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Abstract—Research on Fine-Grained Visual Classification (FGVC) faces a significant challenge in distinguishing objects with subtle 

differences within intra-class variations and inter-class similarities, which are critical for accurate classification. To address this 

complexity, many advanced methods have been proposed using feature coding, part-based components for modification, and attention-

based efforts to facilitate different classification phases. Vision Transformers (ViT) has recently emerged as a promising competitor 

compared to other complex methods in FGVC applications for image recognition, which are mainly capable of capturing more fine-

grained details and subtle inter-class differences with higher accuracy. While these advances have shown improvements in various 

tasks, existing methods still suffer from inconsistent learning performance across heads and layers in the multi-head self-attention 

(MHSA) mechanisms that result in suboptimal classification task performance. To enhance the performance of ViT, we propose an 

innovative approach that modifies the convolutional kernel.  Our method considerably improves the method's capacity to identify and 

highlight specific crucial characteristics required for classification by using an array of kernels. Experimental results show kernel 

sharpening outperforms other state-of-the-art approaches in improving accuracy across numerous datasets, including Oxford-IIIT Pet, 

CUB-200-2011, and Stanford Dogs. Our findings show that the suggested approach improves the method's overall performance in 

classification tasks by achieving more concentration and precision in recognizing discriminative areas inside pictures. Using kernel 

adjustments to improve Vision Transformers' ability to differentiate somewhat complicated visual features, our strategy offers a strong 

response to the problem of fine-grained categorization. 
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I. INTRODUCTION

Due to the requirement for highly detailed object 

identification, computer vision research on fine-grained 

visual classification (FGVC) is quite interesting. However, 

improving performance in fine-grained visual classification 

remains a significant challenge. FGVC is more complex than 

coarse classification, as shown in Fig. 1 and Fig. 2. The main 

challenge lies in two factors: 1) the limitation in acquiring 
training data and 2) the existence of subtle differences 

between objects in the same class, while objects in different 

classes may have striking similarities. FGVC requires 

recognizing small, specific details of objects in images, which 

are often difficult to distinguish even by human observers due 

to their visual similarity, such as classifying various types of 

birds [1], cats, or dogs [2], [3]. This entails a good knowledge 

of their specific morphological and textural characteristics. 

However, different studies have attempted to construct more 

effective methods to address its complexity. The researchers 

have also adopted deep learning methods to improve accuracy 

in this task [4], [5], [6]. While some approaches based on 

CNN architecture perform reasonably well, they still have 

their shortcomings. The technique leads to a high 

computational cost and noisy outcome, especially as the 

number of networks used increases. There are now three 

primary types of approaches in use: attention-based methods 
[4], [12], feature encoding [10], [11], and part-based [7], [8], 

[9]. Part-based approaches identify discriminative sections of 

objects and categorize them, whereas feature encoding 

methods extract high-level features from images for 

recognition. Meanwhile, attention-based techniques employ 

attention processes to assess how vital specific object 

components are concerning one another.  

Initially developed for word natural language processing 

(NLP), transformers [13] have also been modified for use in 

picture recognition software. Dosovitskiy et al. [14] 
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introduced Vision Transformer (ViT), a substantial 

modification of the transformer design for these tasks, which 

has proven effective in various object identification [15], 

segmentation [16] and classification task. ViT takes segments 

of image patches and transforms them into patch tokens. Like 

character sequences in NLP, these tokens are used in a multi-

head self-attention mechanism during training. The self-

attention mechanism is an appropriate strategy for FGVC as 

it effectively extracts and weights information from the full 

visual map for the classification token. Nonetheless, while 
applying the ViT method for FGVC, two primary problems 

need to be resolved. First, when processing all patch tokens at 

once, the ViT method might not be able to adequately draw 

attention to crucial locations in complicated datasets or 

images with crowded backgrounds. Second, ViT's receptive 

field extension is limited, which may cause the loss of locally 

significant information.  
 

 
Fig. 1  Example of coarse-grained and fine-grained visual classification. 

 

 
Fig. 2  These images illustrate the challenges of FGVC, where birds of the 

same species can differ in color variation and individuality (rows 1 and 2), 

while birds of different species can appear very similar (rows 2 and 3). One 

of the most important aspects of FGVC is the ability to distinguish bird 

species based on fine details in their patterns and colors. 

