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Abstract. The Hartley transform provides a real-valued alternative to the classical Fourier transform, offering
structural advantages for the analysis of real-valued signals. This paper presents a systematic study of the
continuous Hartley transform, including its definition, inversion formula, Plancherel identity, and core operational
properties such as shifting, modulation, and convolution. The analytical framework is developed in parallel with
the classical Fourier theory to highlight structural similarities and distinctions between the two transforms.
Furthermore, we establish a Hartley-type Heisenberg uncertainty principle using two complementary approaches:
a direct method based on intrinsic properties of the Hartley kernel, and a Fourier-based method that exploits the
algebraic relationship between the Hartley and Fourier transforms. These results provide a unified and rigorous
foundation for understanding uncertainty relations within real-valued transform frameworks, and they
demonstrate the continued relevance of the Hartley transform in harmonic analysis, integral transforms, and
modern signal processing.
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1. INTRODUCTION

The Fourier transform is one of the most fundamental tools in mathematical analysis,
signal processing, and communication theory. Its ability to decompose signals into frequency
components has led to powerful analytic methods used across science and engineering (Stein
& Shakarchi, 2003; Folland, 2009). Despite its widespread utility, the Fourier transform is
inherently complex-valued, which may be unnecessary or computationally inefficient in
applications where the underlying data are entirely real.

To address this issue, Hartley introduced in 1942 a fully real-valued analogue of the
Fourier transform (Hartley, 1942). The Hartley transform employs the real kernel cas(x) =
cos x + sin x, producing a transform that is self-inverse and avoids complex arithmetic. Its
theoretical foundations and computational significance were later solidified through
Bracewell’s modern treatment (Bracewell, 1986). Subsequent work extended Hartley’s
framework to multidimensional, generalized, and fast computational settings (Lohmann et al.,
1989; Bracewell, 1984; Hargreaves, 1991).

The discrete Hartley transform (DHT), first introduced in Bracewell (1983), broadened
the transform’s impact in digital signal processing, enabling efficient real-valued convolution,
filtering, and fast algorithmic implementations (Feldman, 1999; McLaren & Smith, 1998;
Martucci, 2015). Additional studies have highlighted its advantages in numerical integration,
image processing, and real-valued filter design (VI¢ek & Novak, 1999; Zadeh & Reibman,
2002; Bose & Boo, 2005).
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Beyond computational considerations, several authors have emphasized the structural
and functional-analytic relationships between the Hartley and Fourier transforms, including
equivalence of energy identities, symmetry properties, and harmonic-analytic behavior
(Oppenheim & Willsky, 1997). More advanced works have connected Hartley-type transforms
to generalized uncertainty principles and real-valued harmonic analysis (Cowling & Price,
1984; Goh & Pfander, 1993), providing improved understanding of localization and transform-
domain constraints.

The purpose of this paper is to provide a rigorous and coherent presentation of the
continuous Hartley transform and its key analytic properties. Section 2 introduces the necessary
functional-analytic preliminaries, including Lebesgue spaces and the Fourier transform.
Section 3 develops the Hartley transform, its inversion formula, Plancherel identity, and core
operational properties. Section 4 establishes a Hartley version of the Heisenberg uncertainty
principle using two approaches: a direct analytic proof and a Fourier-based method,

emphasizing the structural parallels and distinctions between the two transform frameworks.

2. PRELIMINARIES
In this section we recall several basic definitions and notations used throughout the paper.
For 1 < r < oo, the Lebesgue space L"(R) consists of all measurable functions on R
whose L"-norm is finite.
Definition 2.1 (The L" (R)Space)

The space L" (R)is defined as
1

T
f 1l my = <] IfF(OI" dt) , 1<r<oo, 2.1
R
and for r = oo,
IS 1l .oy = esssup [f(E)]. (2.2)
terR
The space L*(R)is a Hilbert space with inner product

D = fRfa)mdt. (2.3)

We recall the definition of the Fourier transform, which will be used extensively in later

sections.
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Definition 2.2 (Fourier Transform)

For a function f € L*(R), the Fourier transform is defined by

F{f}(w) = F(w) = f_ f(t) e /Wt dt, (2.4)

Lemma 2.3 (Inverse Fourier Transform)

IfF = F{f} € L}(R) N I2(R), then
f() = ifF(W) e/Wt dw
C2m )y '

Using the identity e =/t = cos (wt) — jsin (wt), the Fourier transform decomposes as
F(w) = Fgr(w) + jE (w). (2.5)

where
Fr(w) = jf(t) cos (wt) dt,
R
and
F(w) =-— f f(t) sin (wt) dt.
R

Lemma 2.4 (Parseval's Identity)
For all f, g € L?(R), the following identity holds:

- 1 L
fRf ) gty dt =— fRT{f}(W) FlgI(w) dw.

