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Abstract—This study aims to evaluate the classification accuracy of a video-based system for Timed Up and Go (TUG) subtasks using 

human pose estimation through MediaPipe. Six participants were included in the validity study, all participating in the reliability study, 

performing various TUG subtasks. The research methodology involved acquiring video data that captured the participants' movements 

during the TUG activity. This video data was processed using the MediaPipe package to extract key points from each frame, resulting 

in a 2D skeletal representation. The dataset was imported in CSV format to train multiple machine learning algorithms. The dataset 

was partitioned into training data (70%) and test data (30%), and several machine learning models, including Stacking Ensemble, Hist 

Gradient Boosting, XGBoost, CATBoost, Random Forest, and Gradient Boosting, were evaluated for their effectiveness in classifying 

TUG subtasks. The evaluation was conducted by comparing the classification accuracy of each model with the posture detection 

outcomes and overall performance metrics. The results indicated that the Stacking Ensemble method achieved the highest overall 

accuracy (96.90%), outperforming models such as Hist Gradient Boosting (96.48%), XGBoost (95.63%), CATBoost (96.06%), Random 

Forest (95.92%), and Gradient Boosting (95.21%). Each classifier was evaluated across sub-activities, and the results consistently 

demonstrated the superior performance of the Stacking Ensemble. These findings suggest that the video-based system, when combined 

with advanced machine learning techniques and human pose estimation, is a reliable and accurate tool for measuring and classifying 

subtask movements in TUG among older adults. 
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I. INTRODUCTION

According to data from the World Health Organization, 

falls are the second most common cause of unintentional 

fatalities worldwide. Individuals over the age of 60 are 

particularly vulnerable, with falls often leading to fatal 

outcomes. Each year, serious falls requiring medical attention 
affect approximately 37.3 million people, underscoring the 

need for a comprehensive prevention strategy. Such a strategy 

should prioritize education, training, the creation of safer 

environments, and developing effective policies to reduce the 

risk of falls. Additionally, research focused on fall prevention 

should be prioritized [1]. Extensive research has been 

conducted to develop technologies to improve the quality of 

life for older adults. One notable advancement is the 

development of fall detection technologies. Mubashir et al. 

classified fall detection methods into three categories: 

wearable sensors, ambient sensors, and camera or vision 

systems. The field of fall detection technology continues to 

advance, with machine learning algorithms playing a key role 

in fall prevention [2]. Usmani et al. categorize systems into 

two distinct groups: non-wearable systems and wearable 

systems [3]. 

U-Fast technology utilizes a tri-axis accelerometer and

gyroscope sensor integrated into a smartphone. In the event of 

fall, the system is capable of notifying registered family 
members via telephone and Short Message Service (SMS). The 

smartphone is placed in the left shirt pocket, and the location of 

the elderly individual can be determined using Global 

Positioning System (GPS) coordinates. In addition to detecting 

different types of falls, the system can classify various activities, 

such as walking and running [4]. Another innovative approach 

for detecting falls and daily activities in older adults involves 
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the use of a Shimmer™ wireless sensor attached to the chest. 

This device is equipped with a triaxial accelerometer sensor, 

and the extracted data from both the spatial and frequency 

domains were used to train a machine learning model. The goal 

was to distinguish falling events from non-falling events and 

identify falls from other daily activities. The system 

successfully classified six distinct daily activities and detected 

nine different fall patterns, resulting in the development of the 

'ShimFall&ADL' dataset [5]. Recently, researchers have 

created fall detection and ADL datasets by utilising wearable 
sensors, in addition to the existing datasets. The sensors 

encompass accelerometers, gyroscopes, and magnetometers, 

among other types [6], [7], [8], [9]. The purpose is to create a 

model that can identify irregularities in the care of older 

individuals by analyzing their vital signs, the environment in 

which they live, and their mobility patterns [10]. 

Falls in the elderly are caused by two primary factors: 

intrinsic and extrinsic. Intrinsic factors refer to conditions 

within the individual, such as demographic characteristics, 

comorbid diseases, and impaired vision. Extrinsic factors are 

external conditions that increase the risk of falling, such as the 
use of multiple medications, inadequate lighting, or slippery 

floors [11].  