 

In recent years, FGVC research employing ViT has 

concentrated on optimizing the ViT architecture to use local 

and global information most. To detect essential patch tokens, 

for example, TransFG [17] advocated using attention weights 

in the ViT method and multiplying them before going to the 

final transformer layer. While helpful, this method might not 

work well for complicated datasets or low-resolution images 

when combining particular tokens with the general 

categorization token.  

Furthermore, TransFG uses the attention weights that ViT 

has built to try to remove extraneous inputs from the final 

transformer layer. Still, it does not entirely use the attention 

from all transformer levels. Zhang et al. [18] presented the 

AFTrans technique as a solution to this problem. This 

technique employs a Siamese design to offer a selective 

attention module with the same weight parameters. 

Nevertheless, this approach has limitations in that it takes 

attention away from highly identifiable local places, which 

leads to uncertainty in the training phase over the 
trustworthiness of the attention map. Mutual Attention 

Weight Selection (MAWS) is a token selection strategy that 

Wang et al. [19] suggested being used to choose the most 

informative tokens. FFVT aims to improve feature 

representation by merging information from several locations 

and levels in an image. However, applying fixed-size patches 

introduces noise, which makes the final class token emphasize 

global information instead of local features across layers. 

SIM-Trans [20] presented the Structure Information Learning 

(SIL) module. It leverages the Multilevel Feature Boosting 

(MFB) module with self-attention weights to enable 
contrastive learning and extract robust features. Xu et al. [21] 

introduced the Internal Ensemble Learning Transformer 

(IELT) to overcome the uneven learning performance in 

FGVC. This method selects necessary tokens, considers each 

center of attention a lousy learner, and assists in cross-layer 

feature learning. However, despite improving the model's 

ability to process image details, IELT still faces redundancy 

and noise problems, where irrelevant information reduces the 

model's efficiency. 

In this paper, we propose a modified method by changing 

the convolutional kernel of the Internal Ensemble Learning 
Transformer (IELT). This change is motivated by previous 

research [21] to overcome the redundancy and noise problems 

and improve the method's capacity to identify good and 

essential characteristics for classification. We explored and 

analyzed various kernels to find the one that performs best.  

This paper is structured as follows: Section II discusses 

related works, some literature on the Vision Transformer, and 

the adopted method. Section III presents experimental results 

and extensive analysis. Finally, the conclusion is in Section IV. 

II. MATERIALS AND METHOD 

A. Related Works 

Fine-grained visual classification research focuses on two 

areas: local identification and global identification. Local 

identification selects essential parts of the object and creates 

intermediate-level representations for final classification [22]. 

Depending on how bounding box/part annotations are 

incorporated into the technique, the local identification 

method can be either strong or weak. Intense supervised 

learning requires part annotations [23], [24], while weak 

supervision only uses image labels [25], [26], [27], [28]. More 
recently, studies have concentrated on identifying 

discriminative areas and extracting features for more in-depth 

visual categorization [25], [29]. Nevertheless, an essential 

source of classification mistakes is the disregard for the 

holistic structural information of an item by many current 

approaches, which is crucial for precisely localizing the 

complete object.  
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In contrast, global discrimination methods employ 

specific distance metrics to learn deep feature embeddings for 

an entity. Other examples include bilinear methods [24] for 

learning interaction features between two independent 

Convolutional Neural Networks (CNNs). The process allows 

each global feature extracted from the whole input image to 

interact, helping learn better or more separable 

representations to perform fine-grained classification. Global 

methods prioritize a holistic understanding of objects or 

images and rarely involve precise localization steps. This 
differs from local identification methods, which focus on 

understanding the detailed parts of an object.  

Recent research in FGVC has established Vision 

Transformers (ViT) as a front-runner technique through 

image segmentation and transformer architecture. While ViTs 

work well for various tasks, they fall short in capturing crucial 

local features necessary for in-depth classification. To 

overcome this constraint, various techniques have been 

devised, such as employing attention maps to mitigate 

background noise [17], integrating features from various 

layers using cross-layer filters [21], [19], and strengthening 
feature robustness through fusion techniques that employ 

graph networks and contrastive learning [20].  

