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Polycystic Ovarian Syndrome (PCOS) is a hormone-related health condition
in women, commonly classified as an endocrine disorder. It is most prevalent
during the childbearing years, typically between the ages of 15 and 44. PCOS
leads to hormonal imbalances that cause irregular menstrual cycles, hair loss,
and other symptoms, and it is associated with long-term health risks such as
heart disease and diabetes. Recent advances in deep learning have shown
promising results in accurately recognizing and differentiating ovarian cysts
from other ovarian tumours. This study proposes a novel technique for PCOS
symptom detection by analysing ovarian images through feature extraction,
classification, and metaheuristic-based optimization. Ovarian images are first
pre-processed for noise removal and smoothing, followed by feature extraction
and classification using a Convolutional Wavelet Attention Neural Network
with a Naive Bayes Fuzzy Autoencoder (CWANN-NBFA). Optimization is
then performed using the Metaheuristic Multilevel Hawks Algae Optimization

(MMHAO) algorithm. Experimental evaluations were conducted on multiple
ovarian image datasets. The proposed technique achieved an accuracy of over
98% across the PCOSUSG, KFHU, and MMOTU datasets, demonstrating its
robustness and effectiveness in addressing the challenges of PCOS detection.
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1. INTRODUCTION

Ovaries are classified into three types based on their structural features: normal, cystic, and polycystic
(Figure 1). In normal ovaries, cysts containing eggs form every month. Each cyst is filled with fluid and
discharged during menstrual bleeding. Cysts that are not eliminated from the body persist in the ovarian tissue,
resulting in polycystic ovaries. Although polycystic ovaries contain many follicles, they fail to mature, and
ovulation does not occur. This is the primary distinction between polycystic and normal ovaries [1]. Polycystic
ovarian syndrome (PCOS) is a hormonal condition characterized by a variety of symptoms. It affects
approximately 20% of women of reproductive age. The Rotterdam criteria specify three diagnostic features of
PCOS: chronic anovulation or menstrual irregularity, excessive androgenic hormones in women, and the
presence of multiple follicles in ultrasound scans. Women exhibiting at least two of these features are
considered to have PCOS [2]. A blood test is often performed to confirm the diagnosis of this condition. PCOS
is associated with several health complications, including diabetes, insulin resistance, obesity, and
cardiovascular disease. Therefore, early recognition and timely treatment are critical to preventing the
development of secondary disorders. The primary indicators of PCOS include insulin resistance and elevated
luteinizing hormone (LH) levels, which disrupt ovulation in women [3]. If left untreated, PCOS can lead to
severe diabetes as well as cardiovascular complications. Ultrasonography (USG) is a medical imaging
technique that employs high-frequency sound waves to produce two-dimensional black-and-white images. This
imaging method is widely used for the diagnosis of PCOS. Beyond PCOS, ultrasound instruments are also used
for the preliminary diagnosis of various medical conditions, including gallbladder disease, breast tumours,
thyroid abnormalities, prostate issues, and gynaecological disorders. Deep learning, a rapidly evolving
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technology, has shown great potential in addressing challenges across various fields [4], [5]. In healthcare, it
allows researchers and practitioners to uncover patterns in hidden data, thereby improving efficiency and
outcomes. It also enhances diagnostic accuracy and treatment planning, enabling medical professionals to make
better-informed decisions. Polycystic ovary syndrome (PCOS) is a medical condition for which no single
definitive diagnostic test or universally effective treatment currently exists. Endocrine disorders causing
infertility often lead to the development of ovarian cysts in women of reproductive age. The reproductive
system plays a vital role in a woman’s health. During reproduction, certain molecules released by the egg guide
sperm toward its surface, facilitating fertilization. Fertilization typically occurs in the oviducts, though it can
also happen in the uterus. PCOS remains a prominent topic in medical research. In the clinical evaluation of
ovarian disorders, ultrasound has been the most widely used imaging modality [6]. Compared with computed
tomography (CT) and magnetic resonance imaging (MRI), ultrasound offers several advantages—it is
inexpensive, safe, easily accessible, and provides real-time imaging results [7]. With advances in imaging
technologies, deep learning (DL) offers great potential for automated analysis, improving objectivity and
diagnostic accuracy. Computer vision and image analysis, in particular, benefit significantly from DL
applications. Automatic classification of PCOS using clinical data and ultrasound images can support early
detection. Diagnosis of PCOS is based on multiple criteria and symptoms, often requiring reliable menstrual
history and ultrasound examinations. However, due to its wide spectrum of symptoms and the absence of a
single standardized diagnostic test, clinicians often rely on multiple clinical assessments and, at times,
unnecessary radiological imaging. The complex pathophysiology of PCOS further complicates diagnosis, as
some symptoms or test results may be inconsistent or irrelevant. Nevertheless, since PCOS directly leads to
ovarian dysfunction, early identification and detection with minimal laboratory tests and imaging procedures
remain essential [8], [9].