Accurate fall risk assessment involves compiling and 

analyzing multiple risk factors, which can be challenging to 

identify and evaluate. Intrinsic factors necessitate intensive 

medical examination, while extrinsic factors can vary with 

environmental conditions and time. Fall risk assessment is 

technically complex because not all gait abnormalities are 

directly associated with a high risk of falls, making gait 

analysis alone insufficient for predicting falls. Additionally, 

some risk factors may occur intermittently, requiring 
continuous and real-time gait monitoring. A brief outpatient 

visit may not provide clinicians with sufficient time to detect 

and objectively evaluate these factors, emphasizing the need 

for remote monitoring outside hospital settings. The Inertial 

Measurement Unit is one sensor that can be used for gait 

analysis [12]. 

Screening for fall risk in hospitals can help identify patients 

at risk of injury and prevent falls. A systematic approach is 

needed to ensure timely and effective screening of patients 

using risk assessment tools. However, certain considerations 

should be taken into account before implementing these tools 

in every inpatient setting. Screening tools should be easy and 
quick to administer. The introduction of assessment tools 

necessitates the training of clinical staff, and simpler tools can 

facilitate the learning process and ensure consistent and 

accurate application. This is particularly important in hospital 

management, where high workloads prevail, especially since 

periodic reassessment is required [13]. Fall risk assessment 

encompasses a wide range of evaluations to determine fall risk. 

Various methods are employed in this process, one of which 

involves administering a series of questions. Based on the 

responses, the physiotherapist evaluates the patient’s fall risk 

level according to established standards [14]. 
Fall risk assessment tools can be broadly categorized into 

two types: Multifactorial Assessment Tools (MAT) and 

Functional Mobility Assessments (FMA). MAT covers a wide 

range of fall risk factors, while FMA focuses more on 

physiological conditions such as balance, gait, and related 

factors. In this process, the assessor, typically a 

physiotherapist or physician, instructs the subject to perform 

specific physical activities. The assessor monitors these 

activities and compares them against established standards 

[15]. Several fall risk assessments use a series of functional 

tests, such as the Berg Balance Scale (BBS), Mini BBS, 5 

Times Sit to Stand (5TSTS) test, Timed Up and Go TEST 

(TUGT),  and others [16]. The TUG test is an adaptation of 

the Get-Up and Go test, modified to include time as a factor 

for test completion. The equipment required includes an 

armchair with a height of approximately 46 cm, a 3-meter 
track area, and a stopwatch. In the TUG test, the participant 

begins seated in the chair with their back against the backrest, 

arms resting on the armrests, and, if necessary, a walking aid 

in hand. Upon the physiotherapist's instruction to "go," the 

participant must rise from the chair and walk at a comfortable, 

safe speed along the 3-meter track, then turn around, return to 

the chair, and sit down.  [17]. 

The Timed Up and Go Test (TUGT) is a rapid, 

straightforward, and highly efficient tool for evaluating 

mobility and fall risk. Its minimal equipment and time 

requirements make it suitable for widespread use in both 
clinical and community settings. With a 15-second threshold, 

the TUGT demonstrates optimal sensitivity and specificity, 

making it a robust predictor of fall risk, particularly when 

combined with cognitive evaluations. Its user-friendliness and 

adaptability across diverse populations highlight its 

importance as an effective screening tool for fall prevention 

programs [18]. The TUGT is one of the tests recommended 

by the World Guidelines for the Prevention and Management 

of Falls in Older Adults [19]. 

There are several categories of fall risk assessments based 

on the time required to complete a series of tests. The first is 
the Timed Up and Go Test (TUGT), one of the most widely 

used fall risk assessment tools. In this test, participants are 

asked to stand up from a chair, walk 3 meters, turn around, 

walk back 3 meters, and sit down again. The Berg Balance 

Scale (BBS) is another fall risk assessment tool, but it takes 

longer to administer compared to the TUG test, as it involves 

14 different activities. The Tinetti test, which has several 

variations, is also used for fall risk assessment. One version 

of the test, the Performance Oriented Mobility Assessment 

(POMA), takes approximately 20 minutes to complete [20]. 