In particular,

2 1 2
”f”LZ(R) = E”T{f}”LZ(R)'

Lemma 2.5 (Cauchy—Schwarz Inequality)

For u, v € L*(R),
2 0 %)
< <j lu(e)|? dt) <f Iv(t)lzdt>.

A standard reference for this inequality is (Stein & Shakarchi, 2003).

]mu(t) v(t) dt

3. HARTLEY TRANSFORM AND ITS PROPERTIES

The Hartley transform serves as a real-valued analogue of the classical Fourier transform
and provides a convenient framework for the analysis of real signals. This section establishes
the basic definition of the transform and develops several fundamental properties that form the
analytical foundation for later results, including the inversion formula, Plancherel identity, and

operational rules.
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Definition 3.1 (Hartley Transform)
Let f € L}(R) N L2(R). The Hartley transform of f is defined by

Hw) = H{f}(w) = f f(t) cas (wt)dt, (3.6)

where the cas is given by
cas (x) = cos(x) + sin(x).
Example 1. Consider the Gaussian function
f) = edt? a>0,
compute its Hartley transform

Solution. The Hartley transform of f(t) is defined by

Hw) = H{f}(w) _ foof(t) cas(wt)dt

= foo et” (cos(wt) + sin(wt))dt (3.7)

By separating the integral into cosine and sine components, equation (3.7) becomes

[0e]

Hw) = f ea” cos(wt) dt + f e’ sin(wt) dt.

— 00

(3.8)

Iy I

To evaluate the cosine part I;, one can complete the square in the exponent, leading to
> at? T _w? /(4a)
I = e cos(wt)dt = [—e , 3.9
—o a
where this uses the standard Gaussian integral

j pa(t—iw/(2a))? dt=\/§. (3.10)

The sine part I, of equation (3.8) vanishes due to symmetry, because e%” is even and sin(wt)

1s odd:

I, = j g—at’ sin(wt) dt = 0. (3.11)

By substituting equations (3.9) and (3.11) into (3.8), the Hartley transform of the Gaussian

function becomes

Hw) = \Ee-wz/(‘*a). (3.12)
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Thus, the Hartley transform preserves the Gaussian shape, analogous to the Fourier transform,

which illustrates one of the convenient properties of the Hartley transform in signal analysis.
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Figure 1. Gaussian function.
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Figure 2. Hartley transform of the Guassian function.

Figure 1 illustrates the graph of the Gaussian function which exhibits a bell-shaped
curve symmetric about the vertical axis. The function attains its maximum at t = 0 and decays
exponentially as t moves away from the center. This plot highlights the strong time-domain
localization characteristic of the Gaussian.

Figure 2 shows the graph of the Hartley transform of the Gaussian function. The
resulting curve remains smooth, symmetric, and well-localized, reflecting the fact that the

Gaussian is preserved (up to scaling factors) under various integral transforms, including the
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Hartley transform. This frequency-domain graph illustrates how the energy of the original
signal is distributed with respect to the variable w.
Combining equation (2.5) with the expression for H(w) yields the fundamental identity
H(w) = Fr(w) — F;(w), (3.13)
which expresses the Hartley transform as a real linear combination of the real and imaginary
parts of the Fourier transform.
Theorem 3.1 (Invers Formula)

Let f € L' N L. If H = 3 {f}, then

f) = %f_mH(w) cas (tw)dw. (3.14)

A full proof may be found in (Bracewell, 1986).
Theorem 3.2 (Plancherel Identity)
For f € L?(R), the Hartley transform satisfies

LZIf(t)IZ dt = %LZIH(W)IZdw. (3.15)

The proof follows from the self-inverse property of the Hartley transform; see (Bracewell,
1986).
For convenience, we introduce the notation

Jw) = Fr(w) + F;(w),
so that by (3.13),

H(w) = Fr(w) — F; (W),
and

Jw) = Fr(w) + F;(w).
Theorem 3.3 (Time-shift Identity)
Forf €' NnI?anda € R,

H{f(t —a)}(w) = cos(aw)H(w) + sin(aw)](w). (3.16)
Proof. Using the Fourier shift rule,
Ff (€ —a)}(w) = e™™F(w),

@ = cos(aw) — j sin(aw) with the decomposition (2.5), we obtain

and writing e~
R(e '™ F) = cos(aw) Fg + sin(aw) F;,
amd
3(e™'F) = cos(aw) F; — sin(aw) Fg.