Normal Cystic Polycystic

Figure 1. Illustration of normal, cystic, and polycystic ovaries showing typical follicular patterns.

Several digital image processing techniques are commonly employed in the construction of computer-
aided PCOS follicle detection systems. For instance, H Chen et al. [10] suggested an automated technique to
identify PCOS by separating the regions of follicles and cysts from ultrasound pictures. They applied many
digital image processing techniques on 19 ultrasound pictures, including morphological erosion, K-means
clustering, median filtering, histogram equalisation. In [11], they examined and contrasted two approaches for
follicle detection utilizing image processing methods to diagnose PCOS: first involves binarization,
morphological procedures, contrast modification, noise reduction, k-means clustering, hole filling,
morphologic procedures. The analytical results were also compared to two performance indicators, false
rejection rate (FRR) as well as false acceptance rate (FAR). Authors [12] presented an image processing-based
approach to PCOS detection that uses active contour in conjunction with modified Otsu method to precisely
quantify number of cysts in ultrasound ovary image. Two main components of their proposed method are
follicle identification and image pre-processing. According to work [13], PCOS patients can be classified using
scleral pictures and a deep learning architecture that combines ResNet 18, U-net, Multi Instance Learning
method. Their dataset had 721 photos in all, 388 of which included PCOS patients. Their suggested method
had an AUC of 98%, accuracy of 93% on average. Author [14] developed a method to identify PCOS in
ultrasound images using image segmentation and convolutional neural networks (CNNs). Additionally, the
pictures were categorised using the K-Nearest Neighbour technique. Using their own dataset, refined the 16
Layered VGG-16 model for PCOS classification from ultrasound pictures. The accuracy of their model was
92.11% used image binarization on B-mode ultrasound pictures. Author [15] used image binarization as an
image preprocessing technique after converting ultrasonic images of ovarian cysts to greyscale images. After
post-processing the images, the authors classified the cysts and extracted geometrical features by labelling and
connecting the various components. They achieved 90% accuracy using SVM as their classifier. In order to
categorise their PCOS dataset, work [16] assessed how well a variety of feature selection techniques and
classifiers performed, in addition to their suggested hybrid feature selection and classification method.
According to the experimental data, out of all the approaches examined, the hybrid strategy had the greatest
classification accuracy. PCOS dataset from Obafemi Awolowo University was classified utilizing C4.5
Decision Tree, NB, MLP by Author [17]. Results demonstrated that C4.5 Decision Tree as well as MLP
performed better than NB with an accuracy rate of 74.359. PCOS survey dataset was classed using three
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different classifiers in work. The results showed that NB outperformed the other two classifiers with an
accuracy rate of 97.65%. The author [18] applied many classification techniques to diagnose PCOS early after
using Principal Component Analysis (PCA) to identify the best aspects of their PCOS dataset, which was
gathered from Thrissur infertility treatment facilities. RF performed better than the other classifiers, according
to the results. Work [19] extracted the most important properties from the Kaggle PCOS dataset using a filter-
based univariate feature selection technique. In order to classify PCOS using ten distinct features, they
additionally used gradient boosting, RF, Logistic Regression (LR), Hybrid Random Forest and Logistic
Regression (RFLR). According to results, RFLR performed better than other classifiers in terms of recall (90%)
and classification accuracy (91.01%). In order to predict PCOS based on discovery of new genes, [20] used a
variety of ML methods, including K-nearest neighbour (KNN), decision trees, SVM with different kernel
functions. [21] developed an automated system that will serve as an aided tool for physician, saving a great
deal of time during patient examinations, consequently, decreasing delay in diagnosing risk of PCOS by
utilising metabolic and clinical factors in a feature vector. The system makes use of machine learning
algorithms like Bayes and Logistic Regression (LR). [22], have conducted a thorough investigation on the
illness and its three diagnostic criteria, providing us with information on anomalies related to insulin,
gonadotropin, folliculogenesis in addition to PCOS. Machine learning models based on metabolic
characteristic are proposed in work [23]. The author put out a model utilising the Statistical Package for the
Social Sciences (SPSS) to illustrate the significance of metabolic traits. With an accuracy rating of 89.02%,
RFC was shown to be the most pertinent and accurate technique for PCOS prediction.