Eichler et al. applied a Microsoft Kinect camera to capture 

characteristics from each phase of the Berg Balance Scale test. 
The categorization process was performed using machine 

learning techniques. According to their fall risk prediction 

model, the 14 activities of the Berg Balance Scale test can be 

reduced to 4 to 6 activities. The experimental results, referred 

to as the Efficient-Berg Balance Scale (E-BBS), demonstrate 

that the number of tasks can be reduced by approximately 

50%, while still maintaining an accuracy level of 97%. The 

assessment results are classified into three categories: low, 

medium, and high fall risk. This study utilized two cameras in 

total [21]. Kampel et al. [22] presented an automated TUG 

method using an RGB-D camera. It employed an automated 
subtask approach to assess functional decline in 11 elderly 

individuals with Kinect Version 2. Rule-based strategies 

utilized features such as shoulder z-axis velocity in 

conjunction with other parameters. Researchers have since 

developed alternative methods for various purposes, 

including an innovative deep learning-based approach for 
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segmenting subtasks in the TUG test. This system uses a 

single RGB-D camera and a dilated temporal convolutional 

network [22]. 

Previous research on the automated segmentation of fall 

risk assessment subtasks can be categorized into four types 

based on the technology used: wearable devices, video-based 

systems, ambient technologies, and smartphone-based 

solutions. Each technology has its own advantages and 

limitations. Video-based technology offers several 

advantages, including being non-intrusive, as the device does 
not need to be attached to the body, and the ability to 

synchronize with other technologies. Additionally, video 

recordings can be replayed for later assessment, providing a 

valuable tool for detailed analysis. However, this approach 

also has limitations. Privacy concerns are significant, as 

individuals may be uncomfortable being recorded. In crowded 

environments, multiple people within the camera’s field of 

view can lead to confusion or misidentification. The camera's 

viewing area can be obstructed, and it must be positioned 

correctly to capture the necessary footage. Furthermore, 

effective use of video-based technology requires adequate 
lighting, which may not always be available [23]. 

The use of video-based systems has gained increasing 

attention in movement analysis. The markerless video-based 

approach is a highly adaptable method for data collection, 

allowing participants to move naturally in various ambient 

settings. However, few studies have examined TUG subtasks 

using traditional video-based methods. One study employed 

the Microsoft Kinect environmental sensor to automate this 

process, reducing the subjectivity of outcome measurements 

and providing additional data on patient performance. The 

Kinect's depth imaging automatically detects each stage of the 
TUG test [24]. A new system was developed to automate the 

TUG test using the Kinect camera, version 2. This system was 

specifically designed to directly compare the performance of 

RGB and RGB-D based techniques. The methodology uses 

advanced machine learning and refinement techniques to 

generate 3D skeletal structures from a single RGB video. The 

effectiveness of both the proposed deep learning-based and 

Kinect-based RGB-D skeletons is then evaluated in 

segmenting the TUG test, using manually labeled ground 

truth data for comparison [25]. 

Other researchers developed a video-based system that 

allows for the assessment of individual movement 
characteristics. The objective of this study was to investigate 

the accuracy and consistency of a video-based system for 

measuring the speed of several tasks within the Timed Up and 

Go (TUG) test among older adults. The validity study 

involved twenty older participants, while the reliability study 

included ten older adults. We measured the speed at which 

participants completed each subtask of the TUG test under 

both comfortable and fast speed conditions across two 

sessions. The Pearson correlation coefficient was used to 

evaluate the validity of the video-based system compared to 

the motion analysis method [26].  
There remains a need for further development of 

technologies capable of accurately measuring TUG and 

5TSTS repeatedly and without continuous supervision in 

community settings or therapeutic rehabilitation 

environments. Dependable, closely monitored measurements 

conducted by older adults in such settings are crucial. These 

systems utilize a range of sensors, including RGB-D cameras, 

RFID, accelerometers, gyroscopes, magnetometers, and 

barometers [27], [28]. Another system was developed using a 

Raspberry Pi embedded system equipped with three cameras 

and additional sensors. This system serves multiple functions, 

including the assessment of the TUG test, as well as the 

monitoring and evaluation of walking speed and standing 

balance. The work introduces an automated camera-based 
device for monitoring and assessing walking speed, standing 

balance, and the 5-Times Sit-to-Stand (5TSTS) test. The data 

collected can be used to evaluate the physical performance of 

elderly individuals undergoing cancer treatment [29]. This 

paper makes two primary contributions:  

a. A novel approach to the TUG test action recognition 

using the MediaPipe Pose architecture and ensemble 

learning model. 

b. A new dataset was generated by utilizing videos from 

six participants, each of whom performed six distinct 

types of actions, including the stand-to-sit, walking in, 
turning, walking out, turning-around, and sit-to-stand 

phases. The videos were tagged and processed under the 

standards of benchmark datasets. 