B. Vision Transformer Backbone 

The vision transformer (ViT) is a computer vision method 

based on the Transformer method [14], which was initially 

designed for natural language processing (NLP). Patch 

embedding transforms the picture x ∈ ��×�×�  into a 2D 

patch sequence 	
 ∈ ��×�
�⋅��. The number of parts 

separated results in the Eq. (1): 

� = ����  (1) 

where � is the image height, � is the image width and �� is 

the resolution of each image patch. This equation describes 

how the original image 	 is divided into smaller pieces 

(� patches). Each patch has a resolution of (� × �) and some 

channels ��). A sequence of 	
 The output of this operation 

is patches to be used in the following process. Patch 

embedding stores and input information into the transformer 

encoder in ViT using a trainable linear projection. Patch 

embeddings, such as cls tokens, are modified with learnable 

position embeddings to encode positional information. This 
approach is based on the BERT paper, which only utilizes the 

final representation associated with it (the output of the 

transformer �) in the classification layers. The procedure is 

shown in formula Eq. (2): 

�� = ��cls; �!" #; �!�#; … ; �!�#% + #pos (2) 

where # ∈ ��
�⋅��is the patch embedding projection, ' is the 

token dimension, and #pos ∈ ���())×* is the position 

embedding. The transformer encoder receives the patch 

embeddings after this stage. The encoder transformer in ViT 

is made up of a normalizing layer, skipping connections 

between blocks, a multi-layer perceptron (MLP) block, and a 

multi-head self-attention block. The multi-head attention 

function is an essential part of the transformer encoder that 

allows it to store and process large volumes of data 
effectively. This technique allows the transformer encoder to 

recognize and emphasize significant picture characteristics. 

Additionally, the input from the previous stage is normalized 

using a normal distribution through layer normalization. The 

transformer encoder's MLP block consists of two wholly 

linked layers. The output of the +-th layer can be expressed as 

follows: 

�,- = .�/0����1,23)� + 1,23 (3) 

�,456 = .������1,)� + 1, (4) 

Layer normalization (LN), multi-head self-attention 
(MHSA), and multi-layer perceptrons (MLP) are integral to 

the transformer-encoder process. The MLP head is 

responsible for the final categorization stage. This is 

completed at the MLP head layer, which produces the 

transformer encoder's output. 

C. Multi-head Voting 

The multi-head self-attention functions help to learn 

complicated correlations between characters in an input 

sequence efficiently. During multi-head self-attention, each 
attention 'head' learns its representation of the input and 

evaluates the relevance of each token concerning the others in 

the sequence. Each head in the multi-headed self-attention 

generates an attention map. This strategy allows the method 

to obtain more precise and complex information about the 

relationships between the tokens. However, the effectiveness 

of each attention head in identifying discriminative regions 

can exhibit variability. A novel technique introduced by Xu 

[21] is used to address this variability and enhance method 

reliability. Inspired by ensemble learning, notably the bagging 

algorithm [30], the method treats each attention head in a 
multi-head self-attention (MHSA) mechanism as a weak 

learner. The module aims to selectively collect tokens from 

various attention heads to improve the detection of unique 

areas inside each layer. Assume the + − 8ℎ layer of the 

transformer (where + is between 1 and � − 1) has input and 

output tokens �;<=  and �>?@=  respectively, we can refer to the 

collection of attention scores for class tokens as A.  BC ∈ ℝ� 

represents the attention score of the E − 8ℎ head from the 

MHSA-generated attention map.  

To select valuable tokens based on the attention score ACF
, 

a score map GC is generated using Eq. (5): 

GC�H, J) = K1 , HL AC�H, J) HM 8N
 − O OP+QR0,                                        N8ℎRTUHMR  (5) 

where O is a hyperparameter that controls the number of votes 

per head. To produce the total score map  G- ∈ ℝ<V×<W, 

combine the score maps of each head as follows: 

G- = X GC
Y

CZ[
 (6) 

A convolution kernel \ is used to enhance discrimination 

on the total score map G-. Eq. (7) determines the increased 

score map G∗ ∈  ℝ<V×<W: G∗ = G- ∗ _`   (7) 

where ∗ denotes the convolution operator. In this study, we 

evaluated many convolutions kernel _` for the best outcome, 

where c indicates kernel variations, is defined as follows: 
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Fig.  3 Overview of the proposed innovative approach. In this approach, we alter the kernel (convolution matrix) within the multi-head voting module. The image 

depicts a detailed flow starting from patch and position embedding, leading through multiple transformer encoder layers with multi-head voting and dynamic 

selection to a fully connected layer for prediction.  

 

1) Laplacian Kernel: The Laplacian kernel is a kernel 
used in image processing to detect edges and abrupt changes 

in picture intensity. This kernel is sometimes referred to as the 

Laplacian filter. The Laplacian kernel is typically represented 

mathematically as a 3 × 3 or 5 × 5 matrix, as shown in Eq. (8) 

and Eq. (9), respectively. 