These studies highlight the potential of integrating deep learning and machine learning for early
detection and reliable diagnosis of PCOS. However, the complexity of PCOS symptoms and the heterogeneity
of diagnostic data necessitate further advancements in developing robust and efficient diagnostic models that
combine clinical data with imaging technologies. This paper aims to address these challenges by proposing a
novel approach to PCOS diagnosis, leveraging the strengths of deep learning for autonomous analysis and
improving diagnostic accuracy. Specifically, a robust system for detecting Polycystic Ovary Syndrome (PCOS)
symptoms is proposed, integrating metaheuristic models and ensemble deep learning techniques. The system
focuses on analysing key traits for PCOS prognosis and employs a deep learning method to extract essential
features from ultrasound images, including shape and texture characteristics of ovarian cysts. The methodology
incorporates pre-processing techniques to enhance ultrasound images, addressing challenges such as
underexposure and noise. Adaptive Bilateral Filtering (ABF) improves image sharpness, while kernel
adjustments ensure precise filtering. To further optimize classification performance, a Convolutional Wavelet
Attention Neural Network (CWANN) is integrated with a Naive Bayes Fuzzy Autoencoder (NBFA) model.
This deep learning approach eliminates the need for manual feature extraction, enabling more accurate
classification. The CWANN employs Gabor Wavelet filters and attention mechanisms to handle dimensionality
and enhance feature extraction, ensuring high classification accuracy. The Metaheuristic Multilevel Hawks
Algae Optimization (MMHAO) algorithm plays a key role in optimizing hyperparameters and structural
configurations. By balancing exploration and exploitation, MMHAO refines model parameters, ensuring
optimal classification accuracy for image-based PCOS detection. This hybrid optimization method is critical
in handling high-dimensional datasets, ensuring the model's scalability and precision, which is validated
against clinical standards for ovarian cyst diagnosis. Through this synergy, the proposed method achieves
superior performance on multiple benchmark PCOS ultrasound datasets, demonstrating both robustness and
clinical relevance. To the best of our knowledge, this is the first work to unify wavelet-based attention, fuzzy
autoencoding, and bio-inspired metaheuristic optimization into a single framework for PCOS detection from
ultrasound images.

2. RESEARCH METHOD

The proposed system for PCOS symptom detection integrates metaheuristic models and ensemble
deep learning techniques to ensure accurate and reliable diagnosis. A simplified workflow of the system is
illustrated in Figure 2, highlighting the major stages: data input, preprocessing, deep feature extraction,
classification, optimization, and output. To capture both clinical and imaging features, the system identifies 19
traits that serve as the foundation for PCOS prognosis. The dataset is divided in a 70:30 ratio for training and
testing. For robust classification, the framework automatically extracts shape and texture characteristics of non-
pure ovarian cysts, normal pelvic cysts, and polycystic ovarian cysts. The detailed architecture of the proposed
detection model is shown in Figure 3, where the Convolutional Wavelet Attention Neural Network (CWANN),
Naive Bayes Fuzzy Autoencoder (NBFA), and Metaheuristic Multilevel Hawks Algae Optimization
(MMHAO) components are integrated for improved accuracy. The Gini coefficient is used to assess feature
importance, and initial testing with traditional classifiers revealed that the Decision Tree achieved the most
reliable baseline performance. Clinical validation is ensured through comparison with expert diagnoses (“gold
standard”), with healthcare practitioners reviewing model outputs for reliability.
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Figure 2. Simplified workflow of the proposed PCOS detection framework
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Figure 3. Detailed Architecture of the Proposed PCOS Detection Model

2.1 Preprocessing

Preprocessing addresses the challenge of distinguishing healthy and cystic regions in ultrasound
(USG) images, especially when images are underexposed or noisy. Adaptive Bilateral Filtering (ABF) is
employed to enhance image sharpness by selectively adjusting pixel intensities. Unlike the standard bilateral
filter, which applies uniform smoothing, ABF modifies the kernel’s centre and width dynamically, allowing
sharper adjustments in critical regions.
Mathematical Formulation:

Let the input image be represented as f: [=R. The output image is computed as:

g =17 Tjea 0(Di(FE =) —ODfE =) (1)
Where:
e Q denotes the local window (neighbourhood) around pixel i.
e  (j) is the spatial weight for pixel j within the window.
e  0i(t) is the Gaussian range kernel at pixel i, defined as:

