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 Polycystic Ovarian Syndrome (PCOS) is a hormone-related health condition 

in women, commonly classified as an endocrine disorder. It is most prevalent 

during the childbearing years, typically between the ages of 15 and 44. PCOS 

leads to hormonal imbalances that cause irregular menstrual cycles, hair loss, 

and other symptoms, and it is associated with long-term health risks such as 

heart disease and diabetes. Recent advances in deep learning have shown 

promising results in accurately recognizing and differentiating ovarian cysts 

from other ovarian tumours. This study proposes a novel technique for PCOS 

symptom detection by analysing ovarian images through feature extraction, 

classification, and metaheuristic-based optimization. Ovarian images are first 

pre-processed for noise removal and smoothing, followed by feature extraction 

and classification using a Convolutional Wavelet Attention Neural Network 

with a Naïve Bayes Fuzzy Autoencoder (CWANN–NBFA). Optimization is 

then performed using the Metaheuristic Multilevel Hawks Algae Optimization 

(MMHAO) algorithm. Experimental evaluations were conducted on multiple 

ovarian image datasets. The proposed technique achieved an accuracy of over 

98% across the PCOSUSG, KFHU, and MMOTU datasets, demonstrating its 

robustness and effectiveness in addressing the challenges of PCOS detection. 
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1. INTRODUCTION  

Ovaries are classified into three types based on their structural features: normal, cystic, and polycystic 

(Figure 1). In normal ovaries, cysts containing eggs form every month. Each cyst is filled with fluid and 

discharged during menstrual bleeding. Cysts that are not eliminated from the body persist in the ovarian tissue, 

resulting in polycystic ovaries. Although polycystic ovaries contain many follicles, they fail to mature, and 

ovulation does not occur. This is the primary distinction between polycystic and normal ovaries [1]. Polycystic 

ovarian syndrome (PCOS) is a hormonal condition characterized by a variety of symptoms. It affects 

approximately 20% of women of reproductive age. The Rotterdam criteria specify three diagnostic features of 

PCOS: chronic anovulation or menstrual irregularity, excessive androgenic hormones in women, and the 

presence of multiple follicles in ultrasound scans. Women exhibiting at least two of these features are 

considered to have PCOS [2]. A blood test is often performed to confirm the diagnosis of this condition. PCOS 

is associated with several health complications, including diabetes, insulin resistance, obesity, and 

cardiovascular disease. Therefore, early recognition and timely treatment are critical to preventing the 

development of secondary disorders. The primary indicators of PCOS include insulin resistance and elevated 

luteinizing hormone (LH) levels, which disrupt ovulation in women [3]. If left untreated, PCOS can lead to 

severe diabetes as well as cardiovascular complications. Ultrasonography (USG) is a medical imaging 

technique that employs high-frequency sound waves to produce two-dimensional black-and-white images. This 

imaging method is widely used for the diagnosis of PCOS. Beyond PCOS, ultrasound instruments are also used 

for the preliminary diagnosis of various medical conditions, including gallbladder disease, breast tumours, 

thyroid abnormalities, prostate issues, and gynaecological disorders. Deep learning, a rapidly evolving 
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technology, has shown great potential in addressing challenges across various fields [4], [5]. In healthcare, it 

allows researchers and practitioners to uncover patterns in hidden data, thereby improving efficiency and 

outcomes. It also enhances diagnostic accuracy and treatment planning, enabling medical professionals to make 

better-informed decisions. Polycystic ovary syndrome (PCOS) is a medical condition for which no single 

definitive diagnostic test or universally effective treatment currently exists. Endocrine disorders causing 

infertility often lead to the development of ovarian cysts in women of reproductive age. The reproductive 

system plays a vital role in a woman’s health. During reproduction, certain molecules released by the egg guide 
sperm toward its surface, facilitating fertilization. Fertilization typically occurs in the oviducts, though it can 

also happen in the uterus. PCOS remains a prominent topic in medical research. In the clinical evaluation of 

ovarian disorders, ultrasound has been the most widely used imaging modality [6]. Compared with computed 

tomography (CT) and magnetic resonance imaging (MRI), ultrasound offers several advantages—it is 

inexpensive, safe, easily accessible, and provides real-time imaging results [7]. With advances in imaging 

technologies, deep learning (DL) offers great potential for automated analysis, improving objectivity and 

diagnostic accuracy. Computer vision and image analysis, in particular, benefit significantly from DL 

applications. Automatic classification of PCOS using clinical data and ultrasound images can support early 

detection. Diagnosis of PCOS is based on multiple criteria and symptoms, often requiring reliable menstrual 

history and ultrasound examinations. However, due to its wide spectrum of symptoms and the absence of a 

single standardized diagnostic test, clinicians often rely on multiple clinical assessments and, at times, 

unnecessary radiological imaging. The complex pathophysiology of PCOS further complicates diagnosis, as 

some symptoms or test results may be inconsistent or irrelevant. Nevertheless, since PCOS directly leads to 

ovarian dysfunction, early identification and detection with minimal laboratory tests and imaging procedures 

remain essential [8], [9]. 