_3 = a−1 −1 −1−1 8 −1−1 −1 −1c (8) 

_d =
⎣⎢
⎢⎢
⎡−1 −1 −1 −1 −1−1 −1 −1 −1 −1−1−1−1

−1−1−1
24 −1 −1−1 −1 −1−1 −1 −1⎦⎥

⎥⎥
⎤
 (9) 

2) Modified Laplacian Kernel: This kernel, known as the 

modified Laplacian kernel, serves two functions. It has greater 

core value and negative values surrounding it. Primarily, it 

helps to reduce picture noise, resulting in cleaner and more 

accurate results. Second, this kernel enhances the image's 
edges. The positive value in the center highlights pixels with 

high intensity, while the negative values surrounding it assist 

decrease the impact of extremely sharp edges, resulting in 

smoother and more defined results. The kernel is often 

expressed as a 3 × 3 or 5 × 5 matrix, as shown in Eq. (10) and 

Eq. (11). 

_m =  a 0 −1 0−1 4 −10 −1 0 c (10) 

_n =
⎣⎢
⎢⎢
⎡ 0   0 −1  0   00 −1 2  −1   0−100 −210

16    2 −12  −1   0−1   0   0 ⎦⎥
⎥⎥
⎤
 (11) 

3) Box Linear Kernel: A box linear kernel is a spatial 
domain linear filter in which each pixel in the output image 

receives the average value of its nearby pixels in the input 

image. This approach works as a low-pass filter, producing a 

blurred image. Eq. (12) and Eq. (13) represent 3 × 3 and 5 × 

5 box blurs, respectively. 

_p = 19 a1 1 11 1 11 1 1c (12) 

_r = 125 ⎣⎢
⎢⎢
⎡1 1 1 1 11 1 1 1 1111

111
1 1 11 1 11 1 1⎦⎥

⎥⎥
⎤
 (13) 

4) Sharpening Kernel: Sharpening kernels are used in 

image processing to improve picture sharpness. This kernel 

works by accentuating intensity changes surrounding each 

pixel in the image, making edges and details more visible and 
distinct. Sharpening kernels often have greater values in the 

center, serving as strong weights to highlight pixels with 

considerable intensity shifts. The negative numbers around it 

serve to limit noise effects and guarantee that the sharpening 

result isn't too sharp. Thus, sharpening kernels is an important 

tool in image processing for increasing picture clarity and 
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detail. The kernel is often expressed as a 3 × 3 or 5 × 5 matrix, 

as shown in Eq. (14) and Eq. (15). 

_t = a−1 −1 −1−1 9 −1−1 −1 −1c (14) 

_u =
⎣⎢
⎢⎢
⎡−1 −1 −1 −1 −1−1 −1 −1 −1 −1−1−1−1

−1−1−1
25 −1 −1−1 −1 −1−1 −1 −1⎦⎥

⎥⎥
⎤
 (15) 

D. Cross Layer Refinement 

The Cross-Layer Refinement (CLR) module is introduced 

by Xu [20]. The purpose of the CLR module is to enhance the 
utilization of cross-layer features by suppressing noise, thus 

improving the feature representation for final prediction. In 

this module, the process starts with the formation of input 

features (�v;<), consisting of class tokens from the previous 

layer (�v2"w=xyy), and refined cross-layer feature tokens (�=yz=), 

selected through the MHV and DS modules. The formation of 

the selected token sequence ( �=yz=) is based on their 

discriminative strength. This process is described by the Eq. 

(8): 

�v;< = [�v2"w=xyy ;  �"yz=; ��yz=; … ;  �v2"]yz=  (16) 

Equation 2 describes how the �-th layer’s output (�v>?@) is 

obtained using established transformation processes. The 

cross-layer features are retrieved from the class tokens in this 

output, indicated by �v;< =  �v,">?@. These features include 

valuable information from several layers. To get refined 

features, we process �v>?@ using the MHV module without 

size-altering operations or increased convolutions. Token 

indices are indicated as H}′ ∈ ℝ@, where 8 is the number of 

refined tokens.  

Furthermore, an additional transformer layer, the �� + 1)-

th layer, is used to extract refined features from refined 

tokens. However, to minimize noise effects or quality 

degradation, the refined tokens are not immediately fed into 

the (� − 1)-th layer. Instead, the class tokens from the �� −1)-th layer are used as inputs to the (� + 1)-th layer, rather 

than the class tokens from the � -th layer. Thus, the input to 

the (� + 1)-th layer represented by Eq. (17): 

�v(";<
= [�v2"w=xyy ; �v,;<F�"),:>?@ ; �v,;<F��),:>?@ ; … ;  �v,;<F�@),:>?@ ] (17) 

Here, �v(";<  combines class tokens from the (� − 1)-th layer 

with refined tokens, resulting in cleaner and more informative 

input for the following layer. 

