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Abstract. The Hartley transform provides a real-valued alternative to the classical Fourier transform, offering 

structural advantages for the analysis of real-valued signals. This paper presents a systematic study of the 

continuous Hartley transform, including its definition, inversion formula, Plancherel identity, and core operational 

properties such as shifting, modulation, and convolution. The analytical framework is developed in parallel with 

the classical Fourier theory to highlight structural similarities and distinctions between the two transforms. 

Furthermore, we establish a Hartley-type Heisenberg uncertainty principle using two complementary approaches: 

a direct method based on intrinsic properties of the Hartley kernel, and a Fourier-based method that exploits the 

algebraic relationship between the Hartley and Fourier transforms. These results provide a unified and rigorous 

foundation for understanding uncertainty relations within real-valued transform frameworks, and they 

demonstrate the continued relevance of the Hartley transform in harmonic analysis, integral transforms, and 

modern signal processing. 
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1. INTRODUCTION 

The Fourier transform is one of the most fundamental tools in mathematical analysis, 

signal processing, and communication theory. Its ability to decompose signals into frequency 

components has led to powerful analytic methods used across science and engineering (Stein 

& Shakarchi, 2003; Folland, 2009). Despite its widespread utility, the Fourier transform is 

inherently complex-valued, which may be unnecessary or computationally inefficient in 

applications where the underlying data are entirely real. 

To address this issue, Hartley introduced in 1942 a fully real-valued analogue of the 

Fourier transform (Hartley, 1942). The Hartley transform employs the real kernel 𝑐𝑎(ݔ)ݏ =cos ݔ + sin  producing a transform that is self-inverse and avoids complex arithmetic. Its ,ݔ

theoretical foundations and computational significance were later solidified through 

Bracewell’s modern treatment (Bracewell, 1986). Subsequent work extended Hartley’s 

framework to multidimensional, generalized, and fast computational settings (Lohmann et al., 

1989; Bracewell, 1984; Hargreaves, 1991). 

The discrete Hartley transform (DHT), first introduced in Bracewell (1983), broadened 

the transform’s impact in digital signal processing, enabling efficient real-valued convolution, 

filtering, and fast algorithmic implementations (Feldman, 1999; McLaren & Smith, 1998; 

Martucci, 2015). Additional studies have highlighted its advantages in numerical integration, 

image processing, and real-valued filter design (Vlček & Novák, 1999; Zadeh & Reibman, 

2002; Bose & Boo, 2005). 
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Beyond computational considerations, several authors have emphasized the structural 

and functional-analytic relationships between the Hartley and Fourier transforms, including 

equivalence of energy identities, symmetry properties, and harmonic-analytic behavior 

(Oppenheim & Willsky, 1997). More advanced works have connected Hartley-type transforms 

to generalized uncertainty principles and real-valued harmonic analysis (Cowling & Price, 

1984; Goh & Pfander, 1993), providing improved understanding of localization and transform-

domain constraints. 

The purpose of this paper is to provide a rigorous and coherent presentation of the 

continuous Hartley transform and its key analytic properties. Section 2 introduces the necessary 

functional-analytic preliminaries, including Lebesgue spaces and the Fourier transform. 

Section 3 develops the Hartley transform, its inversion formula, Plancherel identity, and core 

operational properties. Section 4 establishes a Hartley version of the Heisenberg uncertainty 

principle using two approaches: a direct analytic proof and a Fourier-based method, 

emphasizing the structural parallels and distinctions between the two transform frameworks.  

 

2. PRELIMINARIES 

In this section we recall several basic definitions and notations used throughout the paper. 

For 1 ≤ ݎ ≤ ∞, the Lebesgue space ܮ௥(ℝ) consists of all measurable functions on ℝ 

whose ܮ௥-norm is finite. 