 

Several digital image processing techniques are commonly employed in the construction of computer-

aided PCOS follicle detection systems. For instance, H Chen et al. [10] suggested an automated technique to 

identify PCOS by separating the regions of follicles and cysts from ultrasound pictures. They applied many 

digital image processing techniques on 19 ultrasound pictures, including morphological erosion, K-means 

clustering, median filtering, histogram equalisation. In [11], they examined and contrasted two approaches for 

follicle detection utilizing image processing methods to diagnose PCOS: first involves binarization, 

morphological procedures, contrast modification, noise reduction, k-means clustering, hole filling, 

morphologic procedures. The analytical results were also compared to two performance indicators, false 

rejection rate (FRR) as well as false acceptance rate (FAR). Authors [12] presented an image processing-based 

approach to PCOS detection that uses active contour in conjunction with modified Otsu method to precisely 

quantify number of cysts in ultrasound ovary image. Two main components of their proposed method are 

follicle identification and image pre-processing. According to work [13], PCOS patients can be classified using 

scleral pictures and a deep learning architecture that combines ResNet 18, U-net, Multi Instance Learning 

method. Their dataset had 721 photos in all, 388 of which included PCOS patients. Their suggested method 

had an AUC of 98%, accuracy of 93% on average. Author [14] developed a method to identify PCOS in 

ultrasound images using image segmentation and convolutional neural networks (CNNs). Additionally, the 

pictures were categorised using the K-Nearest Neighbour technique. Using their own dataset, refined the 16 

Layered VGG-16 model for PCOS classification from ultrasound pictures. The accuracy of their model was 

92.11% used image binarization on B-mode ultrasound pictures. Author [15] used image binarization as an 

image preprocessing technique after converting ultrasonic images of ovarian cysts to greyscale images. After 

post-processing the images, the authors classified the cysts and extracted geometrical features by labelling and 

connecting the various components. They achieved 90% accuracy using SVM as their classifier. In order to 

categorise their PCOS dataset, work [16] assessed how well a variety of feature selection techniques and 

classifiers performed, in addition to their suggested hybrid feature selection and classification method. 

According to the experimental data, out of all the approaches examined, the hybrid strategy had the greatest 

classification accuracy. PCOS dataset from Obafemi Awolowo University was classified utilizing C4.5 

Decision Tree, NB, MLP by Author [17]. Results demonstrated that C4.5 Decision Tree as well as MLP 

performed better than NB with an accuracy rate of 74.359. PCOS survey dataset was classed using three 

 
Figure 1. Illustration of normal, cystic, and polycystic ovaries showing typical follicular patterns. 
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different classifiers in work. The results showed that NB outperformed the other two classifiers with an 

accuracy rate of 97.65%. The author [18] applied many classification techniques to diagnose PCOS early after 

using Principal Component Analysis (PCA) to identify the best aspects of their PCOS dataset, which was 

gathered from Thrissur infertility treatment facilities. RF performed better than the other classifiers, according 

to the results. Work [19] extracted the most important properties from the Kaggle PCOS dataset using a filter-

based univariate feature selection technique. In order to classify PCOS using ten distinct features, they 

additionally used gradient boosting, RF, Logistic Regression (LR), Hybrid Random Forest and Logistic 

Regression (RFLR). According to results, RFLR performed better than other classifiers in terms of recall (90%) 

and classification accuracy (91.01%). In order to predict PCOS based on discovery of new genes, [20] used a 

variety of ML methods, including K-nearest neighbour (KNN), decision trees, SVM with different kernel 

functions. [21] developed an automated system that will serve as an aided tool for physician, saving a great 

deal of time during patient examinations, consequently, decreasing delay in diagnosing risk of PCOS by 

utilising metabolic and clinical factors in a feature vector. The system makes use of machine learning 

algorithms like Bayes and Logistic Regression (LR). [22], have conducted a thorough investigation on the 

illness and its three diagnostic criteria, providing us with information on anomalies related to insulin, 

gonadotropin, folliculogenesis in addition to PCOS. Machine learning models based on metabolic 

characteristic are proposed in work [23]. The author put out a model utilising the Statistical Package for the 

Social Sciences (SPSS) to illustrate the significance of metabolic traits. With an accuracy rating of 89.02%, 

RFC was shown to be the most pertinent and accurate technique for PCOS prediction. 