II. MATERIALS AND METHOD 

A. General Context 

The Health Research Ethics Committee of the Health 

Polytechnic, Ministry of Health, Semarang, Indonesia 

approved this study. The present work developed an ensemble 

machine learning approach that employed Hist Gradient 
Boosting, XGBoost, CATBoost, Random Forest, Gradient 

Boosting, and Stacking Ensemble models to estimate the 

subtasks of TUG test activities. This approach is illustrated in 

Figure 1, which presents a systematic method for assessing 

fall risk through the TUG test by integrating computer vision 

and machine learning techniques. The data collection phase 

involved high-resolution 1080p video recordings 

documenting participants’ movements during the TUG exam. 

These recordings captured key movements, including 

standing, walking, turning, and sitting, which are critical for 

evaluating a subject's mobility and potential fall risk. 
In the next phase, MediaPipe Pose Estimation, a 

component of the MediaPipe library, was used to analyze the 

recorded videos by identifying key human body points in two-

dimensional space for each frame. These key points 

correspond to various joints and anatomical landmarks, and 

their movement patterns are crucial for assessing the subject's 

physical performance. The identified key points from each 

frame were aggregated into a 2D Keypoints Dataset and 

stored in CSV format for further data manipulation and 

machine learning model training. After generating the dataset, 

it was divided into training and testing subsets, with 70% 
designated for training and 30% for testing. Labels 

representing various activities were encoded to organize the 

dataset for machine learning applications. This balanced 

partitioning ensures that the model can generalize effectively 

to new data while minimizing the risk of overfitting. 

 

781



 

Fig. 1  The method that is being proposed for the model. 

 

The model training phase involves inputting the training 

data into a machine learning algorithm, aiming to identify 

patterns in the subject's actions that may signify an elevated 

risk of falling. With time, the model acquires the ability to 

categorize various activities and evaluate fall risk based on the 

trajectory and configuration of keypoints. The performance 

evaluation phase assesses the model's efficacy. This phase 
entails utilizing the trained model on the test dataset and 

evaluating its accuracy, precision, and recall, among other 

metrics, to verify the TUG test's classification. 

The experiments in this study were conducted in a room 

measuring 6 meters in length and 6 meters in width. The trial 

had six able-bodied participants, two males and four females, 

who had no documented mobility limitations. The participants’ 

ages ranged from 17 to 75. Figure 2 illustrates the setup for 
capturing TUGT video footage.  

 

 

Fig. 2  Illustration of the space utilized for the TUG Test 

 
The chair and cone were positioned 3 meters apart, 

following the specifications of the 3-meter TUG test, a 

standard balance assessment. The camera was mounted on a 

tripod at a height of 1.5 meters above the ground. It was 

placed laterally to the participant, with a distance of 3 meters 

between the camera and the track. It was assumed that any 

object moving along the track would remain within the 

camera’s field of view. The TUG test comprises six activities, 

categorized according to Hsieh et al. [30]. The subject begins 

seated in a chair and, upon receiving the "go" signal, performs 

the SIT_TO_STAND activity, transitioning from seated to 

standing. The next activity, WALKING_OUT, involves the 
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participant advancing towards the cone. The TURNING 

activity requires the subject to navigate around the cone, while 

the subsequent WALKING_IN activity involves walking 

back towards the chair. Upon reaching the chair, the 

participant performs the TURNING_AROUND maneuver. 

The final action, termed STAND_TO_SIT, involves 

transitioning from a standing posture back to a seated position 

in the chair. The video recordings of the TUG test activities 

varied in duration, starting with the initiation of the 

SIT_TO_STAND phase and ending with the completion of 
the STAND_TO_SIT phase. Each video was recorded at a 

resolution of 1080p and a frame rate of 30 frames per second. 

B. TUGT Activity Feature Extraction 

The Camera application on Windows 11 is compatible with 

the JETE 1080P Webcam, which was utilized to take video of 

the TUG test activities. This webcam delivers 1080p HD 

video resolution at a frame rate of 30 fps, rendering it 

appropriate for detailed motion capture. The standards include 
centered and wide-angle coverage, ensuring a clear and 

comprehensive view of the subject during balance 

assessments, which is essential for accurately capturing the 

subtle movements required for precise evaluation of the TUG 

test. The JETE 1080P camera is equipped with low-light 

capabilities, allowing for consistent video quality in varying 

lighting conditions. This feature is critical for maintaining the 

integrity of video data across multiple sessions. 