@i(t) = exp (— 2;(21,)2) (2)

e o(i) is the standard deviation of the Gaussian kernel, dynamically adjusted for each pixel to account
for local intensity variations.

e 0(i) is an adaptive scaling factor to enhance contrast in underexposed regions.

e (i) is the normalization factor ensuring that the weighted sum of intensities. This adaptive kernel
ensures enhanced visibility of underexposed cystic regions.
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2.2. Convolutional Wavelet Attention Neural Network with Naive Bayes Fuzzy Autoencoder (CWANN-
NBFA)

2.2.1 Convolutional Wavelet Attention Neural Network (CWANN).

The CWANN is specifically designed to extract discriminative features from ultrasound (USG)
images by combining wavelet-based filters with attention mechanisms. The overall working principle of the
CNN model is illustrated in Figure 4. Unlike conventional CNNs, which primarily capture local intensity
variations, CWANN employs Gabor wavelet filters to model both texture and shape patterns of ovarian cysts
across multiple scales and orientations [24], [25]. The detailed architecture of the CWANN, including the basic
unit of the proposed network and the spatial down sampling module, is illustrated in Figure 5. These features
are highly relevant for distinguishing polycystic ovaries from normal ones [26], as PCOS often presents with
subtle morphological variations. The attention module further enhances this process by selectively emphasizing
the most informative channels while suppressing redundant or noisy features. This is achieved through global
average pooling (GAP), one-dimensional convolution, and sigmoid activation, enabling the network to capture
inter-channel dependencies without dimensionality reduction errors. The result is a robust feature extractor that
adapts to variations in cyst size, position, and imaging quality.

Fully connected Softmax

Convolutional Pooling layer Convolutional . e
Pooling layer layer classifier

layer layer

Figure 4. Working Principle of the CNN Model

2.2.2 Naive Bayes Fuzzy Autoencoder (NBFA).

The NBFA integrates three concepts—autoencoding, fuzzy logic, and probabilistic classification—into a
unified module. First, the autoencoder reduces high-dimensional CWANN feature maps into a compact latent
representation through a bottleneck layer, ensuring efficient learning and generalization. Next, fuzzy logic
models uncertainty inherent in ultrasound features, such as overlapping cyst boundaries or ambiguous tissue
textures, by assigning partial membership values between 0 and 1 instead of binary class boundaries. Finally,
the Naive Bayes classifier operates on the latent fuzzy features to assign probabilistic class labels, leveraging
prior and conditional probabilities to handle variability across patients. This hybrid mechanism enhances
classification reliability in cases where deterministic approaches are prone to misclassification.

2.2.3 Integration of CWANN and NBFA.

Within the proposed framework, CWANN functions as the primary feature extractor, while NBFA performs
uncertainty-aware dimensionality reduction and probabilistic classification. Together, they form a
complementary pair—CWANN ensures that informative morphological and textural features are captured, and
NBFA ensures that these features are robustly and reliably classified. Subsequently, the Metaheuristic
Multilevel Hawks Algae Optimization (MMHAO) algorithm fine-tunes the hyperparameters of both modules,
ensuring adaptability across datasets and maximizing diagnostic accuracy.

A Hybrid Deep Learning Framework for Accurate Polycystic Ovary... (A. Boobalan et al)



606 a ISSN: 2089-3272

.

[ 3x3DW conv ] { 7x7DW conv J

\ J

Channel split

7X7DW conv

3x3DW conv
7X7DW conv

[ 1x1DW conv ] [ 3x3DW conv J

Attention layer

Channel
shuffle

Channel
shuffle

@) (b)

Figure 5 (a) Basic unit of proposed network. (b) Proposed unit for spatial down sampling