These studies highlight the potential of integrating deep learning and machine learning for early 

detection and reliable diagnosis of PCOS. However, the complexity of PCOS symptoms and the heterogeneity 

of diagnostic data necessitate further advancements in developing robust and efficient diagnostic models that 

combine clinical data with imaging technologies. This paper aims to address these challenges by proposing a 

novel approach to PCOS diagnosis, leveraging the strengths of deep learning for autonomous analysis and 

improving diagnostic accuracy. Specifically, a robust system for detecting Polycystic Ovary Syndrome (PCOS) 

symptoms is proposed, integrating metaheuristic models and ensemble deep learning techniques. The system 

focuses on analysing key traits for PCOS prognosis and employs a deep learning method to extract essential 

features from ultrasound images, including shape and texture characteristics of ovarian cysts. The methodology 

incorporates pre-processing techniques to enhance ultrasound images, addressing challenges such as 

underexposure and noise. Adaptive Bilateral Filtering (ABF) improves image sharpness, while kernel 

adjustments ensure precise filtering. To further optimize classification performance, a Convolutional Wavelet 

Attention Neural Network (CWANN) is integrated with a Naïve Bayes Fuzzy Autoencoder (NBFA) model. 

This deep learning approach eliminates the need for manual feature extraction, enabling more accurate 

classification. The CWANN employs Gabor Wavelet filters and attention mechanisms to handle dimensionality 

and enhance feature extraction, ensuring high classification accuracy. The Metaheuristic Multilevel Hawks 

Algae Optimization (MMHAO) algorithm plays a key role in optimizing hyperparameters and structural 

configurations. By balancing exploration and exploitation, MMHAO refines model parameters, ensuring 

optimal classification accuracy for image-based PCOS detection. This hybrid optimization method is critical 

in handling high-dimensional datasets, ensuring the model's scalability and precision, which is validated 

against clinical standards for ovarian cyst diagnosis. Through this synergy, the proposed method achieves 

superior performance on multiple benchmark PCOS ultrasound datasets, demonstrating both robustness and 

clinical relevance. To the best of our knowledge, this is the first work to unify wavelet-based attention, fuzzy 

autoencoding, and bio-inspired metaheuristic optimization into a single framework for PCOS detection from 

ultrasound images. 

 

2. RESEARCH METHOD  

The proposed system for PCOS symptom detection integrates metaheuristic models and ensemble 

deep learning techniques to ensure accurate and reliable diagnosis. A simplified workflow of the system is 

illustrated in Figure 2, highlighting the major stages: data input, preprocessing, deep feature extraction, 

classification, optimization, and output. To capture both clinical and imaging features, the system identifies 19 

traits that serve as the foundation for PCOS prognosis. The dataset is divided in a 70:30 ratio for training and 

testing. For robust classification, the framework automatically extracts shape and texture characteristics of non-

pure ovarian cysts, normal pelvic cysts, and polycystic ovarian cysts. The detailed architecture of the proposed 

detection model is shown in Figure 3, where the Convolutional Wavelet Attention Neural Network (CWANN), 

Naïve Bayes Fuzzy Autoencoder (NBFA), and Metaheuristic Multilevel Hawks Algae Optimization 

(MMHAO) components are integrated for improved accuracy. The Gini coefficient is used to assess feature 

importance, and initial testing with traditional classifiers revealed that the Decision Tree achieved the most 

reliable baseline performance. Clinical validation is ensured through comparison with expert diagnoses (“gold 
standard”), with healthcare practitioners reviewing model outputs for reliability. 
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Figure 2. Simplified workflow of the proposed PCOS detection framework 

 

2.1 Preprocessing 

Preprocessing addresses the challenge of distinguishing healthy and cystic regions in ultrasound 

(USG) images, especially when images are underexposed or noisy. Adaptive Bilateral Filtering (ABF) is 

employed to enhance image sharpness by selectively adjusting pixel intensities. Unlike the standard bilateral 

filter, which applies uniform smoothing, ABF modifies the kernel’s centre and width dynamically, allowing 

sharper adjustments in critical regions. 

Mathematical Formulation: 

Let the input image be represented as f: I→R. The output image is computed as: 

 ݃(݅) = ∑1−(݅)ߟ  ௝∈Ω  ߱(݆)߮݅(݂(݅ − ݆) − ݅)݂(݅)ߠ − ݆))    (1) 

Where: 

• Ω denotes the local window (neighbourhood) around pixel i. 