Definition 2.1 (The ࢘ࡸ(ℝ)Space) 

The space ܮ௥(ℝ)is defined as 

‖݂‖௅ೝ(ℝ) = (∫ ௥ℝ|(ݐ)݂| 1௥(ݐ݀ , 1 ≤ ݎ < ∞, (2.1) 

and for ݎ = ∞, ‖݂‖௅∞(ℝ) = ess sup⁡௧∈ℝ  (2.2) .|(ݐ)݂|

The space 2ܮ(ℝ)is a Hilbert space with inner product ⟨݂, ݃⟩௅2(ℝ) = ℝ(ݐ)݂∫ ̅̅(ݐ)݃ ̅̅ ̅̅  (2.3) .ݐ݀ 

We recall the definition of the Fourier transform, which will be used extensively in later 

sections. 
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Definition 2.2 (Fourier Transform) 

For a function ݂ ∈ (ݓ){݂}the Fourier transform is defined by ℱ ,(ℝ)1ܮ = (ݓ)ܨ = ∫ ∞(ݐ)݂
−∞  ݁−௝௪௧ ݀(2.4) .ݐ 

Lemma 2.3 (Inverse Fourier Transform) 

If ܨ = ℱ{݂} ∈ (ℝ)1ܮ ∩ (ݐ)݂ then ,(ℝ)2ܮ = ℝ(ݓ)ܨ∫ߨ12  ݁௝௪௧ ݀ݓ. 
Using the identity ݁−௝௪௧ = cos⁡(ݐݓ) − ݆sin⁡(ݐݓ), the Fourier transform decomposes as (ݓ)ܨ = (ݓ)ோܨ +  (2.5) .(ݓ)ூܨ݆

where ܨோ(ݓ) = ℝ(ݐ)݂∫ cos⁡(ݐݓ) ݀ݐ, 
and  ܨூ(ݓ) = ℝ(ݐ)݂∫− sin⁡(ݐݓ) ݀ݐ. 
Lemma 2.4 (Parseval's Identity) 

For all ݂, ݃ ∈ ℝ(ݐ)݂∫ :the following identity holds ,(ℝ)2ܮ ̅̅(ݐ)݃  ̅̅ ̅̅ ݐ݀  = ℝ(ݓ){݂}ℱ∫ߨ12  ℱ{݃}(ݓ)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  .ݓ݀ ̅
In particular, ‖݂‖௅2(ℝ)2 = ߨ12 ‖ℱ{݂}‖௅2(ℝ)2 . 
Lemma 2.5 (Cauchy–Schwarz Inequality) 

For ݑ, ݒ ∈ ∫| ,(ℝ)2ܮ ∞(ݐ)ݒ (ݐ)ݑ
−∞ 2|ݐ݀  ≤ (∫ ∞2|(ݐ)ݑ|

−∞ (ݐ݀  (∫ ∞2|(ݐ)ݒ|
−∞  .(ݐ݀

A standard reference for this inequality is (Stein & Shakarchi, 2003). 

 

3. HARTLEY TRANSFORM AND ITS PROPERTIES 

The Hartley transform serves as a real-valued analogue of the classical Fourier transform 

and provides a convenient framework for the analysis of real signals.  This section establishes 

the basic definition of the transform and develops several fundamental properties that form the 

analytical foundation for later results, including the inversion formula, Plancherel identity, and 

operational rules.  
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Definition 3.1 (Hartley Transform) 

Let ݂ ∈ (ℝ)1ܮ ∩ (ݓ)ܪ The Hartley transform of ݂ is defined by .(ℝ)2ܮ = ℋ{݂}(ݓ) = ∫ ∞(ݐ)݂
−∞ 𝑐𝑎(3.6) ,ݐ݀(ݐݓ)⁡ݏ 

where the 𝑐𝑎ݏ is given by 𝑐𝑎(ݔ)⁡ݏ = cos(ݔ) + sin(ݔ). 
Example 1. Consider the Gaussian function ݂(ݐ) = ݁௔௧2 ,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑎 > 0, 
compute its Hartley transform 

Solution. The Hartley transform of ݂(ݐ) is defined by (ݓ)ܪ = ℋ{݂}(ݓ) = ∫ ∞(ݐ)݂
−∞ 𝑐𝑎ݐ݀(ݐݓ)ݏ  