2.3. Metaheuristic Multilevel Hawks Algae Optimization (MMHAO)

The Metaheuristic Multilevel Hawks Algae Optimization (MMHAO) algorithm automates
hyperparameter tuning and structural optimization to enhance system performance for PCOS detection. It
balances exploration and exploitation to optimize classification accuracy, particularly in image-based tasks.
Inspired by hawks’ hunting strategies, MMHAO operates in two phases. In the exploration phase, hawks
simulate dynamic movements to ensure broad and diverse coverage of the solution space. In the exploitation
phase, they coordinate to refine promising solutions, mimicking collaborative decision-making to converge on
optimal outcomes. To complement this, algae colonies adapt their size and movements based on proximity to
optimal solutions. Larger colonies represent promising candidates, while smaller ones adapt or merge to
improve efficiency. These movements are modelled in three dimensions, allowing adaptability to changing
solution landscapes. By combining the hawks’ strategies with algae’s adaptability, MMHAO refines
hyperparameters iteratively. This hybrid approach dynamically adjusts learning rates, kernel sizes, and latent
dimensions, ensuring convergence toward optimal solutions. It effectively synergizes global exploration with
local exploitation, achieving robust optimization for high-dimensional tasks. Within the proposed framework,
MMHAO fine-tunes both the Convolutional Wavelet Attention Neural Network (CWANN) and the Naive
Bayes Fuzzy Autoencoder (NBFA). By optimizing critical parameters, MMHAO enhances the classification
of ovarian cyst images, ensuring precise segmentation and reliable differentiation between normal and
anomalous cases. Overall, this bio-inspired algorithm integrates adaptability and collaboration, providing
precision, robustness, and scalability in PCOS detection. As such, MMHAO serves as a key component of the
proposed methodology.

2.4 Dataset Description

To evaluate the proposed PCOS detection framework, three independent ultrasound datasets were
employed: PCOSUSG, KFHU, and MMOTU. Together, these datasets ensure diversity by combining public,
clinical, and cross-domain sources.

2.4.1 PCOSUSG Dataset (Kaggle)

The first dataset was obtained from Kaggle [27] and is referred to as the PCOSUSG dataset. It
originally contained 1,924 training images and 1,932 test images; however, due to overlap between the two
subsets, only the training set was used. After refinement, the dataset included 781 ultrasound images
categorized as ‘INFECTED’ (cystic ovaries/PCOS cases) and 1,143 images categorized as ‘NOT INFECTED’
(healthy ovaries). These binary labels align with clinical practice, distinguishing individuals diagnosed with
PCOS from those without the condition.

2.4.2 KFHU Dataset (Clinical Data)

The second dataset was collected from the Department of Radiology, King Fahad Hospital of
University (KFHU), Khobar, Saudi Arabia [28]. It comprised 1,250 patient cases, of which 250 were diagnosed
with polycystic ovaries and 1,000 were normal or exhibited other abnormalities. Four radiologists reviewed
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the ultrasound scans, and only images providing a clear view of the ovary were included in the study. Cases
were categorized into polycystic ovary morphology (PCOM) and non-PCOM based on the diagnostic
definition: multiple uniformly sized, peripherally arranged follicles smaller than one centimeter. This clinical
validation ensures the dataset’s reliability.

2.4.3 MMOTU Dataset (Cross-domain Ovarian Tumours)

To further assess generalizability, the MMOTU ultrasound dataset [29] was used. It consists of 1,639
ultrasound images from 294 patients, divided into two subsets: OTU-2D and OTU-CEUS. The dataset includes
eight tumour classes, though distribution is unbalanced with fewer cases in certain categories. Annotations
were provided by medical professionals, supporting tasks such as binary lesion area segmentation and tumour
detection.

By integrating the PCOSUSG (public), KFHU (clinical), and MMOTU (cross-domain) datasets, this study
leverages both large-scale and clinically validated data sources. This ensures robustness, diversity, and real-
world applicability of the proposed PCOS detection framework.

2.5 Optimized Hyperparameter Settings
Key hyperparameters of the CWANN-NBFA-MMHAO framework were optimized to enhance
system performance:

e CWANN (Convolutional Wavelet Attention Neural Network): Kernel size (k) adaptively selected by
the attention module; 7 scales x 5 orientations for multi-resolution feature capture; learning rate
initialized at 0.01 and dynamically tuned by MMHAOQ; batch size 16 for stable and efficient training.

e NBFA (Naive Bayes Fuzzy Autoencoder): Latent space dimension, membership threshold (), and
regularization coefficient optimized via MMHAO to compress features, enhance uncertainty-aware
classification, and prevent overfitting.

e MMHAO (Metaheuristic Multilevel Hawks Algae Optimization): Exploration—exploitation balance,
population size, and maximum iterations (50) tuned to ensure convergence and robust framework
performance.

By optimizing these hyperparameters, MMHAO guided the framework to robust configurations
across datasets, improving accuracy, precision, and recall while maintaining generalizability. The detailed
hyperparameter settings and their descriptions are summarized in Table 1.

