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Abstract—Research on Fine-Grained Visual Classification (FGVC) faces a significant challenge in distinguishing objects with subtle
differences within intra-class variations and inter-class similarities, which are critical for accurate classification. To address this
complexity, many advanced methods have been proposed using feature coding, part-based components for modification, and attention-
based efforts to facilitate different classification phases. Vision Transformers (ViT) has recently emerged as a promising competitor
compared to other complex methods in FGVC applications for image recognition, which are mainly capable of capturing more fine-
grained details and subtle inter-class differences with higher accuracy. While these advances have shown improvements in various
tasks, existing methods still suffer from inconsistent learning performance across heads and layers in the multi-head self-attention
(MHSA) mechanisms that result in suboptimal classification task performance. To enhance the performance of ViT, we propose an
innovative approach that modifies the convolutional kernel. Our method considerably improves the method's capacity to identify and
highlight specific crucial characteristics required for classification by using an array of kernels. Experimental results show kernel
sharpening outperforms other state-of-the-art approaches in improving accuracy across numerous datasets, including Oxford-IIIT Pet,
CUB-200-2011, and Stanford Dogs. Our findings show that the suggested approach improves the method's overall performance in
classification tasks by achieving more concentration and precision in recognizing discriminative areas inside pictures. Using kernel
adjustments to improve Vision Transformers' ability to differentiate somewhat complicated visual features, our strategy offers a strong
response to the problem of fine-grained categorization.
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effective methods to address its complexity. The researchers
have also adopted deep learning methods to improve accuracy
Due to the requirement for highly detailed object in this task [4], [5], [6]. While some approaches based on

I. INTRODUCTION

identification, computer vision research on fine-grained CNN architecture perform reasonably well, they still have
visual classification (FGVC) is quite interesting. However, their shortcomings. The technique leads to a high
improving performance in fine-grained visual classification computational cost and noisy outcome, especially as the
remains a significant challenge. FGVC is more complex than number of networks used increases. There are now three
coarse classification, as shown in Fig. 1 and Fig. 2. The main primary types of approaches in use: attention-based methods
challenge lies in two factors: 1) the limitation in acquiring [4], [12], feature encoding [10], [11], and part-based [7], [8],
training data and 2) the existence of subtle differences [9]. Part-based approaches identify discriminative sections of
between objects in the same class, while objects in different objects and categorize them, whereas feature encoding
classes may have striking similarities. FGVC requires methods extract high-level features from images for
recognizing small, specific details of objects in images, which recognition. Meanwhile, attention-based techniques employ
are often difficult to distinguish even by human observers due attention processes to assess how vital specific object
to their visual similarity, such as classifying various types of components are concerning one another.

birds [1], cats, or dogs [2], [3]. This entails a good knowledge Initially developed for word natural language processing
of their specific morphological and textural characteristics. (NLP), transformers [13] have also been modified for use in
However, different studies have attempted to construct more picture recognition software. Dosovitskiy et al. [14]
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introduced Vision Transformer (ViT), a substantial
modification of the transformer design for these tasks, which
has proven effective in various object identification [15],
segmentation [16] and classification task. ViT takes segments
of image patches and transforms them into patch tokens. Like
character sequences in NLP, these tokens are used in a multi-
head self-attention mechanism during training. The self-
attention mechanism is an appropriate strategy for FGVC as
it effectively extracts and weights information from the full
visual map for the classification token. Nonetheless, while
applying the ViT method for FGVC, two primary problems
need to be resolved. First, when processing all patch tokens at
once, the ViT method might not be able to adequately draw
attention to crucial locations in complicated datasets or
images with crowded backgrounds. Second, ViT's receptive
field extension is limited, which may cause the loss of locally
significant information.

Magnolia Warbler

Yellow-Bellied
Titmouse

— >

Fig. 2 These images illustrate the challenges of FGVC, where birds of the
same species can differ in color variation and individuality (rows 1 and 2),
while birds of different species can appear very similar (rows 2 and 3). One
of the most important aspects of FGVC is the ability to distinguish bird
species based on fine details in their patterns and colors.