 = ∫ ݁௔௧2∞
−∞ (cos(ݐݓ) + sin(ݐݓ))݀(3.7) ⁡ݐ 

By separating the integral into cosine and sine components, equation (3.7) becomes (ݓ)ܪ = ∫ ݁௔௧2∞
−∞ cos(ݐݓ) ூ1            ⏟ݐ݀

+∫ ݁௔௧2∞
−∞ sin(ݐݓ) ூ2            ⏟ݐ݀

. 
(3.8) 

To evaluate the cosine part 1ܫ, one can complete the square in the exponent, leading to 1ܫ = ∫ ݁௔௧2∞
−∞ cos(ݐݓ) ݐ݀ =  𝑎⁡݁−௪2/(4௔), (3.9)ߨ√

where this uses the standard Gaussian integral ∫ ݁௔(௧−௜௪/(2௔))2∞
−∞ ݐ݀ =  (3.10) .2ߨ√

The sine part 2ܫ of equation (3.8) vanishes due to symmetry, because ݁௔௧2 is even and sin(ݐݓ) 
is odd: 2ܫ = ∫ ݁−௔௧2∞

−∞ sin(ݐݓ) ݐ݀ = 0. (3.11) 

 

By substituting equations (3.9) and (3.11) into (3.8), the Hartley transform of the Gaussian 

function becomes (ݓ)ܪ = 2ߨ√ ݁−௪2/(4௔). (3.12) 



 

 

e-ISSN : 3032-7113; p-ISSN : 3032-6389, Hal. 01-10 

 

 

Thus, the Hartley transform preserves the Gaussian shape, analogous to the Fourier transform, 

which illustrates one of the convenient properties of the Hartley transform in signal analysis. 

Figure 1. Gaussian function. 

Figure 2. Hartley transform of the Guassian function. 

Figure 1 illustrates the graph of the Gaussian function which exhibits a bell–shaped 

curve symmetric about the vertical axis. The function attains its maximum at ݐ = 0 and decays 

exponentially as ݐ moves away from the center. This plot highlights the strong time-domain 

localization characteristic of the Gaussian. 

Figure 2 shows the graph of the Hartley transform of the Gaussian function. The 

resulting curve remains smooth, symmetric, and well-localized, reflecting the fact that the 

Gaussian is preserved (up to scaling factors) under various integral transforms, including the 
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Hartley transform. This frequency-domain graph illustrates how the energy of the original 

signal is distributed with respect to the variable ݓ. 

 Combining equation (2.5) with the expression for (ݓ)ܪ yields the fundamental identity (ݓ)ܪ = (ݓ)ோܨ −  (3.13) ,(ݓ)ூܨ

which expresses the Hartley transform as a real linear combination of the real and imaginary 

parts of the Fourier transform. 

Theorem 3.1 (Invers Formula) 

Let ݂ ∈ 1ܮ ∩ ܪ If .2ܮ = ℋ{݂}, then ݂(ݐ) = ∫ߨ12 ∞(ݓ)ܪ
−∞ 𝑐𝑎(3.14) .ݓ݀(ݓݐ)⁡ݏ 

A full proof may be found in (Bracewell, 1986). 

Theorem 3.2 (Plancherel Identity) 

For ݂ ∈ ∫ the Hartley transform satisfies ,(ℝ)2ܮ ∞2|(ݐ)݂|
−∞ ݐ݀ = ∫ߨ12 ∞2|(ݓ)ܪ|

−∞  (3.15) .ݓ݀

The proof follows from the self-inverse property of the Hartley transform; see (Bracewell, 

1986). 