To improve the final prediction results, a logit assistance 

operation is utilized, which takes use of earlier predictions. 

The preceding prediction results, p ∈ ℝw, are computed based 

on cross-layer features as input to the Fully Connected (FC) 

layer, followed by a SoftMax operation, as indicated by Eq. 

(18): 

� = softmax �FC �LN��vw=xyy)�) (18) 

where C denotes the number of categories. To calculate the 

cross-layer logits � ∈ ℝw, previously predicted results p and 

weights � are used in the FC layer, as given in Eq. (19): 

� =  � ⊙ X w;
*

�Z�
 (19) 

The symbol ⊙ represents a Hadamard operation, which is 
defined as element-by-element multiplication. Then, the final 

prediction, denoted by p, is calculated by combining the 

cross-layer logits, represented by y, and the corrected 

features, represented by �v("w=xyy as follows: 

�′ = softmax �FC �LN��vw=xyy)� + �) (20) 

During training, the cross-entropy loss function is used for p and �-, which are modified using the ground-truth labels z 

and balance parameters. The loss function L is defined as 

follows: 

 � =  �CrossEntropy��, �)  +  �1 −  λ)CrossEntropy��-;  �) (21) 

The CLR module's integration of cross-layer and refined 

features helps to minimize noise and improve feature 

representation capabilities for efficient classification. 

E. Dynamic Selection 

Inspired by the boosting algorithm, Xu [20] proposed a 

dynamic selection (DS) module, using each transformer layer 

as a "weak learner". DS module is a crucial part of the Internal 

Ensemble Learning Transformer (IELT). It controls which 

tokens to keep from each transformer layer considering 

importance of that layer for final feature quality. In DS 

module, the contribution of each layer to the final prediction 

is determined by comparing the number of tokens chosen 

from each layer in the CLR module. This module starts by 

calculating the contribution of each layer with comparing the 
number of tokens selected in the Cross-Layer Refinement 

(CLR) module. For the +-th layer, the number of selected 

tokens is recorded in the vector ��+), which represents the 

contribution of each layer to the refined feature.  

T′�+) = ��+)8  (22) 

where T′�+) is the incremental selection ratio for the +-th layer, ��+), is the number of tokens selected from that layer, and 8 is 

the total number of tokens selected across all layers. Layers 

that make a large contribution will have a higher selection 

ratio, while layers that make a small contribution will have a 

lower selection ratio.  
To determine the contribution of each layer, the selection 

ratio is updated based on how much the layer contributes to 

generating useful tokens. The selection ratio for the +-th layer 

(where + ∈  1, 2, 3, … , � − 1) is calculated by updating the 

previous selection ratio T�+) using the latest contribution T′�+) 

with the following Eq. (23): T�+)  ←  �1 −  �)T�+)  +  �T′�+) (23) 

where T�+) is the selection ratio of the +-th layer before it is 

updated, T′�+) is the newly calculated contribution ratio of the 

tokens selected from that layer, � is the moving rate that 
governs how much the selection ratio is updated. The total 
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number of tokens selected from each layer,  �+ ), is then 

calculated using the updated selection ratio:  �+ )  =  M. ¡ �+ ) (24) 

where M is the total number of tokens to be selected from all 

layers. The tokens selected from each layer are based on a 

certain interval. This interval ensures that each layer selects a 

specific number of tokens and that there is no overlap between 

layers. This interval is determined by the initial index  ¢�+ ) 

and the final index £�+), which is calculated by the formula: 

¢�+) = ¤ 0, + = 1
X + − 1H = 1 ¥�H),          + ¦ 1 (25) 

              §�+) = ¢�+) + ¥�+) (26) 

where ¢�+ ) is defined as 0 for + =  1, or as the number of 

tokens from the previous layer for + ¦  1, while §�+) is the sum 

of ¢�+ ) and  �+ ), with +  being in the range of 1 to (� − 1).  

With dynamic selection, the system automatically adjusts 

the number of tokens selected from better-performing layers, 

improving the resulting feature representation while reducing 

the influence of noise or less relevant features. 