In recent years, FGVC research employing ViT has
concentrated on optimizing the ViT architecture to use local
and global information most. To detect essential patch tokens,
for example, TransFG [17] advocated using attention weights
in the ViT method and multiplying them before going to the
final transformer layer. While helpful, this method might not
work well for complicated datasets or low-resolution images
when combining particular tokens with the general
categorization token.
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Furthermore, TransFG uses the attention weights that ViT
has built to try to remove extraneous inputs from the final
transformer layer. Still, it does not entirely use the attention
from all transformer levels. Zhang et al. [18] presented the
AFTrans technique as a solution to this problem. This
technique employs a Siamese design to offer a selective
attention module with the same weight parameters.
Nevertheless, this approach has limitations in that it takes
attention away from highly identifiable local places, which
leads to wuncertainty in the training phase over the
trustworthiness of the attention map. Mutual Attention
Weight Selection (MAWY) is a token selection strategy that
Wang et al. [19] suggested being used to choose the most
informative tokens. FFVT aims to improve feature
representation by merging information from several locations
and levels in an image. However, applying fixed-size patches
introduces noise, which makes the final class token emphasize
global information instead of local features across layers.
SIM-Trans [20] presented the Structure Information Learning
(SIL) module. It leverages the Multilevel Feature Boosting
(MFB) module with self-attention weights to enable
contrastive learning and extract robust features. Xu et al. [21]
introduced the Internal Ensemble Learning Transformer
(IELT) to overcome the uneven learning performance in
FGVC. This method selects necessary tokens, considers each
center of attention a lousy learner, and assists in cross-layer
feature learning. However, despite improving the model's
ability to process image details, IELT still faces redundancy
and noise problems, where irrelevant information reduces the
model's efficiency.

In this paper, we propose a modified method by changing
the convolutional kernel of the Internal Ensemble Learning
Transformer (IELT). This change is motivated by previous
research [21] to overcome the redundancy and noise problems
and improve the method's capacity to identify good and
essential characteristics for classification. We explored and
analyzed various kernels to find the one that performs best.

This paper is structured as follows: Section II discusses
related works, some literature on the Vision Transformer, and
the adopted method. Section III presents experimental results
and extensive analysis. Finally, the conclusion is in Section IV.

II. MATERIALS AND METHOD

A. Related Works

Fine-grained visual classification research focuses on two
areas: local identification and global identification. Local
identification selects essential parts of the object and creates
intermediate-level representations for final classification [22].
Depending on how bounding box/part annotations are
incorporated into the technique, the local identification
method can be either strong or weak. Intense supervised
learning requires part annotations [23], [24], while weak
supervision only uses image labels [25], [26], [27], [28]. More
recently, studies have concentrated on identifying
discriminative areas and extracting features for more in-depth
visual categorization [25], [29]. Nevertheless, an essential
source of classification mistakes is the disregard for the
holistic structural information of an item by many current
approaches, which is crucial for precisely localizing the
complete object.



In contrast, global discrimination methods employ
specific distance metrics to learn deep feature embeddings for
an entity. Other examples include bilinear methods [24] for
learning interaction features between two independent
Convolutional Neural Networks (CNNs). The process allows
each global feature extracted from the whole input image to
interact, helping learn better or more separable
representations to perform fine-grained classification. Global
methods prioritize a holistic understanding of objects or
images and rarely involve precise localization steps. This
differs from local identification methods, which focus on
understanding the detailed parts of an object.

Recent research in FGVC has established Vision
Transformers (ViT) as a front-runner technique through
image segmentation and transformer architecture. While ViTs
work well for various tasks, they fall short in capturing crucial
local features necessary for in-depth classification. To
overcome this constraint, various techniques have been
devised, such as employing attention maps to mitigate
background noise [17], integrating features from various
layers using cross-layer filters [21], [19], and strengthening
feature robustness through fusion techniques that employ
graph networks and contrastive learning [20].