Video recordings of each test activity were extracted using 

the Mediapipe framework. Mediapipe is an adaptable 

framework that combines open-source technology to create 

pipelines for processing perceptual data, such as audio, video, 

and images. Mediapipe offers machine-learning-powered 

solutions such as hand gestures, face detection, hand tracking, 

iris tracking, body pose tracking, and other functionalities 
[28]. We applied the MediaPipe posture estimation method to 

each frame of the video to segment the TUG test activities and 

assign labels to the initial locations. The parameters used were 

min_detection_confidence = 0.5 and model_complexity = 2. 

This study involves the extraction of two-dimensional (x and 

y) data from each video frame. The objective is to generate 33 

skeleton points, each corresponding to 33 coordinates (x and 

y). Each skeleton point is assigned two unique identifiers 

when stored in the CSV file used for model training. This 

study employed the same six classes of TUG test sub-tasks as 

those proposed by Hsieh et al. [30]. The Mediapipe 
framework is used to estimate poses in a TUG test video, as 

shown in Figure 3. 

 

 

Fig. 3  Examples of pose estimation subtask TUG tests using Mediapipe 

 

As a result, we collected a total of 2365 frames from the 

dataset of six activity classes and six participants. This 

research employed an intra-person methodology utilizing the 

5-fold cross-validation technique. The data from each 

participant was partitioned into many folds, with each fold 

sequentially serving as test data while the remaining folds 

were utilized for training. This guarantees that the model is 

both trained and evaluated using data from the same 

individual, to enhance the prediction of fall risk for each 

participant based on their prior data. To train and evaluate the 
samples, the dataset is separated into training (70% of samples) 

and testing (30% of samples). After selecting the frame videos 

with well-matched key points, they were input into machine 

learning to train the TUG test activity key point detection 

model. Finally, the key point label results of each accurate 

TUG test activity are used for further processing. All 

experiments were implemented on a workstation with an 

Intel® Core™ i7-12700H central processing unit, 16 GB of 

RAM, and an NVIDIA GeForce RTX 3050 GPU on a 

Windows 11 64-bit operating system. The experiment was 

conducted using Python as the programming language and 
Anaconda 3.0 as the software development environment.  
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Figure 4 illustrates the distribution of different activities 

performed by six subjects, designated as Subject_A to 

Subject_F. The activities include SIT_TO_STAND, 

STAND_TO_SIT, TURNING, TURNING_AROUND, 

WALKING_IN, and WALKING_OUT, with the y-axis 

representing the frequency of each activity. Each individual 

demonstrates unique patterns in activity frequency, 

highlighting inter-subject heterogeneity. For Subject_A, the 

predominant activities are TURNING and STAND_TO_SIT, 

each performed approximately 90-100 times, while the least 

frequent activity is SIT_TO_STAND, with fewer than 30 

occurrences. This pattern suggests that Subject_A frequently 

engages in dynamic activities, such as turning or transitioning 

between postures, rather than rising from a seated position. 

Similarly, Subject_B exhibits a comparable pattern, with 

TURNING being the most frequent activity and 

SIT_TO_STAND the least. The consistency observed in both 

subjects indicates that turning and postural adjustments may 

play a significant role in their daily routines. 

 

 

Fig. 4  The quantity of frames allocated for each participant's sub-task activity. 

 

Subjects C and D display somewhat different distributions. 

For Subject_C, TURNING remains the most frequent activity, 

while WALKING_IN and WALKING_OUT are also notably 

represented. Subject_D shows a more balanced distribution of 

activities, with TURNING_AROUND and WALKING_OUT 

occurring more frequently than SIT_TO_STAND, which 

remains below 20 occurrences. These variations highlight the 

distinct movement patterns of each individual, potentially 
influenced by their daily routines or physical habits. For 

Subjects E and F, TURNING and WALKING_OUT are the 

predominant activities, with Subject_E demonstrating the 

highest frequency of TURNING among all subjects. 

Subject_F also regularly engages in these activities, albeit at 

slightly lower frequencies. In both cases, SIT_TO_STAND 

remains consistently low, indicating that transitions from 

sitting to standing are less frequent for these individuals 

compared to more active behaviors such as walking and 

turning. 

