influenced by runoff from agricultural and domestic
sources, contributing both nutrient loads and organic
matter to the river system. The positive relationship
between phosphate and COD has serious implications
for aquatic health. Elevated COD levels can deplete
dissolved oxygen, which is vital for sustaining aquat-
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ic life. Oxygen depletion may lead to hypoxic condi-
tions, negatively affecting fish populations and aquatic
vegetation (Ramayanti and Amna, 2019).

The nitrate parameter demonstrated the high-
est association with the following stations: Merawu
River, Central Serayu, and Kranji upstream. These sta-
tions are located in areas with dense human activity,
such as plantation areas (Kusnadi ez a/., 2023) and res-
idential settlements, both of which are potential con-
tributors to nutrient enrichment and water pollution
(Rumanti et al., 2014). Based on the vector orientation
in the biplot, nitrate shows a positive correlation with
TSS, as indicated by the acute angle (<90°) between
the two variables. This suggests that elevated nitrate
concentrations tend to coincide with higher levels of
suspended solids. Such a pattern could be explained
by runoff carrying both nitrogen compounds and par-
ticulate matter into the river, particularly during peri-
ods of high flow (Paudel ez a/., 2019).

Meanwhile, phosphate and nitrate show no
clear correlation with DO, temperature, or COD.
Among these variables, temperature exhibits a nega-
tive correlation with both nitrate and phosphate, with
the vectors forming obtuse angles (>90°). This in-
verse relationship may be attributed to the fact that
high temperatures can accelerate the volatilization of
nitrogen compounds, thereby reducing nitrate levels
in the water (Kristiana ef a/., 2020). Furthermore, low-
er temperatures are generally associated with higher
nutrient availability, creating favorable conditions for
aquatic organisms (Yolanda ez al., 2016).

The relationship between nitrate and phos-
phate with pH in 2023 exhibits a positive correlation,
as indicated by the acute angle (<90°) formed between
the variables on the PCA biplot. This correlation sug-
gests that increasing pH levels, particularly in slightly
alkaline conditions, may be associated with elevated
concentrations of nitrate and phosphate in the water.
This phenomenon can be explained by the behavior of
nutrients under different pH conditions. According to
Hindaryani ez al. (2005), alkaline environments tend
to enhance the concentration of nitrate in aquatic sys-
tems. Similarly, (Masduqi, 2004) reported that phos-
phate solubility and availability also increase under
higher pH levels.

The underlying mechanism for nitrate in-
volves the nitrification process, where ammonium
(NH4") is oxidized to nitrate (NOs") through microbial
activity. This process is highly pH-dependent. Putri et
al. (2021) and Mita ef al. (2016) found that pH levels
between 8 and 9 are optimal for nitrification, leading
to higher nitrate concentrations in water. Conversely,
at pH levels below 6, the nitrification process tends to
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cease, resulting in lower nitrate accumulation. These
findings underscore the importance of monitoring pH
as a controlling factor in nutrient dynamics, as fluc-
tuations in pH can significantly influence the biogeo-
chemical cycles of nitrogen and phosphorus in fresh-
water ecosystems.

Ecologically, this positive relationship indi-
cates that alkaline conditions not only facilitate the
accumulation of nitrate and phosphate but may also
promote phytoplankton blooms due to increased nu-
trient availability. Such nutrient enrichment can lead
to eutrophication, potentially triggering oxygen deple-
tion, harming aquatic organisms, and disturbing the
ecological balance of freshwater systems (Ramayanti
and Amna, 2019).

4. Conclusion

This study reveals the spatial-temporal dy-
namics of nitrate and phosphate in the Serayu River
Basin (2021-2023) and their correlations with envi-
ronmental parameters using PCA. Phosphate levels
remained relatively stable over time but were con-
sistently high in midstream and downstream stations,
suggesting anthropogenic inputs such as agricultural
runoff and domestic waste. Nitrate concentrations
were elevated in stations near agricultural and resi-
dential areas, with hotspots like Kranji and Banjaran
linked to dense settlements and poor waste manage-
ment. PCA results showed nitrate positively correlated
with TSS, while phosphate was associated with COD,
and both nutrients with pH, indicating influences from
suspended solids, organic pollutants, and alkaline con-
ditions; temperature was inversely related to nitrate.
While excess nutrients risk eutrophication, areas like
Central Serayu showed low concentrations, implying
better ecological balance. These findings highlight the
importance of targeted nutrient management, regular
monitoring, and community-based watershed gover-
nance to sustain river health.
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