B. Vision Transformer Backbone

The vision transformer (ViT) is a computer vision method
based on the Transformer method [14], which was initially
designed for natural language processing (NLP). Patch
embedding transforms the picture x € R¥XW*C into a 2D

patch sequence xp € RV<(P*C). The number of parts
separated results in the Eq. (1):

HW
=77 (1)

where H is the image height, W is the image width and P? is
the resolution of each image patch. This equation describes
how the original image x is divided into smaller pieces
(N patches). Each patch has a resolution of (P X P) and some
channels (C). A sequence of xp The output of this operation
is patches to be used in the following process. Patch
embedding stores and input information into the transformer
encoder in ViT using a trainable linear projection. Patch
embeddings, such as cls tokens, are modified with learnable
position embeddings to encode positional information. This
approach is based on the BERT paper, which only utilizes the
final representation associated with it (the output of the
transformer L) in the classification layers. The procedure is
shown in formula Eq. (2):

Zy =[x XLE; X2E; . ; xYE| + E

2)

where E € R(P*)is the patch embedding projection, D is the
token dimension, and E,,, € R¥*D*P js the position
embedding. The transformer encoder receives the patch
embeddings after this stage. The encoder transformer in ViT
is made up of a normalizing layer, skipping connections
between blocks, a multi-layer perceptron (MLP) block, and a
multi-head self-attention block. The multi-head attention
function is an essential part of the transformer encoder that
allows it to store and process large volumes of data
effectively. This technique allows the transformer encoder to
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recognize and emphasize significant picture characteristics.
Additionally, the input from the previous stage is normalized
using a normal distribution through layer normalization. The
transformer encoder's MLP block consists of two wholly
linked layers. The output of the [-th layer can be expressed as
follows:

®)
Zpt = MLP(LN(z)) + 2, (4)

Layer normalization (LN), multi-head self-attention
(MHSA), and multi-layer perceptrons (MLP) are integral to
the transformer-encoder process. The MLP head is
responsible for the final categorization stage. This is
completed at the MLP head layer, which produces the
transformer encoder's output.

Z; = MHSA(LN(z\_1)) + 7,4

C. Multi-head Voting

The multi-head self-attention functions help to learn
complicated correlations between characters in an input
sequence efficiently. During multi-head self-attention, each
attention 'head' learns its representation of the input and
evaluates the relevance of each token concerning the others in
the sequence. Each head in the multi-headed self-attention
generates an attention map. This strategy allows the method
to obtain more precise and complex information about the
relationships between the tokens. However, the effectiveness
of each attention head in identifying discriminative regions
can exhibit variability. A novel technique introduced by Xu
[21] is used to address this variability and enhance method
reliability. Inspired by ensemble learning, notably the bagging
algorithm [30], the method treats each attention head in a
multi-head self-attention (MHSA) mechanism as a weak
learner. The module aims to selectively collect tokens from
various attention heads to improve the detection of unique
areas inside each layer. Assume the ! —th layer of the
transformer (where [ is between 1 and L — 1) has input and
output tokens Z!, and Z!,, respectively, we can refer to the
collection of attention scores for class tokens as G. G* € R
represents the attention score of the k —th head from the
MHSA-generated attention map.

To select valuable tokens based on the attention score G* ',
a score map N¥ is generated using Eq. (5):

Nk(i,j) = {10 (5)

where v is a hyperparameter that controls the number of votes
per head. To produce the total score map N' € R"1*"z,
combine the score maps of each head as follows:

K
N' = Z N*
k=0

A convolution kernel K is used to enhance discrimination
on the total score map N’. Eq. (7) determines the increased
score map N* € R™1*"z;

N*=N'xK, (7
where * denotes the convolution operator. In this study, we

evaluated many convolutions kernel K. for the best outcome,
where ¢ indicates kernel variations, is defined as follows:

if G*(i,)) is top — v value
otherwise

(6)
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Fig. 3 Overview of the proposed innovative approach. In this approach, we alter the kernel (convolution matrix) within the multi-head voting module. The image
depicts a detailed flow starting from patch and position embedding, leading through multiple transformer encoder layers with multi-head voting and dynamic

selection to a fully connected layer for prediction.

1) Laplacian Kernel: The Laplacian kernel is a kernel
used in image processing to detect edges and abrupt changes
in picture intensity. This kernel is sometimes referred to as the
Laplacian filter. The Laplacian kernel is typically represented
mathematically asa 3 x 3 or 5 x 5 matrix, as shown in Eq. (8)
and Eq. (9), respectively.