Table 1. Hyperparameter Configuration of CWANN-NBFA-MMHAO Framework
Component  Hyperparameter Value / Setting Description
Selects optimal local/global feature extraction via

CWANN Kernel size (k) Adaptive attention module
Number of filters & scales 7 §cales' x5 Captures multi-resolution ovarian features using
orientations Gabor wavelets
. 0.01 (dynamic via . ..
Learning rate MMHAO) Ensures stable convergence during training

Balances training stability and computational

Batch size 16 .
efficiency
. . Optimized via Compresses features while retaining discriminatory
BFA L
N atent space dimension MMHAO power
. . Determines fuzzy assignment strength for
Membership threshold (i) Optimized uncertainty-aware classification
Regularization coefficient Optimized Preyents overfitting by constraining latent feature
weights
MMHAO Exploration—exploitation balance Optimized Adjustg hawks’ dynamic movement and algae colony
factor adaptation
Population size Optimized Defines number of candidate solutions per iteration
. . . Ensures convergence without excessive
Maximum iterations 50

computational cost

3.  RESULTS AND DISCUSSION
3.1 Performance Evaluation of the Proposed System

All experiments were conducted on a Titan XP system equipped with an Intel(R) Xeon(R) CPU @
3.0 GHz, 16 GB RAM, and an NVIDIA Tesla K80 GPU, using PyCharm IDE with the required deep learning
packages. Models were trained for 35 epochs with a batch size of 16 and an initial learning rate of 0.01, using
the Adam optimizer (1 = 0.6, B2 = 0.8) and a dropout probability of 0.5, consistent with the hyperparameter
optimization via MMHAO described in Section 2.5. Fine-tuning was performed at a reduced learning rate of
0.0001 to ensure stable convergence. Experiments were carried out on three benchmark datasets—PCOSUSG,
KFHU, and MMOTU—whose details are provided in Section 2.4. These datasets include clinically validated
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labels from medical professionals, ensuring that model predictions were benchmarked against expert
interpretation, and provide diversity in ultrasound image sources.

Tasks such as binary lesion area segmentation and tumour detection were performed on each dataset.

Table 2 displays the processing of various input images from datasets. Processed images for several datasets
with specified features and categorised outputs are presented below. Figures 6, 7, and 8 illustrate the confusion
matrices used to evaluate the performance of the proposed method by comparing actual and predicted
categories. These matrices provide essential insights into classification accuracy and error distribution.
In Figure 6, representing the PCOSUSG dataset, the True Positive (TP) value of 231 indicates the number of
correctly classified positive instances, while the True Negative (TN) value of 337 represents the correctly
classified negative instances. Additionally, the False Positive (FP) value of 6 denotes negative instances
incorrectly classified as positive, and the False Negative (FN) value of 3 reflects positive instances incorrectly
classified as negative. The high TP and TN values, along with the low FP and FN values, underscore the
model's strong predictive performance for this dataset.

Similarly, Figure 7, corresponding to the KFHU dataset, exhibits comparable performance metrics,

further demonstrating the robustness and reliability of the proposed approach across different datasets.
In Figure 8, representing the MMOTU dataset, the model achieved a True Positive (TP) count of 378 and a
True Negative (TN) count of 83, with only 4 False Positives (FP) and 4 False Negatives (FN). These results
confirm the ability of the proposed CWANN-NBFA+MMHAO framework to generalize effectively even on
a clinically diverse and class-imbalanced dataset such as MMOTU, highlighting its robustness in real-world
ovarian tumour detection scenarios.

Importantly, for the KFHU dataset, diagnoses provided by four radiologists served as the clinical gold
standard, ensuring that our model’s predictions were benchmarked against real-world expert interpretation.
Similarly, the MMOTU dataset included annotations provided by medical professionals, and the PCOSUSG
dataset contained clinically verified labels, confirming that all experimental evaluations were performed
against validated ground truth.

Confusion Matrix for Hidden Nodes 100

Actual
Actual Negative

Actual Positive

|
Predicted Negative Predicted Positive
Predicted

Figure 6. Confusion matrix on PCOSUSG dataset image
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Figure 7. Confusion matrix on KFHU dataset image

The performance comparison in Table 3 highlights the superior performance of the proposed
technique, CWANN-NBFA+MMHAO, over CNN and SVM across the PCOSUSG, KFHU, and MMOTU
datasets. In terms of accuracy, precision, recall, F1 score, and RMSE, the proposed method consistently
outperforms both CNN and SVM. For the PCOSUSG dataset, it achieves 98.4% accuracy, significantly
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surpassing CNN (95.1%) and SVM (94.3%). Similarly, for the KFHU and MMOTU datasets, the proposed
method maintains its superiority with 98.6% accuracy for KFHU and 98.8% for MMOTU, outperforming CNN
and SVM in all metrics. Precision and recall are particularly noteworthy, with the proposed technique excelling
in both aspects across all datasets. For instance, it achieves 97.4% precision and 98.7% recall for PCOSUSG,
surpassing CNN (92.4% precision, 93.5% recall) and SVM (90.2% precision, 91.2% recall). In the MMOTU
dataset, the technique achieves 98.3% precision and 98.9% recall, further emphasizing its effectiveness. These
results validate the proposed method's superior capability for PCOS diagnosis, with robust performance across
different evaluation metrics. The architecture, implemented using Keras, utilizes advanced techniques like
dropout for overfitting prevention and Adam optimizer for fine-tuning, contributing to the model's
effectiveness in handling medical ultrasound datasets.