III. RESULT AND DISCUSSION 

A. Datasets 

The fine-grained benchmark used in this study consists of 

three datasets: CUB-200-2011, Stanford Dogs, and Oxford-

IIIT Pet. These three datasets refer to datasets commonly used 

in testing fine-grained classification algorithms and datasets 

utilized in the IELT approach [21]. Furthermore, all three 

datasets provide a range of visual challenges that may be used 

to assess the system's robustness, ultimately leading to a more 
precise and reliable visual method. CUB-200-2011, a fine-

grained dataset created exclusively for bird classification, 

includes not only bird labels but also bounding boxes and part 

annotations, which are critical for accurate classification. The 

Stanford Dogs dataset contains images of 120 dog breeds, 

including 12,000 training and 8,580 testing images. The 

Oxford-IIIT Pet dataset comprises images of cats and dogs 

from 37 distinct breeds, with around 200 images per class. 

Table I includes detailed information on these datasets. 

TABLE I 

FINE-GRAINED DATASET 

Dataset Class Training Testing 

CUB-200-2011 [1] 200 5994 5794 
Stanford Dogs [2] 120 12000 8580 

Oxford-IIIT Pet [3] 37 3680 3669 

B. Implementation Details 

The image was resized to 448 × 448 pixels using the ViT-
B-16 backbone network, which was pretrained on the 

ImageNet21K dataset. The image underwent random 

cropping, horizontal flipping, and color adjustments for 

training, while central cropping was used for testing. The 

method was optimized using stochastic gradient descent 

(SGD) with a momentum of 0.9 and cosine annealing for 

learning rate scheduling. The initial learning rate was set to 

0.002 for the Stanford Dogs dataset and 0.02 for the other 

three datasets. The training method spanned 50 epochs with a 

batch size of 8 for all datasets. Implementation was carried 

out using PyTorch on an NVIDIA DGX100 server, with top-

1 accuracy as the evaluation metric for all experiments. The 
experiment conditions for the IELT approach remain the same 

as in the original paper [21], to observe any changes in the 

outcomes that arise from testing with various kernel 

modifications. 

The MHV module sets 24 as the maximum number of votes 

for each head. The loss proportion is set to 0.4, and the number 

of upgraded tokens is 24 in the CLR module. The DS module's 

selection ratio per layer is set initially at 1/�� − 1) and the 

total number of selections is set at 126. Because of the domain 

gap between the training dataset and the more specialized 

dataset, the DS module was not employed during the first 10 
epochs, which made low-level characteristics more helpful for 

classification.  

 

 

Fig. 4  Visualization results from our method on each dataset. The first column shows the input image. The second and third columns display the attention maps 

generated by [20] and the modified kernel we proposed, respectively. The fourth and fifth columns show the tokens selected by [20] and the modified kernel we 

proposed, respectively. The sixth column indicates the locations where the MHV module selects tokens in the image.  
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C. Comparison of the Type of Enhanced Convolution Kernel 

This study conducted experiments using various 

convolution kernels in the MHV module. Table II shows the 

experimental results using several kernels tested on the 

Stanford Dogs dataset.  The experimental results show that 

using convolution kernels with different types and sizes also 

gives different classification accuracy results. For instance, 
the 3 × 3 Gaussian kernel gives an accuracy of 91.818%, 

while the 5 × 5 shows a slightly lower accuracy of 91.770%. 

This suggests that using a Gaussian kernel with a smaller size 

is more effective in improving classification accuracy on this 

dataset.  

Based on Table II, it can also be seen that some kernel 

types, such as Laplacian, Sharpening, and Modified 

Laplacian, managed to achieve higher accuracy than other 

kernels. Compared to the Gaussian kernel, using the 

sharpening kernel here resulted in superior accuracy by 

0.213% and 0.165%, reaching 92.031% for the 3 × 3 size and 
91.935% for the 5 × 5 size. This shows that the sharpening 

kernel's ability to improve image clarity and contrast 

significantly contributed to the improved performance and 

made it easier for the method to distinguish features important 

for classification. 

TABLE II 

COMPARISON RESULT ON THE TYPE OF ENHANCED CONVOLUTION KERNEL 

ON STANFORD DOGS DATASET 

Kernel Type Kernel Size Accuracy (%) 

Gauss-like [21] 
3 × 3 91.818 
5 × 5 91.770 

Laplacian 
3 × 3 91.958 
5 × 5 91.963 

Box Linear 
3 × 3 91.946 

5 × 5 91.923 

Sharpening 
3 × 3 92.031 
5 × 5 91.935 

Modified Laplacian 
3 × 3 91.923 
5 × 5 91.872 

 

Thus, methods trained using kernel sharpening have 

achieved higher classification accuracy, as they can better 

spot important patterns or object attributes in the picture. The 

improvement in accuracy achieved by kernel sharpening 

corroborates the effectiveness of this approach, reinforcing 

the method's ability to deal with spatially complex image 
perturbations and reducing the effect of noise encountered 

frequently in images. Therefore, the MHV module is more 

effective when kernel sharpening is used as its convolution 

kernel. 