-1 -1 -1
K1=[—1 8 —1] (8)
-1 -1 -1
-1 -1 -1 -1 -1
-1 -1 -1 -1 -1
K;=|-1 -1 24 -1 -1 9)
-1 -1 -1 -1 -1
-1 -1 -1 -1 -1

2) Modified Laplacian Kernel: This kernel, known as the
modified Laplacian kernel, serves two functions. It has greater
core value and negative values surrounding it. Primarily, it
helps to reduce picture noise, resulting in cleaner and more
accurate results. Second, this kernel enhances the image's
edges. The positive value in the center highlights pixels with
high intensity, while the negative values surrounding it assist
decrease the impact of extremely sharp edges, resulting in
smoother and more defined results. The kernel is often
expressed as a 3 x 3 or 5 x 5 matrix, as shown in Eq. (10) and

Eq. (11).
0 -1 0
K;=|[-1 4 -1

o -1 0

(10)

0 0 -1 0 0
0 -1 2 -1 0

K,=|-1 2 16 2 -1 (11)
0 -1 2 -1 0
0 0 -1 0 0

3) Box Linear Kernel: A box linear kernel is a spatial
domain linear filter in which each pixel in the output image
receives the average value of its nearby pixels in the input
image. This approach works as a low-pass filter, producing a
blurred image. Eq. (12) and Eq. (13) represent 3 x 3 and 5 X
5 box blurs, respectively.

111
Ks=-[1 1 1

(12)
M 11
11111
1111111
Ke=>1 1111 (13)
11111
11111

4) Sharpening Kernel: Sharpening kernels are used in
image processing to improve picture sharpness. This kernel
works by accentuating intensity changes surrounding each
pixel in the image, making edges and details more visible and
distinct. Sharpening kernels often have greater values in the
center, serving as strong weights to highlight pixels with
considerable intensity shifts. The negative numbers around it
serve to limit noise effects and guarantee that the sharpening
result isn't too sharp. Thus, sharpening kernels is an important
tool in image processing for increasing picture clarity and




detail. The kernel is often expressed asa 3 x 3 or 5 x 5 matrix,
as shown in Eq. (14) and Eq. (15).

-1 -1 -1

K7=[—1 9 —1] (14)
-1 -1 -1

-1 -1 -1 -1 -1
-1 -1 -1 -1 -1

Kg=|-1 -1 25 -1 -1 (15)
-1 -1 -1 -1 -1
-1 -1 -1 -1 -1

D. Cross Layer Refinement

The Cross-Layer Refinement (CLR) module is introduced
by Xu [20]. The purpose of the CLR module is to enhance the
utilization of cross-layer features by suppressing noise, thus
improving the feature representation for final prediction. In
this module, the process starts with the formation of input
features (Zi), consisting of class tokens from the previous
layer (Z§'%), and refined cross-layer feature tokens (Z5¢!),
selected through the MHV and DS modules. The formation of
the selected token sequence ( Z¢!) is based on their
discriminative strength. This process is described by the Eq.

(8):

zZir = (2895 237 257 . 23 (16)

Equation 2 describes how the L-th layer’s output (Z9%) is
obtained using established transformation processes. The
cross-layer features are retrieved from the class tokens in this
output, indicated by Z* = Z{4'. These features include
valuable information from several layers. To get refined
features, we process Z9%t using the MHV module without
size-altering operations or increased convolutions. Token
indices are indicated as in’ € R?, where t is the number of
refined tokens.

Furthermore, an additional transformer layer, the (L + 1)-
th layer, is used to extract refined features from refined
tokens. However, to minimize noise effects or quality
degradation, the refined tokens are not immediately fed into
the (L — 1)-th layer. Instead, the class tokens from the (L —
1)-th layer are used as inputs to the (L + 1)-th layer, rather
than the class tokens from the L -th layer. Thus, the input to
the (L + 1)-th layer represented by Eq. (17):

in
ZL+1

— class . yout .
= [Zi%5°; ZL,in'(l),:’

Zout (17)

.. ut
Lin'(2),:’ = Z ]

z,in' (®),:
Here, Zi ; combines class tokens from the (L — 1)-th layer
with refined tokens, resulting in cleaner and more informative
input for the following layer.