Confusion Matrix for Hidden Nodes 100

- 350

- 300

Actual
Actual Negatives

Actual Positives

i
Actual Negatives Actual Positives
Predicted

Figure 8. Confusion matrix on MMOTU Dataset image

Table 2. Processing of input image utilizing proposed feature extraction and classification methods

Pre-processed ovary Extracted features of  classification of ovary

image ovary image image
TR

Input dataset Input ovary image

PCOS USG dataset

KFHU dataset

MMOTU dataset

Table 3. Performance comparison of CNN, SVM, and CWANN-NBFA+MMHAO for PCOS detection on
PCOSUSG, KFHU, and MMOTU dataset

Dataset Techniques Accuracy Precision Recall F1 score
PCOS USG Dataset CNN 0.9512 0.9245 0.9352 0.9316
SVM 0.9435 0.9025 0.9126 0.9058
CWANN-NBFA+MMHAO 0.9844 0.9747 0.9872 0.9809
KFHU Dataset CNN 0.9432 0.9121 0.9425 0.9154
SVM 0.9469 0.9089 0.9401 0.9192
CWANN-NBFA+MMHAO 0.9867 0.9487 0.9866 0.9673
MMOTU Dataset CNN 0.9352 0.9369 0.9325 0.9241
SVM 0.9245 0.9251 0.9268 0.9253
CWANN-NBFA+MMHAO 0.9889 0.9831 0.9897 0.9873

The classic CNN method was trained using a medical dataset containing ultrasound images of ovarian
samples from multiple women. During the training process, validation loss, accuracy, and performance metrics
were recorded alongside training loss, accuracy, and metric values at every epoch. Figures 9 and 10 illustrate
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the accuracy and loss trends over 35 epochs, respectively. The lower RMSE values of the proposed technique
(1.65% for PCOSUSG, 1.56% for KFHU, and 1.84% for MMOTU), combined with increased accuracy,
demonstrate superior performance in reducing errors compared to CNN and SVM, which exhibited higher
RMSE values. The bicubic interpolation method is used to resize the images. A dropout layer with a probability
of 0.5 comes after final, fully linked layer that employs a ReL U activation function. Purpose of this dropout
layer is to avoid overfitting. In this experiment, Adam optimizer is employed, with beta 1 and beta 2 parameters
set to 0.6 and 0.8. Model is set to have a learning rate of 0.0001. There are two possible output classifications:
benign and malignant. Each proposed model is fine-tuned separately.
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Figure 9. Accuracy of the Proposed Model Across Epochs
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3.2 Comparative Analysis with Existing Methods

Table 4 summarizes the performance of the proposed CWANN-NBFA+MMHAO framework in comparison
with existing state-of-the-art approaches for PCOS detection. Prior studies [10]-[23] primarily relied on
classical image processing techniques, CNN-based architectures, or hybrid machine learning models, achieving
accuracies in the range of 89%-97%. In contrast, our framework combines a convolutional wavelet attention
network with a fuzzy autoencoder, optimized via MMHAO, resulting in superior accuracy of 98.4%-98.9%
across three benchmark ultrasound datasets (PCOSUSG, KFHU, and MMOTU). While transformer- or transfer
learning-based models have not been widely explored for ovarian ultrasound images, our results provide a
robust, and optimized baseline, which can be extended in future work to include such models for further
performance enhancement.
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Table 4. Comparative Analysis of PCOS Detection Methods
Reference Dataset / Sample Technique gzc)uracy Notes
[10] 19 ultrasound images Morphological operations + K-means 90 Classical image processing
+ Median filtering
[11] Ultrasound images Binarization + Morphology + K- 91 Image processing-based follicle
means detection
[12] Ultrasound images Active contour + Modified Otsu 92 Image segmentation-based
detection
[13] 721 scleral images ResNet18 + U-Net + MIL 93 Deep learning architecture
[14] Ultrasound images VGG-16 + CNN + KNN 92.11 Fine-tuned CNN model
[15] Ultrasound images SVM + Image binarization 90 Classical ML classifier
[16] PCOS dataset Hybrid feature selection + Classifiers 97 Ensemble ML approach
[19] Kaggle PCOS dataset RFLR (Random Forest + Logistic 91.01 Hybrid ML model
Regression)
[23] Metabolic/clinical Random Forest Classifier 89.02 Non-image features-based ML
dataset
Proposed PCOSUSG, KFHU, CWANN-NBFA + MMHAO 98.4-98.9 Optimized hybrid deep learning
MMOTU with metaheuristic hyperparameter