D. Comparison with the State-Of-The-Art  

In this section, we use the IELT method with a 3×3 

sharpening kernel based on the accuracy comparison results 

in Table II. 

TABLE III 

COMPARISON RESULT ON CUB-200-2011 DATASET 

Method Backbone Accuracy (%) 

ResNet-50 [31] ResNet-50 84.5 
DCL [32] ResNet-50 87.8 
GaRD [33] ResNet-50 89.6 
StackedLSTM [27] GoogleNet 90.4 

CAL [4] ResNet-101 90.6 

Method Backbone Accuracy (%) 

ViT [14] ViT-B_16 91.0 
AFTrans [18] ViT-B_16 91.5 
FFVT [19] ViT-B_16 91.6 
TransFG [17] ViT-B_16 91.7 
SIM-Trans [20] ViT-B_16 91.8 
HAVT [34] ViT-B_16 91.8 
MP-FGVC [35] ViT-B_16 91.8 
IELT [21] ViT-B_16 91.8 

KR-MHV (ours) ViT-B_16 91.9 

TABLE IV 

COMPARISON RESULT ON STANFORD DOGS DATASET 

Method Backbone Accuracy (%) 

ResNet-50 [31] ResNet-50 82.7 
FDL [6] DenseNet-161 84.9 
API-Net [36] ResNet-101 90.3 

ViT [14] ViT-B_16 90.2 
TransFG [17] ViT-B_16 90.6 
HAVT [34] ViT-B_16 91.0 
MP-FGVC [35] ViT-B_16 91.0 
FFVT [19] ViT-B_16 91.5 
IELT [21] ViT-B_16 91.8 
KR-MHV (ours) ViT-B_16 92.0 

TABLE V 

COMPARISON RESULT ON OXFORD-IIIT PET DATASET 

Method Backbone Accuracy (%)  
SEER [37] RG-10B 85.3 
NAC [38] VGG-19 93.8 
OPAM [39] VGG-19 93.8 
VIT [14] ViT-B_16 93.8 
CvT [40] ViT-B_16 94.7 

TNT-B [41] ViT-B_16 95.0 
Bamboo [42] ViT-B_16 95.1 
IELT [21] ViT-B_16 95.2 
KR-MHV (ours) ViT-B_16 95.4 

1) Result on CUB-200-2011: The results of comparing 

the classification accuracy of the different techniques applied 

to the CUB-200-2011 dataset are shown in Table III. The data 

clearly shows that the suggested approach outperforms 

existing state-of-the-art (SOTA) techniques in performance. 

With kernel sharpening, the proposed approach obtains the 

most remarkable accuracy of 91.9%. This is a noteworthy 
0.9% improvement over the Vision Transformer (VIT) 

approach. Compared to TransFG, FFVT, and AFTrans, our 

method's accuracy improvement is 0.2%, 0.3%, and 0.4%, 

respectively. Furthermore, it is 0.1% higher than the HAVT, 

MP-FGVC, and SIM-Trans approaches. This increase is 

comparable to other sophisticated methods, even though the 

accuracy gains over the approach given in reference [20] is 

just 0.1%. Improvements were achieved only by adjusting the 

convolution kernel (the whole method architecture remained 

unchanged). This implies that little improvements, like fine-

tuning the convolutional kernels, might significantly 
influence the method's performance without requiring 

significant structural adjustments. On the CUB-200-2011 

dataset, the kernel sharpening method helps improve 

classification accuracy. Kernel sharpening enables the 

technique to produce more accurate predictions by clarifying 

and refining the features created by convolution processes. 