To improve the final prediction results, a logit assistance
operation is utilized, which takes use of earlier predictions.
The preceding prediction results, p € R, are computed based
on cross-layer features as input to the Fully Connected (FC)
layer, followed by a SoftMax operation, as indicated by Eq.
(18):

p = softmax (FC (LN(Z{“ZSS))) (18)
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where C denotes the number of categories. To calculate the
cross-layer logits y € R€, previously predicted results p and
weights W are used in the FC layer, as given in Eq. (19):

D
y=pO ZW"
i=0

The symbol © represents a Hadamard operation, which is
defined as element-by-element multiplication. Then, the final
prediction, denoted by p, is calculated by combining the
cross-layer logits, represented by y, and the corrected

features, represented by Z§'%* as follows:

(19)

p’ = softmax (FC(LN(Z{**)) + y) (20)

During training, the cross-entropy loss function is used for
p and p’, which are modified using the ground-truth labels z
and balance parameters. The loss function L is defined as
follows:

L = ACrossEntropy(p,z) + (1 — A)CrossEntropy(p’; z) (21)
The CLR module's integration of cross-layer and refined

features helps to minimize noise and improve feature

representation capabilities for efficient classification.

E. Dynamic Selection

Inspired by the boosting algorithm, Xu [20] proposed a
dynamic selection (DS) module, using each transformer layer
as a "weak learner". DS module is a crucial part of the Internal
Ensemble Learning Transformer (IELT). It controls which
tokens to keep from each transformer layer considering
importance of that layer for final feature quality. In DS
module, the contribution of each layer to the final prediction
is determined by comparing the number of tokens chosen
from each layer in the CLR module. This module starts by
calculating the contribution of each layer with comparing the
number of tokens selected in the Cross-Layer Refinement
(CLR) module. For the I-th layer, the number of selected
tokens is recorded in the vector g(l), which represents the
contribution of each layer to the refined feature.

l

where r'(1) is the incremental selection ratio for the [-th layer,
q (1), is the number of tokens selected from that layer, and ¢ is
the total number of tokens selected across all layers. Layers
that make a large contribution will have a higher selection
ratio, while layers that make a small contribution will have a
lower selection ratio.

To determine the contribution of each layer, the selection
ratio is updated based on how much the layer contributes to
generating useful tokens. The selection ratio for the [-th layer
(where I € 1,2,3,...,L —1) is calculated by updating the
previous selection ratio (1) using the latest contribution ' (1)
with the following Eq. (23):

r() « 1 - 0)r) + 6r'Q)) (23)
where 7 (1) is the selection ratio of the [-th layer before it is
updated, 1’ (1) is the newly calculated contribution ratio of the

tokens selected from that layer, 6 is the moving rate that
governs how much the selection ratio is updated. The total

(22)



number of tokens selected from each layer, m(l), is then
calculated using the updated selection ratio:

m(l) = s.r(l) (24)

where s is the total number of tokens to be selected from all
layers. The tokens selected from each layer are based on a
certain interval. This interval ensures that each layer selects a
specific number of tokens and that there is no overlap between
layers. This interval is determined by the initial index a(l)
and the final index b(l), which is calculated by the formula:

0, =1
a() = {Z -1 @ I>1 (25)
P = 1m 1), >
b()) = a() + m() (26)

where a(l) is defined as 0 for [ = 1, or as the number of
tokens from the previous layer for I > 1, while b(l) is the sum
ofa(l)and m(l), with [ being in the range of 1 to (L — 1).

With dynamic selection, the system automatically adjusts
the number of tokens selected from better-performing layers,
improving the resulting feature representation while reducing
the influence of noise or less relevant features.

III. RESULT AND DISCUSSION

A. Datasets

The fine-grained benchmark used in this study consists of
three datasets: CUB-200-2011, Stanford Dogs, and Oxford-
IIIT Pet. These three datasets refer to datasets commonly used
in testing fine-grained classification algorithms and datasets
utilized in the IELT approach [21]. Furthermore, all three
datasets provide a range of visual challenges that may be used
to assess the system's robustness, ultimately leading to a more
precise and reliable visual method. CUB-200-2011, a fine-
grained dataset created exclusively for bird classification,
includes not only bird labels but also bounding boxes and part
annotations, which are critical for accurate classification. The
Stanford Dogs dataset contains images of 120 dog breeds,
including 12,000 training and 8,580 testing images. The

Input

IELT

CUB-200-2011
P

- N
v -
Stanford Dogs

Oxford-IIIT Pet

Ours

Oxford-IIIT Pet dataset comprises images of cats and dogs
from 37 distinct breeds, with around 200 images per class.
Table I includes detailed information on these datasets.