• ω(j) is the spatial weight for pixel j within the window. 
• ϕi(t) is the Gaussian range kernel at pixel i, defined as: 

(ݐ)݅߮  = exp⁡ (− ௧22ఙ(௜)2)                (2) 

Where,  

• σ(i) is the standard deviation of the Gaussian kernel, dynamically adjusted for each pixel to account 

for local intensity variations.  

• θ(i) is an adaptive scaling factor to enhance contrast in underexposed regions.  
• η(i) is the normalization factor ensuring that the weighted sum of intensities. This adaptive kernel 

ensures enhanced visibility of underexposed cystic regions. 

 

 

 
Figure 3. Detailed Architecture of the Proposed PCOS Detection Model 
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2.2. Convolutional Wavelet Attention Neural Network with Naïve Bayes Fuzzy Autoencoder (CWANN–
NBFA) 

 

2.2.1 Convolutional Wavelet Attention Neural Network (CWANN). 

The CWANN is specifically designed to extract discriminative features from ultrasound (USG) 

images by combining wavelet-based filters with attention mechanisms. The overall working principle of the 

CNN model is illustrated in Figure 4. Unlike conventional CNNs, which primarily capture local intensity 

variations, CWANN employs Gabor wavelet filters to model both texture and shape patterns of ovarian cysts 

across multiple scales and orientations [24], [25]. The detailed architecture of the CWANN, including the basic 

unit of the proposed network and the spatial down sampling module, is illustrated in Figure 5. These features 

are highly relevant for distinguishing polycystic ovaries from normal ones [26], as PCOS often presents with 

subtle morphological variations. The attention module further enhances this process by selectively emphasizing 

the most informative channels while suppressing redundant or noisy features. This is achieved through global 

average pooling (GAP), one-dimensional convolution, and sigmoid activation, enabling the network to capture 

inter-channel dependencies without dimensionality reduction errors. The result is a robust feature extractor that 

adapts to variations in cyst size, position, and imaging quality. 

 

 
 

 

2.2.2 Naïve Bayes Fuzzy Autoencoder (NBFA). 

 

The NBFA integrates three concepts—autoencoding, fuzzy logic, and probabilistic classification—into a 

unified module. First, the autoencoder reduces high-dimensional CWANN feature maps into a compact latent 

representation through a bottleneck layer, ensuring efficient learning and generalization. Next, fuzzy logic 

models uncertainty inherent in ultrasound features, such as overlapping cyst boundaries or ambiguous tissue 

textures, by assigning partial membership values between 0 and 1 instead of binary class boundaries. Finally, 

the Naïve Bayes classifier operates on the latent fuzzy features to assign probabilistic class labels, leveraging 

prior and conditional probabilities to handle variability across patients. This hybrid mechanism enhances 

classification reliability in cases where deterministic approaches are prone to misclassification. 

 

 

 

2.2.3 Integration of CWANN and NBFA. 

 

Within the proposed framework, CWANN functions as the primary feature extractor, while NBFA performs 

uncertainty-aware dimensionality reduction and probabilistic classification. Together, they form a 

complementary pair—CWANN ensures that informative morphological and textural features are captured, and 

NBFA ensures that these features are robustly and reliably classified. Subsequently, the Metaheuristic 

Multilevel Hawks Algae Optimization (MMHAO) algorithm fine-tunes the hyperparameters of both modules, 

ensuring adaptability across datasets and maximizing diagnostic accuracy. 

 

 
Figure 4. Working Principle of the CNN Model 
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Figure 5 (a) Basic unit of proposed network. (b) Proposed unit for spatial down sampling 

 

2.3.  Metaheuristic Multilevel Hawks Algae Optimization (MMHAO) 

The Metaheuristic Multilevel Hawks Algae Optimization (MMHAO) algorithm automates 

hyperparameter tuning and structural optimization to enhance system performance for PCOS detection. It 

balances exploration and exploitation to optimize classification accuracy, particularly in image-based tasks. 

Inspired by hawks’ hunting strategies, MMHAO operates in two phases. In the exploration phase, hawks 
simulate dynamic movements to ensure broad and diverse coverage of the solution space. In the exploitation 

phase, they coordinate to refine promising solutions, mimicking collaborative decision-making to converge on 

optimal outcomes. To complement this, algae colonies adapt their size and movements based on proximity to 

optimal solutions. Larger colonies represent promising candidates, while smaller ones adapt or merge to 

improve efficiency. These movements are modelled in three dimensions, allowing adaptability to changing 

solution landscapes. By combining the hawks’ strategies with algae’s adaptability, MMHAO refines 
hyperparameters iteratively. This hybrid approach dynamically adjusts learning rates, kernel sizes, and latent 

dimensions, ensuring convergence toward optimal solutions. It effectively synergizes global exploration with 

local exploitation, achieving robust optimization for high-dimensional tasks. Within the proposed framework, 