For convenience, we introduce the notation (ݓ)ܬ = (ݓ)ோܨ +  ,(ݓ)ூܨ
so that by (3.13), (ݓ)ܪ = (ݓ)ோܨ −  ,(ݓ)⁡⁡ூܨ
and (ݓ)ܬ = (ݓ)ோܨ +  .(ݓ)ூܨ
Theorem 3.3 (Time-shift Identity) 

For ݂ ∈ 1ܮ ∩ and 𝑎 2ܮ ∈ ℝ, ℋ{݂(ݐ − 𝑎)}(ݓ) = cos(𝑎ݓ)(ݓ)ܪ + sin(𝑎ݓ)(3.16) .(ݓ)ܬ 

Proof.  Using the Fourier shift rule, ℱ{݂(ݐ − 𝑎)}(ݓ) = ݁−௔௪(ݓ)ܨ, 
and writing ݁−௔௪ = cos(𝑎ݓ) − ݆ sin(𝑎ݓ) with the decomposition (2.5), we obtain ℜ(݁−௜௔௪ܨ) = cos(𝑎ݓ)ܨோ + sin(𝑎ݓ)ܨூ , 
amd ℑ(݁−௜௔௪ܨ) = cos(𝑎ݓ)ܨூ − sin(𝑎ݓ)ܨோ . 
Since ℋ(݃) = ℜ(ℱ݃) − ℑ(ℱ݃) by (3.13), the identity follows. 
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Theorem 3.4 (Modulation Identity) 

For ݂ ∈ 1ܮ ∩ and 𝑎 2ܮ ∈ ℝ, ℋ{݁௜௔௧݂(ݐ)}(ݓ) = ℜ{ݓ)ܨ − 𝑎)} − ℑ{ݓ)ܨ − 𝑎)}. (3.17) 

Proof.  Using the modulation rule for Fourier transform, ℱ{݁௜௔௧݂(ݐ)}(ݓ) = ݓ)ܨ − 𝑎), 
and applying ℋ = ℜℱ − ℑℱ, the identity follows. 

Theorem 3.5 (Convolution Identity) 

For ݂, ݃ ∈ 1ܮ ∩ ݂}ℋ ,2ܮ ∗ (ݓ){݃ = ℜ{(ݓ)ܩ(ݓ)ܨ} − ℑ{(ݓ)ܩ(ݓ)ܨ}. (3.18) 

Proof. The Fourier convolution rule gives ℱ{݂ ∗ ݃} = ܨ ⋅ Applying ℋ .ܩ = ℜℱ − ℑℱ yields 

the result. 

 

4. HEISENBERG UNCERTAINTY PRINCIPLE FOR THE HARTLEY 

TRANSFORM 

This section establishes an analogue of the classical Heisenberg uncertainty principle in 

the setting of the Hartley transform. The discussion develops a frequency–time inequality 

consistent with the Fourier case, but expressed entirely in terms of the real-valued Hartley 

kernel. Central to the analysis are the time and frequency variances associated with a function 

and its Hartley transform. 

Let  (ݓ)ܪ = ℋ{݂}(ݓ), 
denote the Hartley transform of ݂ ∈ ௧2ߪ Define the time and frequency variances .(ℝ)2ܮ = 2ݐ∫  ,ݐ2݀|(ݐ)݂|
and ߪ௪2 = 2ݓ∫  .ݓ2݀|(ݓ)ܪ|
Theorem 4.1 (Heisenberg Uncertainty Principle: Direct Proof) 

For every ݂ ∈ ௪2ߪ௧2ߪ ⁡,(ℝ)2ܮ ≥ 14 2|(ݐ)݂|∫)  (4.19) .2(ݐ݀

Proof. Using the Plancherel identity (3.15), we obtain ∫ ∞ݐ2݀|(ݐ)݂|
−∞ = ∫ߨ12 ∞ݓ2݀|(ݓ)ܪ|

−∞ . (4.20) 
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Next, consider the integral ܫ ≔ ∫ ̅̅(ݐ)′݂(ݐ)݂ݐ ̅̅ ̅̅ ∞ݐ݀̅
−∞ . (4.21) 

By integration by parts (and using the fact that the boundary terms vanish for ݂ ∈  ,((ℝ)2ܮ
(4.21) yields ܫ = −12∫ ∞ݐ2݀|(ݐ)݂|

−∞ . (4.22) 