Since H (g) = R(Fg) — J(Fg) by (3.13), the identity follows.
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Theorem 3.4 (Modulation Identity)
Forf €' NnI?anda € R,

H{e F(O)}w) = R{F(w — a)} — S{F(w — a)}. (3.17)
Proof. Using the modulation rule for Fourier transform,

Fle'f(O}w) = F(w — a),

and applying H = RF — IF, the identity follows.
Theorem 3.5 (Convolution Identity)
For f,g € L' n L2,

Hif * g} (w) = RIFW)GW)} — I{FFW)G(w)}. (3.18)
Proof. The Fourier convolution rule gives F{f * g} = F - G. Applying H = RF — IF yields

the result.

4. HEISENBERG UNCERTAINTY PRINCIPLE FOR THE HARTLEY
TRANSFORM
This section establishes an analogue of the classical Heisenberg uncertainty principle in
the setting of the Hartley transform. The discussion develops a frequency—time inequality
consistent with the Fourier case, but expressed entirely in terms of the real-valued Hartley
kernel. Central to the analysis are the time and frequency variances associated with a function
and its Hartley transform.

Let
H(w) = H{f}(w),

denote the Hartley transform of f € L?(R). Define the time and frequency variances
ot = [ e 1rora
and
02 = fwz |HW)|?dw.

Theorem 4.1 (Heisenberg Uncertainty Principle: Direct Proof)
For every f € L*(R),

o2l > %(flf(t)lzdt)z. (4.19)

Proof. Using the Plancherel identity (3.15), we obtain

j_o:olf(t)lzdt = %I_ZIH(WNZdW' (4.20)
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Next, consider the integral
Izzf tf () f'(t)dt. 4.21)

By integration by parts (and using the fact that the boundary terms vanish for f € L?(R)),
(4.21) yields

1 oo
I = _Ef |f (®)|%dt. (4.22)

The derivative of the Hartley kernel is given by

d /[

—cas(wt) = w(cos(wt) — sin(wt)) = w cas (Wt - —). (4.23)

dt 2
To estimate the moments, apply Lemma 2.3 with

u(t) = tf (o),

and
v(t) = cas (wt),
which leads—after transforming one factor into the frequency domain using (3.15) to the

inequality

oo 1 2
f w2|H(w)|*dw = — 2 (f |f(t)|2dt> (4.24)
Finally, multiplying (4.24 ) by

o7 = f 2 |F(0)]2dt,

we obtain the desired uncertainty inequality

1
st = 1([Iror ar),

which completed the proof.
Theorem 4.2 (Heisenberg Uncertainty Principle: Fourier Relation)

For every f € L*(R),

1 2
20 > 4 ([1rr )

Proof. We begin by recalling that the Fourier transform of f can be written as

[FW)I? = [FrW)I? + [F;(w)?, (4.25)
where Fi and F; denote the real and imaginary parts of F, respectively.

Moreover, the Hartley transform satisfies
H(w) = Fr(w) — F;(w). (4.26)

Substituting (4.26) into (4.27) gives

8 BILANGAN — VOLUME. 3 NOMOR. 6, DESEMBER 2025



e-ISSN : 3032-7113; p-ISSN : 3032-6389, Hal. 01-10

I[HW)I? = [FgW)[? + [F(W)I? — 2F (W) F;(w). (4.27)
Integrating (4.26) over R, and observing that the mixed term integrates to zero by

symmetry, yields
fIH(W)IZdW _ f F(w)[? dw. (4.28)
R R
Using (4.29), the Plancherel identity for the Hartley transform follows:

1 1
J 1r©r de = 5 | 1O dw = 2 [ 1FO0I dw, (4.29)

From (4.30), it follows that the Hartley and Fourier transforms preserve energy in the
same way. Using this equivalence, the classical Fourier Heisenberg inequality (see:

Bracewell,1986}) becomes applicable. Thus,

2
<th2|f(t)|2 dt) <wa2|F(w)|2 dw> > %(fm{lf(t)lz dt> . (4.30)

Next, combining (4.29 )with the definition of 62 gives
fW2|H(W)|2 dw = J‘wle(W)I2 dw. (4.31)
R R

Substituting (4.32) into (4.31) yields

st = 1([Iror ar),

which completes the derivation of the Hartley Heisenberg uncertainty principle.

5. CONCLUTION

This paper has presented the fundamental properties of the Hartley transform, including
its inversion formula, Plancherel identity, and core operational rules. The relation between the
Hartley and Fourier transforms has been clarified, enabling a unified analytical framework.
Two versions of the Heisenberg uncertainty principle for the Hartley transform were
established—one derived directly from its kernel structure and the other obtained via its

connection to the Fourier transform.
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