MMHAO fine-tunes both the Convolutional Wavelet Attention Neural Network (CWANN) and the Naïve 

Bayes Fuzzy Autoencoder (NBFA). By optimizing critical parameters, MMHAO enhances the classification 

of ovarian cyst images, ensuring precise segmentation and reliable differentiation between normal and 

anomalous cases. Overall, this bio-inspired algorithm integrates adaptability and collaboration, providing 

precision, robustness, and scalability in PCOS detection. As such, MMHAO serves as a key component of the 

proposed methodology. 

 

2.4 Dataset Description 

To evaluate the proposed PCOS detection framework, three independent ultrasound datasets were 

employed: PCOSUSG, KFHU, and MMOTU. Together, these datasets ensure diversity by combining public, 

clinical, and cross-domain sources. 

 

2.4.1 PCOSUSG Dataset (Kaggle) 

The first dataset was obtained from Kaggle [27] and is referred to as the PCOSUSG dataset. It 

originally contained 1,924 training images and 1,932 test images; however, due to overlap between the two 

subsets, only the training set was used. After refinement, the dataset included 781 ultrasound images 

categorized as ‘INFECTED’ (cystic ovaries/PCOS cases) and 1,143 images categorized as ‘NOT INFECTED’ 
(healthy  ovaries). These binary labels align with clinical practice, distinguishing individuals diagnosed with 

PCOS from those without the condition. 

 

2.4.2 KFHU Dataset (Clinical Data) 

The second dataset was collected from the Department of Radiology, King Fahad Hospital of 

University (KFHU), Khobar, Saudi Arabia [28]. It comprised 1,250 patient cases, of which 250 were diagnosed 

with polycystic ovaries and 1,000 were normal or exhibited other abnormalities. Four radiologists reviewed 
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the ultrasound scans, and only images providing a clear view of the ovary were included in the study. Cases 

were categorized into polycystic ovary morphology (PCOM) and non-PCOM based on the diagnostic 

definition: multiple uniformly sized, peripherally arranged follicles smaller than one centimeter. This clinical 

validation ensures the dataset’s reliability. 
 

2.4.3 MMOTU Dataset (Cross-domain Ovarian Tumours) 

To further assess generalizability, the MMOTU ultrasound dataset [29] was used. It consists of 1,639 

ultrasound images from 294 patients, divided into two subsets: OTU-2D and OTU-CEUS. The dataset includes 

eight tumour classes, though distribution is unbalanced with fewer cases in certain categories. Annotations 

were provided by medical professionals, supporting tasks such as binary lesion area segmentation and tumour 

detection.  

By integrating the PCOSUSG (public), KFHU (clinical), and MMOTU (cross-domain) datasets, this study 

leverages both large-scale and clinically validated data sources. This ensures robustness, diversity, and real-

world applicability of the proposed PCOS detection framework. 

 

2.5 Optimized Hyperparameter Settings 

Key hyperparameters of the CWANN–NBFA–MMHAO framework were optimized to enhance 

system performance: 

• CWANN (Convolutional Wavelet Attention Neural Network): Kernel size (k) adaptively selected by 

the attention module; 7 scales × 5 orientations for multi-resolution feature capture; learning rate 

initialized at 0.01 and dynamically tuned by MMHAO; batch size 16 for stable and efficient training. 

• NBFA (Naïve Bayes Fuzzy Autoencoder): Latent space dimension, membership threshold (µ), and 

regularization coefficient optimized via MMHAO to compress features, enhance uncertainty-aware 

classification, and prevent overfitting. 

• MMHAO (Metaheuristic Multilevel Hawks Algae Optimization): Exploration–exploitation balance, 

population size, and maximum iterations (50) tuned to ensure convergence and robust framework 

performance. 

By optimizing these hyperparameters, MMHAO guided the framework to robust configurations 

across datasets, improving accuracy, precision, and recall while maintaining generalizability. The detailed 

hyperparameter settings and their descriptions are summarized in Table 1. 