C. Performance Metric 

To evaluate the findings of the study, we employed four 

widely accepted performance metrics: accuracy, F1-score, 

precision, and recall. These evaluation metrics are computed 

using the following definitions: TP represents the number of 

true positive samples correctly identified in the testing set, TN 

represents the number of true negative samples correctly 

identified in the testing set, FP represents the number of false 

positive samples incorrectly identified in the testing set, and 

FN represents the number of false negative samples 
mistakenly identified in the testing set. 

The accuracy metric measures the proportion of correctly 

identified samples in the testing set out of the total number of 

data samples. Precision measures the ratio of correctly 

identified positive samples in the testing set to the total 

number of both false positives (FP) and true positives (TP). 

Recall is calculated by dividing the number of true positive 

(TP) instances in the testing dataset by the sum of TP and false 

negative (FN) instances. The F1-score, which provides a 

balanced measure of precision and recall, can be calculated 

using Equation 4, based on the precision and recall values. 

[31]. 
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III. RESULTS AND DISCUSSION 

The variation in the number of frames for each participant's 

TUG test sub-task is attributed to individual differences in the 

time taken to complete each task. Figure 4 presents the 

number of frames associated with each participant's sub-task 

activity. The bar chart illustrates the frequency of six distinct 

actions performed by six individuals, identified as Subjects A 

to F. The activities are color-coded as follows: Sit-to-stand 

(blue), Stand-to-sit (orange), Turning (green), Turning-

around (red), Walking-in (purple), and Walking-out (brown). 

For Subject A, the predominant activities are Walking-in and 
Turning-around, each occurring approximately 80 to 90 times, 

followed by Walking-out and Turning, which occur around 70 

times each. The Stand-to-sit action occurs 60 times, while Sit-

to-stand happens around 20 times. 

Subject B shows Walking-in and Walking-out as the most 

frequent behaviors, occurring more than 80 times. Turning 

and Turning-around occur between 70 and 75 times. The 

Stand-to-sit action occurs 50 times, whereas Sit-to-stand 

occurs fewer than 20 times. Subject C primarily engages in 
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Walking-out, which occurs 90 times. Turning and Walking-in 

are the next most frequent activities, each occurring 80 times. 

Turning-around occurs 70 times, and Stand-to-sit occurs 60 

times. The Sit-to-stand activity is recorded fewer than 20 

times. Subject D’s activity pattern is generally consistent, 

with the exception of the Sit-to-stand action, which occurs 20 

times. The frequency of other activities ranges from 60 to 80, 

with Turning and Walking-out being the most predominant. 

Subject E exhibits a high frequency of walking-in, with 

over 100 counts, and walking-out, with over 90 counts, as the 
most common activities. The activities of turning-around and 

turning have roughly 80 counts each. Stand-to-sit has an 

approximate count of 60, while sit-to-stand has about 20 

counts. Subject F exhibits the highest number of occurrences 

in the Walking-out category, with approximately 90 instances, 

and in the Walking-in category, with around 70 instances. 

This is followed by Turning-around with 60 instances, 

Turning with about 50 instances, Stand-to-sit with around 40 

instances, and Sit-to-stand with about 20 instances. The chart 

indicates that Walking-in and Walking-out are the most 

frequently performed activities across all subjects, whereas 
Sit-to-stand is the least frequent. This provides a clear 

understanding of the distribution and frequency of various 

activities undertaken by each individual. 

Figures 5–10 display confusion matrices used to evaluate 

the TUG test sub-task activity classification model based on 

an ensemble learning method. The matrices consist of six 

activities: Sit-to-stand, Walking-out, Turning, Walking-in, 

Turning-around, and Stand-to-sit. The matrices are color-

coded in shades ranging from deep blue to pale blue, 

corresponding to different levels of predictions, with the color 

scale indicated on the right side of the diagrams. Each element 
in the matrix represents the number of predictions relative to 

the true labels. 

 

 
Fig. 5  Confusion Matrix of Hist Gradient Boosting. 

 

 
Fig. 6  Confusion Matrix of Extreme Gradient Boosting. 

 
Fig. 7  Confusion Matrix of CATBoost. 

 

 
Fig. 8  Confusion Matrix of Random Forest 

 

 
Fig. 9  Confusion Matrix of Gradient Boosting. 