tuning

3.3 Statistical Significance Analysis

To ensure that the performance improvements of CWANN-NBFA+MMHAO over CNN and SVM
are statistically significant, each model was run five times with different random seeds, and evaluation metrics
were recorded. Paired t-tests were conducted to compare the proposed method against CNN and SVM, and
95% confidence intervals were computed for the mean values of accuracy, precision, recall, and F1 score. As
shown in Table 5, the p-values for all metrics across the three datasets are less than 0.05, confirming that the
observed performance gains are statistically significant and unlikely due to random variation. These results
further demonstrate the robustness and reliability of the proposed framework.

Table 5. Statistical Significance Analysis of CWANN-NBFA+MMHAO vs CNN and SVM

Dataset Metric (N:;‘;‘Itslj-ll\\l/[MHAO 9If1:/e‘:rs;)ln fidence lg;’;“e vs g;‘,’;}ue Vs
Mean + SD

PCOSUSG Accuracy 0.9844 +0.0021 0.982 -0.986 0.002 0.001
Precision 0.9747 + 0.0028 0.972-0.977 0.003 0.002
Recall 0.9872 +0.0023 0.985-0.989 0.001 0.001
F1 Score 0.9809 + 0.0025 0.978 —0.983 0.002 0.001

KFHU Accuracy 0.9867 + 0.0020 0.984 —0.988 0.003 0.002
Precision 0.9487 + 0.0031 0.945 —-0.952 0.004 0.003
Recall 0.9866 + 0.0022 0.984 —0.989 0.002 0.001
F1 Score 0.9673 +0.0027 0.965-0.970 0.003 0.002

MMOTU Accuracy 0.9889 +0.0018 0.986—-0.991 0.001 0.001
Precision 0.9831 +0.0022 0.981 —0.986 0.002 0.001
Recall 0.9897 + 0.0020 0.987-0.992 0.001 0.001
F1 Score 0.9873 +0.0021 0.985-0.990 0.001 0.001

While these findings confirm the robustness and superior performance of the proposed hybrid approach across
multiple datasets, certain limitations should be acknowledged.

3.5 Limitations

The proposed hybrid approach demonstrated promising results; however, certain limitations remain. Although
the datasets used included clinically validated annotations, the study has not yet been tested in large-scale,
multi-centre real-world environments. Expanding the dataset to include more diverse patient samples will
further improve robustness, as PCOS manifestations vary widely across populations. Additionally, factors such
as coexisting medical conditions, ethnicity, and geographical variation were not explicitly addressed due to
data masking, but these represent important directions for future dataset enrichment. Finally, while the model
achieved high accuracy, some visualization outputs were difficult to interpret, underscoring the need for
improved model interpretability. Future work will therefore focus on large-scale multi-centre clinical
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validation, enhancing interpretability, and integrating multi-modal data to provide more comprehensive support
for clinicians in real-world decision-making.

4. CONCLUSION

This study presents CWANN-NBFA+MMHAO, a hybrid deep learning framework for robust and
accurate PCOS diagnosis from ovarian ultrasound images. By combining a Convolutional Wavelet Attention
Neural Network (CWANN) for feature extraction, a Naive Bayes Fuzzy Autoencoder (NBFA) for uncertainty-
aware representation, and MMHAO-based hyperparameter optimization, the framework achieves superior
performance across three benchmark datasets (PCOSUSG, KFHU, MMOTU), with accuracies of 98.4%—
98.9%. Statistical analysis confirms that these improvements are significant (p < 0.05). The proposed method
demonstrates robustness, and effective handling of uncertain data, outperforming classical image processing,
CNN-based, and hybrid machine learning approaches. Future work will explore transformer integration,
transfer learning, and large-scale multi-centre validation, further enhancing clinical applicability. This
framework offers a reliable, and efficient solution for automated PCOS diagnosis, supporting clinical decision-
making.
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