TABLEI
FINE-GRAINED DATASET
Dataset Class Training Testing
CUB-200-2011 [1] 200 5994 5794
Stanford Dogs [2] 120 12000 8580
Oxford-IIIT Pet [3] 37 3680 3669

B. Implementation Details

The image was resized to 448 x 448 pixels using the ViT-
B-16 backbone network, which was pretrained on the
ImageNet21K dataset. The image underwent random
cropping, horizontal flipping, and color adjustments for
training, while central cropping was used for testing. The
method was optimized using stochastic gradient descent
(SGD) with a momentum of 0.9 and cosine annealing for
learning rate scheduling. The initial learning rate was set to
0.002 for the Stanford Dogs dataset and 0.02 for the other
three datasets. The training method spanned 50 epochs with a
batch size of 8 for all datasets. Implementation was carried
out using PyTorch on an NVIDIA DGX100 server, with top-
1 accuracy as the evaluation metric for all experiments. The
experiment conditions for the IELT approach remain the same
as in the original paper [21], to observe any changes in the
outcomes that arise from testing with various kernel
modifications.

The MHV module sets 24 as the maximum number of votes
for each head. The loss proportion is set to 0.4, and the number
of upgraded tokens is 24 in the CLR module. The DS module's
selection ratio per layer is set initially at 1/(L — 1) and the
total number of selections is set at 126. Because of the domain
gap between the training dataset and the more specialized
dataset, the DS module was not employed during the first 10
epochs, which made low-level characteristics more helpful for
classification.

The Selected
Token (IELT)

The Selected
Token (Ours)

The Selected
Token on Image
(Ours)

Fig. 4 Visualization results from our method on each dataset. The first column shows the input image. The second and third columns display the attention maps
generated by [20] and the modified kernel we proposed, respectively. The fourth and fifth columns show the tokens selected by [20] and the modified kernel we
proposed, respectively. The sixth column indicates the locations where the MHV module selects tokens in the image.
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C. Comparison of the Type of Enhanced Convolution Kernel

This study conducted experiments using various
convolution kernels in the MHV module. Table II shows the
experimental results using several kernels tested on the
Stanford Dogs dataset. The experimental results show that
using convolution kernels with different types and sizes also
gives different classification accuracy results. For instance,
the 3 x 3 Gaussian kernel gives an accuracy of 91.818%,
while the 5 x 5 shows a slightly lower accuracy of 91.770%.
This suggests that using a Gaussian kernel with a smaller size
is more effective in improving classification accuracy on this
dataset.

Based on Table II, it can also be seen that some kernel
types, such as Laplacian, Sharpening, and Modified
Laplacian, managed to achieve higher accuracy than other
kernels. Compared to the Gaussian kernel, using the
sharpening kernel here resulted in superior accuracy by
0.213% and 0.165%, reaching 92.031% for the 3 x 3 size and
91.935% for the 5 x 5 size. This shows that the sharpening
kernel's ability to improve image clarity and contrast
significantly contributed to the improved performance and
made it easier for the method to distinguish features important
for classification.

TABLE I

COMPARISON RESULT ON THE TYPE OF ENHANCED CONVOLUTION KERNEL
ON STANFORD DOGS DATASET

Kernel Type Kernel Size Accuracy (%)
. 3x3 91.818
Gauss-like [21] Sx5 91.770
Lalaci 3x3 91.958
aplacian 5x%5 91.963
. 3x3 91.946
Box Linear $x5 91.923
Sharpenin 3x3 92.031
fpening 5%5 91.935
. . 3x3 91.923
Modified Laplacian Sx5 91.872

Thus, methods trained using kernel sharpening have
achieved higher classification accuracy, as they can better
spot important patterns or object attributes in the picture. The
improvement in accuracy achieved by kemel sharpening
corroborates the effectiveness of this approach, reinforcing
the method's ability to deal with spatially complex image
perturbations and reducing the effect of noise encountered
frequently in images. Therefore, the MHV module is more
effective when kernel sharpening is used as its convolution
kernel.