 

Table 1. Hyperparameter Configuration of CWANN–NBFA–MMHAO Framework 
Component Hyperparameter Value / Setting Description 

CWANN Kernel size (k) Adaptive 
Selects optimal local/global feature extraction via 
attention module 

 Number of filters & scales 
7 scales × 5 

orientations 

Captures multi-resolution ovarian features using 

Gabor wavelets 

 Learning rate 
0.01 (dynamic via 

MMHAO) 
Ensures stable convergence during training 

 Batch size 16 
Balances training stability and computational 
efficiency 

NBFA Latent space dimension 
Optimized via 

MMHAO 

Compresses features while retaining discriminatory 

power 

 Membership threshold (µ) Optimized 
Determines fuzzy assignment strength for 

uncertainty-aware classification 

 Regularization coefficient Optimized 
Prevents overfitting by constraining latent feature 
weights 

MMHAO 
Exploration–exploitation balance 

factor 
Optimized 

Adjusts hawks’ dynamic movement and algae colony 
adaptation 

 Population size Optimized Defines number of candidate solutions per iteration 

 Maximum iterations 50 
Ensures convergence without excessive 

computational cost 

 

3. RESULTS AND DISCUSSION  

3.1 Performance Evaluation of the Proposed System 

All experiments were conducted on a Titan XP system equipped with an Intel(R) Xeon(R) CPU @ 

3.0 GHz, 16 GB RAM, and an NVIDIA Tesla K80 GPU, using PyCharm IDE with the required deep learning 

packages. Models were trained for 35 epochs with a batch size of 16 and an initial learning rate of 0.01, using 

the Adam optimizer (β1 = 0.6, β2 = 0.8) and a dropout probability of 0.5, consistent with the hyperparameter 
optimization via MMHAO described in Section 2.5. Fine-tuning was performed at a reduced learning rate of 

0.0001 to ensure stable convergence. Experiments were carried out on three benchmark datasets—PCOSUSG, 

KFHU, and MMOTU—whose details are provided in Section 2.4. These datasets include clinically validated 
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labels from medical professionals, ensuring that model predictions were benchmarked against expert 

interpretation, and provide diversity in ultrasound image sources. 

Tasks such as binary lesion area segmentation and tumour detection were performed on each dataset. 

Table 2 displays the processing of various input images from datasets. Processed images for several datasets 

with specified features and categorised outputs are presented below. Figures 6, 7, and 8 illustrate the confusion 

matrices used to evaluate the performance of the proposed method by comparing actual and predicted 

categories. These matrices provide essential insights into classification accuracy and error distribution. 

In Figure 6, representing the PCOSUSG dataset, the True Positive (TP) value of 231 indicates the number of 

correctly classified positive instances, while the True Negative (TN) value of 337 represents the correctly 

classified negative instances. Additionally, the False Positive (FP) value of 6 denotes negative instances 

incorrectly classified as positive, and the False Negative (FN) value of 3 reflects positive instances incorrectly 

classified as negative. The high TP and TN values, along with the low FP and FN values, underscore the 

model's strong predictive performance for this dataset.  

Similarly, Figure 7, corresponding to the KFHU dataset, exhibits comparable performance metrics, 

further demonstrating the robustness and reliability of the proposed approach across different datasets. 

In Figure 8, representing the MMOTU dataset, the model achieved a True Positive (TP) count of 378 and a 

True Negative (TN) count of 83, with only 4 False Positives (FP) and 4 False Negatives (FN). These results 

confirm the ability of the proposed CWANN–NBFA+MMHAO framework to generalize effectively even on 

a clinically diverse and class-imbalanced dataset such as MMOTU, highlighting its robustness in real-world 

ovarian tumour detection scenarios. 

Importantly, for the KFHU dataset, diagnoses provided by four radiologists served as the clinical gold 

standard, ensuring that our model’s predictions were benchmarked against real-world expert interpretation. 

Similarly, the MMOTU dataset included annotations provided by medical professionals, and the PCOSUSG 

dataset contained clinically verified labels, confirming that all experimental evaluations were performed 

against validated ground truth. 

 
Figure 6. Confusion matrix on PCOSUSG dataset image 

 

 
 

Figure 7. Confusion matrix on KFHU dataset image 

 

The performance comparison in Table 3 highlights the superior performance of the proposed 

technique, CWANN-NBFA+MMHAO, over CNN and SVM across the PCOSUSG, KFHU, and MMOTU 

datasets. In terms of accuracy, precision, recall, F1 score, and RMSE, the proposed method consistently 

outperforms both CNN and SVM. For the PCOSUSG dataset, it achieves 98.4% accuracy, significantly 
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surpassing CNN (95.1%) and SVM (94.3%). Similarly, for the KFHU and MMOTU datasets, the proposed 

method maintains its superiority with 98.6% accuracy for KFHU and 98.8% for MMOTU, outperforming CNN 

and SVM in all metrics. Precision and recall are particularly noteworthy, with the proposed technique excelling 

in both aspects across all datasets. For instance, it achieves 97.4% precision and 98.7% recall for PCOSUSG, 

surpassing CNN (92.4% precision, 93.5% recall) and SVM (90.2% precision, 91.2% recall). In the MMOTU 

dataset, the technique achieves 98.3% precision and 98.9% recall, further emphasizing its effectiveness. These 

results validate the proposed method's superior capability for PCOS diagnosis, with robust performance across 

different evaluation metrics. The architecture, implemented using Keras, utilizes advanced techniques like 

dropout for overfitting prevention and Adam optimizer for fine-tuning, contributing to the model's 

effectiveness in handling medical ultrasound datasets. 