This indicates that on the CUB-200-2011 dataset, applying 

kernel sharpening methods improves classification accuracy 

and enhances method performance. 
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2) Result on Stanford Dogs: The KR-MHV method 

outperformed the reference [21] method by 0.2%, achieving 

the most remarkable accuracy of 92.0% on the Stanford Dogs 

dataset. The KR-MHV method exhibits significant 

performance increases over other top methods, indicating its 

supremacy in fine-grained image categorization. In particular, 

the KR-MHV method shows a 0.5% increase in accuracy 

compared to the FFVT method, which had the most fantastic 

accuracy at 91.5%. In the same way, the KR-MHV method 

exhibits a noteworthy 1.4% accuracy gain over the TransFG 
method, which attained a 90.6% accuracy. Additionally, KR-

MHV performs 1.7% better than the API-Net method and 

1.0% better than the HAVT and MP-FGVC methods, each 

with an accuracy of 91.0%. These results show the KR-MHV 

method's improved performance in fine-grained image 

classification and highlight its cutting-edge methods, 

including kernel sharpening, which support its increased 

accuracy. 

3) Results on Oxford-IIIT: A comprehensive analysis of 

the classification accuracy results obtained from applying 

different methods on the Oxford-IIIT Pet dataset is presented 
in Table V. It is evident from the results that other state-of-

the-art (SOTA) methods were not as successful on this dataset 

as the KR-MHV method, which achieved the highest 

accuracy of 95.4%. This remarkable performance underscores 

the effectiveness of the KR-MHV method in improving 

classification performance on the Oxford-IIIT Pet dataset. 

This notable achievement underscores the efficacy of the KR-

MHV approach in enhancing classification performance. The 

suggested approach shows a 0.2% improvement over KR-

MHV compared to the IELT method, which obtained 

accuracy somewhat lower than KR-MHV's. Even though this 
difference might not seem like much, it matters in the context 

of high-performance methods since little improvements can 

have a significant impact. Our method's accuracy 

improvement over Bamboo, TNT-B, and SEER is 0.3%, 

0.4%, and 10.1%, respectively. Moreover, the KR-MHV 

method achieves an astounding 1.5% greater accuracy, 

demonstrating a considerable performance advantage over the 

NAC, OPAM, and ViT methods. This difference highlights 

the KR-MHV approach's efficacy and kernel sharpening 

methods, which help explain why it performed so well in the 

classification challenge. 

E. Visualization 

The visualization outcomes of many distinct methods are 

shown in Fig. 4, which has five primary columns. The original 

image that served as the method's input is shown in the first 

column. The attention map produced by the reference 

approach [21] is displayed in the second column. It highlights 

the regions of the image that the baseline method deemed 

significant for prediction purposes. The attention map 

produced by the modified approach is shown in the third 
column, with more focus on discriminative regions. The 

voting selection results from the MHV-IELT [21] and our 

KR-MHV modules are displayed in the fourth and fifth 

columns. These pictures show variations in the tokens chosen: 

the KR-MHV approach chose fewer tokens that are more 

concentrated on significant features.  

The KR-MHV selection results on the image are shown in 

the fifth column. These three results can be compared to 

identify many significant features. The attention map 

produced by the approach from [21] is not as concentrated, 

which implies that the baseline method could have considered 

less critical information or noise in the image. On the other 

hand, the attention map generated by the KR-MHV method is 

more defined and concentrated. This suggests that KR-MHV 

is more successful in focusing on regions crucial for 

categorization. With more accurate and concentrated attention 

mappings on discriminative regions, our suggested KR-MHV 

method outperforms the reference method. More relevant 
tokens can be chosen by the KR-MHV module for 

classification, improving prediction accuracy and 

dependability. Overall, the KR-MHV approach (our 

approach) results show a more concentrated attention map on 

significant regions within the image when using our proposed 

method, which is based on the reference method [21]. 

IV. CONCLUSION 

This study shows that by changing the convolution kernel 

on the multi-head voting module, the Internal Ensemble 

Learning Transformer (IELT) method can improve the 

performance of the Fine-Grained Visual Classification 

(FGVC) task. In particular, kernel sharpening can improve 

classification accuracy for the FGVC task. In some data sets, 

the proposed KR-MHV method outperforms other innovative 

methods while obtaining the highest accuracy. However, 

compared to the original method, the accuracy improvement 

is small due to only the modification of the convolution 

kernel.  The visualization results demonstrate how KR-MHV 

can improve prediction reliability, minimize noise, and focus 
attention on critical discriminative regions. This approach 

improves accuracy and strengthens the method's ability to 

handle complex image variations. To evaluate the generality 

and transferability of the proposed approach, we will conduct 

more tests on various datasets and explore the integration of 

advanced combining strategies with other techniques in 

FGVC in future research. To enhance training methods and 

overall interpretability, a better knowledge of the method's 

mechanism and internal representation will be obtained 

through the extension of the visualization analysis.   
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