 

 
Fig. 10  Confusion Matrix of Stacking Ensemble 
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Figure 5 presents the confusion matrix of the Hist Gradient 

Boosting model. The classifiers demonstrate varying degrees 

of accuracy for different sub-activities. For instance, the 

'Walking-out' activity is classified with 100% accuracy, 

achieving 154 correct predictions out of 154 cases. This 

indicates the classifier's high proficiency in recognizing this 

particular activity. Similarly, the 'Turning' and 'Walking-in' 

activities also exhibit high accuracy, with 147 and 135 correct 

classifications, respectively. Conversely, the activities 'Sit-to-

stand' and 'Turning-around' show lower classification 
accuracy, with 59 and 80 correct predictions, respectively, 

suggesting that the classifier has more difficulty accurately 

identifying these activities. This challenge may be attributed 

to the similarity of motion patterns in certain activities, 

leading to misclassifications. 

The non-diagonal elements provide insight into specific 

instances of misclassification. For example, the action known 

as 'Sit-to-Stand' is occasionally misclassified as 'Turning-

Around' in two cases and as 'Stand-to-Sit' in one case. 

Similarly, the action of 'Turning' is frequently misclassified as 

'Walking-In' in three instances, while 'Turning-Around' is 
misclassified as 'Stand-to-Sit' in four instances. These 

misclassifications suggest potential avenues for improving the 

model, possibly through implementing more advanced feature 

extraction techniques or fine-tuning the model. 

Figure 10 illustrates that the stacking ensemble model 

accurately predicted the walking-out behavior in 154 

instances; however, it did make a few errors, including 

misclassifying two instances of walking-out as sit-to-stand. 

Table 1 compares the performance of six ensemble 

machine learning models: Hist Gradient Boosting, XGBoost, 

CATBoost, Random Forest, Gradient Boosting, and Stacking 

Ensemble. These models were evaluated based on their ability 
to classify different sub-activities, namely sit-to-stand, 

walking-out, turning, walking-in, turning-around, and stand-

to-sit. Each sub-activity was evaluated using metrics such as 

Precision, Recall, and F1-score. The highest F1-score for Hist 

Gradient Boosting was found in the turning activity, with a 

value of 97.67%. The walking-out and sit-to-stand activities 

exhibited F1-scores of 98.09% and 95.93%, respectively, 

resulting in a total accuracy of 96.48% for the model. The 

XGBoost model demonstrated superior performance in 

turning, achieving a Precision of 98.01% and an F1-score of 

97.69%, leading to an overall accuracy of 95.63%. CATBoost 
achieved the best overall accuracy of 96.06%. Among the 

various activities, turning had the highest Precision of 98.01%, 

while walking-out received an F1-score of 97.14%.  

TABLE I 

PERFORMANCE ANALYSIS OF DIFFERENT ALGORITHM IN CLASSIFICATION 

 Hist gradient boosting XGBoost CATBoost 

Sub-Activity 
Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score 

(%) 

Sit_to_Stand 96.72 95.16 95.93 93.44 91.94 92.68 98.31 93.55 95.87 
Walking_out 98.09 98.09 98.09 95.62 97.45 96.53 96.84 97.45 97.14 
Turning 98.66 96.71 97.67 98.01 97.37 97.69 98.01 97.37 97.69 
Walking_in 95.74 97.83 96.77 96.32 94.93 95.62 96.30 94.20 95.24 

Turning_arround 91.95 91.95 91.95 90.91 91.95 91.43 89.13 94.25 91.62 
Stand_to_sit 95.65 96.49 96.07 96.49 96.49 96.49 96.52 97.37 96.94 
Overall Accuracy 96.48   95.63   96.06 

 Random Forest Gradient Boosting Stacking Ensemble 

Sub-Activity 
Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score 

(%) 

Sit_to_Stand 96.77 96.77 96.77 95.08 93.55 94.31 96.72 95.16 95.93 
Walking_out 97.45 97.45 97.45 95.54 95.54 95.54 98.09 98.09 98.09 
Turning 97.33 96.05 96.69 97.35 96.71 97.03 99.32 96.71 98.00 
Walking_in 94.93 94.93 94.93 96.38 96.38 96.38 96.43 97.83 97.12 
Turning_arround 91.95 91.95 91.95 89.77 90.80 90.29 91.21 95.40 93.26 
Stand_to_sit 95.69 97.37 96.52 94.78 95.61 95.20 97.35 96.49 96.92 
Overall Accuracy 95.92   95.21   96.90 