D. Comparison with the State-Of-The-Art

In this section, we use the IELT method with a 3x3
sharpening kernel based on the accuracy comparison results
in Table II.

TABLE III
COMPARISON RESULT ON CUB-200-2011 DATASET
Method Backbone Accuracy (%)
ResNet-50 [31] ResNet-50 84.5
DCL [32] ResNet-50 87.8
GaRD [33] ResNet-50 89.6
StackedLSTM [27] GoogleNet 90.4
CAL [4] ResNet-101 90.6
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Method Backbone Accuracy (%)
ViT [14] ViT-B_16 91.0
AFTrans [18] ViT-B_16 91.5
FFVT [19] ViT-B_16 91.6
TransFG [17] ViT-B_16 91.7
SIM-Trans [20] ViT-B_16 91.8
HAVT [34] ViT-B_16 91.8
MP-FGVC [35] ViT-B_16 91.8
IELT [21] ViT-B_16 91.8
KR-MHYV (ours) ViT-B 16 91.9
TABLE IV
COMPARISON RESULT ON STANFORD DOGS DATASET
Method Backbone Accuracy (%)
ResNet-50 [31] ResNet-50 82.7
FDL [6] DenseNet-161 84.9
API-Net [36] ResNet-101 90.3
ViT [14] ViT-B_16 90.2
TransFG [17] ViT-B_16 90.6
HAVT [34] ViT-B_16 91.0
MP-FGVC [35] ViT-B_16 91.0
FFVT [19] ViT-B_16 91.5
IELT [21] ViT-B_16 91.8
KR-MHYV (ours) ViT-B 16 92.0
TABLE V
COMPARISON RESULT ON OXFORD-IIIT PET DATASET
Method Backbone Accuracy (%)
SEER [37] RG-10B 85.3
NAC [38] VGG-19 93.8
OPAM [39] VGG-19 93.8
VIT [14] ViT-B_16 93.8
CvT [40] ViT-B_16 94.7
TNT-B [41] ViT-B_16 95.0
Bamboo [42] ViT-B_16 95.1
IELT [21] ViT-B_16 95.2
KR-MHYV (ours) ViT-B 16 95.4

1) Result on CUB-200-2011: The results of comparing
the classification accuracy of the different techniques applied
to the CUB-200-2011 dataset are shown in Table III. The data
clearly shows that the suggested approach outperforms
existing state-of-the-art (SOTA) techniques in performance.
With kernel sharpening, the proposed approach obtains the
most remarkable accuracy of 91.9%. This is a noteworthy
0.9% improvement over the Vision Transformer (VIT)
approach. Compared to TransFG, FFVT, and AFTrans, our
method's accuracy improvement is 0.2%, 0.3%, and 0.4%,
respectively. Furthermore, it is 0.1% higher than the HAVT,
MP-FGVC, and SIM-Trans approaches. This increase is
comparable to other sophisticated methods, even though the
accuracy gains over the approach given in reference [20] is
just 0.1%. Improvements were achieved only by adjusting the
convolution kernel (the whole method architecture remained
unchanged). This implies that little improvements, like fine-
tuning the convolutional kernels, might significantly
influence the method's performance without requiring
significant structural adjustments. On the CUB-200-2011
dataset, the kernel sharpening method helps improve
classification accuracy. Kernel sharpening enables the
technique to produce more accurate predictions by clarifying
and refining the features created by convolution processes.
This indicates that on the CUB-200-2011 dataset, applying
kernel sharpening methods improves classification accuracy
and enhances method performance.