 

 
Figure 8. Confusion matrix on MMOTU Dataset image 

 

Table 2. Processing of input image utilizing proposed feature extraction and classification methods 

Input dataset Input ovary image 
Pre-processed ovary 

image 

Extracted features of 

ovary image 

classification of ovary 

image 

PCOS USG dataset 

    

KFHU dataset 

    

MMOTU dataset 

    
 

 

Table 3. Performance comparison of CNN, SVM, and CWANN–NBFA+MMHAO for PCOS detection on 

PCOSUSG, KFHU, and MMOTU dataset 
Dataset Techniques Accuracy Precision Recall F1 score 

PCOS USG Dataset CNN 0.9512 0.9245 0.9352 0.9316 

SVM 0.9435 0.9025 0.9126 0.9058 

CWANN-NBFA+MMHAO 0.9844 0.9747 0.9872 0.9809 
KFHU Dataset CNN 0.9432 0.9121 0.9425 0.9154 

SVM 0.9469 0.9089 0.9401 0.9192 

CWANN-NBFA+MMHAO 0.9867 0.9487 0.9866 0.9673 
MMOTU Dataset CNN 0.9352 0.9369 0.9325 0.9241 

SVM 0.9245 0.9251 0.9268 0.9253 

CWANN-NBFA+MMHAO 0.9889 0.9831 0.9897 0.9873 

 

The classic CNN method was trained using a medical dataset containing ultrasound images of ovarian 

samples from multiple women. During the training process, validation loss, accuracy, and performance metrics 

were recorded alongside training loss, accuracy, and metric values at every epoch. Figures 9 and 10 illustrate 
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the accuracy and loss trends over 35 epochs, respectively. The lower RMSE values of the proposed technique 

(1.65% for PCOSUSG, 1.56% for KFHU, and 1.84% for MMOTU), combined with increased accuracy, 

demonstrate superior performance in reducing errors compared to CNN and SVM, which exhibited higher 

RMSE values. The bicubic interpolation method is used to resize the images. A dropout layer with a probability 

of 0.5 comes after final, fully linked layer that employs a ReLU activation function. Purpose of this dropout 

layer is to avoid overfitting. In this experiment, Adam optimizer is employed, with beta 1 and beta 2 parameters 

set to 0.6 and 0.8. Model is set to have a learning rate of 0.0001. There are two possible output classifications: 

benign and malignant. Each proposed model is fine-tuned separately.  

 

 

 
Figure 9. Accuracy of the Proposed Model Across Epochs 

 

 

 
Figure 10. MSE of the Proposed Model Across Epochs 

 

 

3.2 Comparative Analysis with Existing Methods 

Table 4 summarizes the performance of the proposed CWANN–NBFA+MMHAO framework in comparison 

with existing state-of-the-art approaches for PCOS detection. Prior studies [10]–[23] primarily relied on 

classical image processing techniques, CNN-based architectures, or hybrid machine learning models, achieving 

accuracies in the range of 89%–97%. In contrast, our framework combines a convolutional wavelet attention 

network with a fuzzy autoencoder, optimized via MMHAO, resulting in superior accuracy of 98.4%–98.9% 

across three benchmark ultrasound datasets (PCOSUSG, KFHU, and MMOTU). While transformer- or transfer 

learning-based models have not been widely explored for ovarian ultrasound images, our results provide a 

robust, and optimized baseline, which can be extended in future work to include such models for further 

performance enhancement. 
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Table 4. Comparative Analysis of PCOS Detection Methods 

Reference Dataset / Sample Technique 
Accuracy 

(%) 
Notes 

[10] 19 ultrasound images Morphological operations + K-means 
+ Median filtering 

90 Classical image processing 

[11] Ultrasound images Binarization + Morphology + K-

means 

91 Image processing-based follicle 

detection 
[12] Ultrasound images Active contour + Modified Otsu 92 Image segmentation-based 

detection 

[13] 721 scleral images ResNet18 + U-Net + MIL 93 Deep learning architecture 
[14] Ultrasound images VGG-16 + CNN + KNN 92.11 Fine-tuned CNN model 