The derivative of the Hartley kernel is given by ݀݀ݐ 𝑐𝑎(ݐݓ)ݏ = (ݐݓ)cos)ݓ − sin(ݐݓ)) = ݏ⁡𝑐𝑎ݓ ݐݓ) −  (4.23) .(2ߨ

To estimate the moments, apply Lemma 2.3 with (ݐ)ݑ =  ,(ݐ)݂ݐ
and  (ݐ)ݒ = 𝑐𝑎(ݐݓ)⁡ݏ, 
which leads—after transforming one factor into the frequency domain using  (3.15) to the 

inequality ∫ ∞ݓ2݀|(ݓ)ܪ|2ݓ
−∞ ≥ 14(∫ ∞ݐ2݀|(ݐ)݂|

−∞ )2. (4.24) 

Finally, multiplying (4.24 ) by ߪ௧2 = 2ݐ∫  ,ݐ2݀|(ݐ)݂|
we obtain the desired uncertainty inequality ߪ௧2ߪ௪2 ≥ 14 2|(ݐ)݂|∫)  ,2(ݐ݀
which completed the proof. 

Theorem 4.2 (Heisenberg Uncertainty Principle: Fourier Relation) 

For every ݂ ∈ ௪2ߪ௧2ߪ ⁡,(ℝ)2ܮ ≥ 14 2|(ݐ)݂|∫)  .2(ݐ݀
Proof. We begin by recalling that the Fourier transform of ݂ can be written as |2|(ݓ)ܨ = 2|(ݓ)ோܨ| +  (4.25) ,2|(ݓ)ூܨ|

where ܨோ and ܨூ denote the real and imaginary parts of ܨ, respectively. 

 Moreover, the Hartley transform satisfies (ݓ)ܪ = (ݓ)ோܨ −  (4.26) .(ݓ)ூܨ

Substituting (4.26) into (4.27) gives 
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2|(ݓ)ܪ| = 2|(ݓ)ோܨ| + 2|(ݓ)ூܨ| −  (4.27) .(ݓ)ூܨ(ݓ)ோܨ2

 Integrating (4.26) over ℝ, and observing that the mixed term integrates to zero by 

symmetry, yields ∫|2|(ݓ)ܪℝ ݓ݀ = 2ℝ|(ݓ)ܨ|∫  (4.28) .ݓ݀

Using (4.29), the Plancherel identity for the Hartley transform follows:  ∫|݂(ݐ)|2ℝ ݐ݀ = ∫ߨ12 2ℝ|(ݓ)ܪ| ݓ݀ = ∫ߨ12 2ℝ|(ݓ)ܨ|  (4.29) .ݓ݀

From (4.30), it follows that the Hartley and Fourier transforms preserve energy in the 

same way.  Using this equivalence, the classical Fourier Heisenberg inequality (see: 

Bracewell,1986}) becomes applicable.  Thus, (∫2|(ݐ)݂|2ݐℝ (ݐ݀ 2ℝ|(ݓ)ܨ|2ݓ∫) (ݓ݀ ≥ 14(∫ 2ℝ|(ݐ)݂|  (4.30) .2(ݐ݀

Next, combining (4.29 )with the definition of ߪ௪2  gives ∫2|(ݓ)ܪ|2ݓℝ ݓ݀ = 2ℝ|(ݓ)ܨ|2ݓ∫  (4.31) .ݓ݀

Substituting (4.32) into (4.31) yields ߪ௧2ߪ௪2 ≥ 14 2|(ݐ)݂|∫)  ,2(ݐ݀
which completes the derivation of the Hartley Heisenberg uncertainty principle. 

 

5. CONCLUTION 

This paper has presented the fundamental properties of the Hartley transform, including 

its inversion formula, Plancherel identity, and core operational rules. The relation between the 

Hartley and Fourier transforms has been clarified, enabling a unified analytical framework. 

Two versions of the Heisenberg uncertainty principle for the Hartley transform were 

established—one derived directly from its kernel structure and the other obtained via its 

connection to the Fourier transform. 
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