 
The Random Forest model, positioned in the lower section 

of the table, exhibited an overall accuracy of 95.92%, with the 

highest F1-score of 97.45% for the walking-out category. The 

Gradient Boosting and Stacking Ensemble models 

demonstrated overall accuracies of 95.21% and 96.90%, 

respectively. Among these models, the Stacking Ensemble 

exhibited the highest overall accuracy, particularly excelling 

in the walking-out activity with an F1-score of 98.09% and in 

the turning activity with an F1-score of 98.00%. This 

thorough comparison examines the advantages and 

disadvantages of each model, revealing that CATBoost and 
Hist Gradient Boosting generally achieve a good balance 

between accuracy and performance. However, the Stacking 

Ensemble model outperforms the others in certain TUG test 

activities, demonstrating higher overall performance. 

Each study presents a distinct method for evaluating 

physical mobility through the Timed Up and Go (TUG) test. 

Your research achieves high accuracy using video-based pose 

estimation, suitable for non-invasive environments. In 

contrast, the IMU-based research is particularly relevant in 

clinical settings. The camera-based system enables real-time 

monitoring for cancer patients, while the Kinect-based 

research integrates machine learning with fall risk assessment, 

providing an economical home-use solution. Collectively, 

these studies highlight the adaptability of the TUG test across 

various demographics and technological contexts. A 
comparison was conducted between various state-of-the-art 

approaches for segmenting the subtasks of TUG tests and the 

proposed method, with findings reported in Table II. 
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TABLE III 

COMPARISON OF METHODS FOR SEGMENTING TUG SUBTASKS AND THE PROPOSED APPROACH 

Parameter 
Reference 

This work Hsieh et al. [30] Duncan et al. [32] Dubois et al. [24] 
Technology Video-based (MediaPipe) IMUs (accelerometers) Multi-camera (Raspberry Pi) Depth sensor (Kinect) 

Data Modality Video pose data Motion data (IMU) Camera-based video Depth data (Kinect) 

Participants 6 subjects 26 subjects 8 subjects 43 subjects 

Machine Learning Models Stacking, XGBoost, 

Random Forest 

AdaBoost, Support Vector 

Machine 

CSRT (Channel Spatial 

Reliability Tracking) 

SVM, RF, Neural 

Netwotk , Naive Bayes 

Tested Population General subtasks, low risk TKA patients Older adults with cancer Elderly individuals (fall 

risk) 

Accuracy 96.90% (Stacking 

Ensemble) 

92% (AdaBoost) >95% (gait speed), >97% 

(timing) 

100% (SVM, RF with two 

parameters) 

 

IV. CONCLUSIONS 

We present a fully automated segmentation technique for 

the subtasks of the Timed Up and Go (TUG) test in video 

recordings. Our method employs a human learning-based 

ensemble machine learning methodology for pose estimation, 
making it significantly more practical to adopt than previous 

systems. Among the models studied, the Stacking Ensemble 

approach achieved the highest overall accuracy of 96.90%, 

surpassing the performance of other algorithms such as Hist 

Gradient Boosting and CATBoost, both of which also 

demonstrated commendable precision and F1-scores. 

Although XGBoost is robust, it exhibited marginally inferior 

precision and recall in the majority of subtasks compared to 

the leading methodologies. Despite Random Forest and 

Gradient Boosting displaying competitive efficacy, they 

failed to surpass the performance of the Stacking Ensemble. 

While the efficiency enhancements of the Stacking Ensemble 
method are significant, particularly in practical applications, 

the increase in accuracy relative to simpler techniques like 

Hist Gradient Boosting may appear minimal. We argue that 

this modest enhancement justifies the added complexity when 

considering the broader context of fall-risk screening, where 

even small improvements in accuracy can yield substantial 

clinical benefits. However, the computational complexity of 

ensemble methods remains a potential limitation that requires 

careful consideration. In real-world applications, evaluating 

the trade-offs between model complexity and performance 

improvements is crucial, particularly in resource-limited 
settings. 

In the future, researchers intend to explore techniques to 

reduce computational costs while maintaining accuracy, 

thereby enhancing the method's accessibility in clinical 

environments. Furthermore, utilizing multimodal sensor data 

could improve the method's efficacy, providing a more 

comprehensive solution for early fall-risk assessment by 

healthcare practitioners, including physicians and 

physiotherapists. 
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