2) Result on Stanford Dogs: The KR-MHV method
outperformed the reference [21] method by 0.2%, achieving
the most remarkable accuracy of 92.0% on the Stanford Dogs
dataset. The KR-MHV method exhibits significant
performance increases over other top methods, indicating its
supremacy in fine-grained image categorization. In particular,
the KR-MHV method shows a 0.5% increase in accuracy
compared to the FFVT method, which had the most fantastic
accuracy at 91.5%. In the same way, the KR-MHV method
exhibits a noteworthy 1.4% accuracy gain over the TransFG
method, which attained a 90.6% accuracy. Additionally, KR-
MHYV performs 1.7% better than the API-Net method and
1.0% better than the HAVT and MP-FGVC methods, each
with an accuracy of 91.0%. These results show the KR-MHV
method's improved performance in fine-grained image
classification and highlight its cutting-edge methods,
including kernel sharpening, which support its increased
accuracy.

3)  Results on Oxford-IIIT: A comprehensive analysis of
the classification accuracy results obtained from applying
different methods on the Oxford-IIIT Pet dataset is presented
in Table V. It is evident from the results that other state-of-
the-art (SOTA) methods were not as successful on this dataset
as the KR-MHV method, which achieved the highest
accuracy of 95.4%. This remarkable performance underscores
the effectiveness of the KR-MHV method in improving
classification performance on the Oxford-IIIT Pet dataset.
This notable achievement underscores the efficacy of the KR-
MHYV approach in enhancing classification performance. The
suggested approach shows a 0.2% improvement over KR-
MHV compared to the IELT method, which obtained
accuracy somewhat lower than KR-MHV's. Even though this
difference might not seem like much, it matters in the context
of high-performance methods since little improvements can
have a significant impact. Our method's accuracy
improvement over Bamboo, TNT-B, and SEER is 0.3%,
0.4%, and 10.1%, respectively. Moreover, the KR-MHV
method achieves an astounding 1.5% greater accuracy,
demonstrating a considerable performance advantage over the
NAC, OPAM, and ViT methods. This difference highlights
the KR-MHV approach's efficacy and kernel sharpening
methods, which help explain why it performed so well in the
classification challenge.

E. Visualization

The visualization outcomes of many distinct methods are
shown in Fig. 4, which has five primary columns. The original
image that served as the method's input is shown in the first
column. The attention map produced by the reference
approach [21] is displayed in the second column. It highlights
the regions of the image that the baseline method deemed
significant for prediction purposes. The attention map
produced by the modified approach is shown in the third
column, with more focus on discriminative regions. The
voting selection results from the MHV-IELT [21] and our
KR-MHV modules are displayed in the fourth and fifth
columns. These pictures show variations in the tokens chosen:
the KR-MHV approach chose fewer tokens that are more
concentrated on significant features.

The KR-MHYV selection results on the image are shown in
the fifth column. These three results can be compared to
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identify many significant features. The attention map
produced by the approach from [21] is not as concentrated,
which implies that the baseline method could have considered
less critical information or noise in the image. On the other
hand, the attention map generated by the KR-MHYV method is
more defined and concentrated. This suggests that KR-MHV
is more successful in focusing on regions crucial for
categorization. With more accurate and concentrated attention
mappings on discriminative regions, our suggested KR-MHV
method outperforms the reference method. More relevant
tokens can be chosen by the KR-MHV module for
classification, improving prediction accuracy and
dependability. Overall, the KR-MHV approach (our
approach) results show a more concentrated attention map on
significant regions within the image when using our proposed
method, which is based on the reference method [21].

IV. CONCLUSION

This study shows that by changing the convolution kernel
on the multi-head voting module, the Internal Ensemble
Learning Transformer (IELT) method can improve the
performance of the Fine-Grained Visual Classification
(FGVC) task. In particular, kernel sharpening can improve
classification accuracy for the FGVC task. In some data sets,
the proposed KR-MHYV method outperforms other innovative
methods while obtaining the highest accuracy. However,
compared to the original method, the accuracy improvement
is small due to only the modification of the convolution
kernel. The visualization results demonstrate how KR-MHV
can improve prediction reliability, minimize noise, and focus
attention on critical discriminative regions. This approach
improves accuracy and strengthens the method's ability to
handle complex image variations. To evaluate the generality
and transferability of the proposed approach, we will conduct
more tests on various datasets and explore the integration of
advanced combining strategies with other techniques in
FGVC in future research. To enhance training methods and
overall interpretability, a better knowledge of the method's
mechanism and internal representation will be obtained
through the extension of the visualization analysis.
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