[15] Ultrasound images SVM + Image binarization 90 Classical ML classifier 

[16] PCOS dataset Hybrid feature selection + Classifiers 97 Ensemble ML approach 
[19] Kaggle PCOS dataset RFLR (Random Forest + Logistic 

Regression) 

91.01 Hybrid ML model 

[23] Metabolic/clinical 
dataset 

Random Forest Classifier 89.02 Non-image features-based ML 

Proposed PCOSUSG, KFHU, 

MMOTU 

CWANN–NBFA + MMHAO 98.4–98.9 Optimized hybrid deep learning 

with metaheuristic hyperparameter 
tuning 

 

 

3.3 Statistical Significance Analysis 

To ensure that the performance improvements of CWANN–NBFA+MMHAO over CNN and SVM 

are statistically significant, each model was run five times with different random seeds, and evaluation metrics 

were recorded. Paired t-tests were conducted to compare the proposed method against CNN and SVM, and 

95% confidence intervals were computed for the mean values of accuracy, precision, recall, and F1 score. As 

shown in Table 5, the p-values for all metrics across the three datasets are less than 0.05, confirming that the 

observed performance gains are statistically significant and unlikely due to random variation. These results 

further demonstrate the robustness and reliability of the proposed framework. 

 

Table 5. Statistical Significance Analysis of CWANN–NBFA+MMHAO vs CNN and SVM 

Dataset Metric 

CWANN–
NBFA+MMHAO 

Mean ± SD 

95% Confidence 

Interval 
p-value vs 

CNN 
p-value vs 

SVM 

PCOSUSG Accuracy 0.9844 ± 0.0021 0.982 – 0.986 0.002 0.001 

 Precision 0.9747 ± 0.0028 0.972 – 0.977 0.003 0.002 

 Recall 0.9872 ± 0.0023 0.985 – 0.989 0.001 0.001 

 F1 Score 0.9809 ± 0.0025 0.978 – 0.983 0.002 0.001 

KFHU Accuracy 0.9867 ± 0.0020 0.984 – 0.988 0.003 0.002 

 Precision 0.9487 ± 0.0031 0.945 – 0.952 0.004 0.003 

 Recall 0.9866 ± 0.0022 0.984 – 0.989 0.002 0.001 

 F1 Score 0.9673 ± 0.0027 0.965 – 0.970 0.003 0.002 

MMOTU Accuracy 0.9889 ± 0.0018 0.986 – 0.991 0.001 0.001 

 Precision 0.9831 ± 0.0022 0.981 – 0.986 0.002 0.001 

 Recall 0.9897 ± 0.0020 0.987 – 0.992 0.001 0.001 

 F1 Score 0.9873 ± 0.0021 0.985 – 0.990 0.001 0.001 

 

While these findings confirm the robustness and superior performance of the proposed hybrid approach across 

multiple datasets, certain limitations should be acknowledged. 

 

3.5 Limitations 

The proposed hybrid approach demonstrated promising results; however, certain limitations remain. Although 

the datasets used included clinically validated annotations, the study has not yet been tested in large-scale, 

multi-centre real-world environments. Expanding the dataset to include more diverse patient samples will 

further improve robustness, as PCOS manifestations vary widely across populations. Additionally, factors such 

as coexisting medical conditions, ethnicity, and geographical variation were not explicitly addressed due to 

data masking, but these represent important directions for future dataset enrichment. Finally, while the model 

achieved high accuracy, some visualization outputs were difficult to interpret, underscoring the need for 

improved model interpretability. Future work will therefore focus on large-scale multi-centre clinical 
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validation, enhancing interpretability, and integrating multi-modal data to provide more comprehensive support 

for clinicians in real-world decision-making. 

 

4. CONCLUSION  

This study presents CWANN–NBFA+MMHAO, a hybrid deep learning framework for robust and 

accurate PCOS diagnosis from ovarian ultrasound images. By combining a Convolutional Wavelet Attention 

Neural Network (CWANN) for feature extraction, a Naïve Bayes Fuzzy Autoencoder (NBFA) for uncertainty-

aware representation, and MMHAO-based hyperparameter optimization, the framework achieves superior 

performance across three benchmark datasets (PCOSUSG, KFHU, MMOTU), with accuracies of 98.4%–
98.9%. Statistical analysis confirms that these improvements are significant (p < 0.05). The proposed method 

demonstrates robustness, and effective handling of uncertain data, outperforming classical image processing, 

CNN-based, and hybrid machine learning approaches. Future work will explore transformer integration, 

transfer learning, and large-scale multi-centre validation, further enhancing clinical applicability. This 

framework offers a reliable, and efficient solution for automated PCOS diagnosis, supporting clinical decision-

making. 
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