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Abstract—This study aims to evaluate the classification accuracy of a video-based system for Timed Up and Go (TUG) subtasks using
human pose estimation through MediaPipe. Six participants were included in the validity study, all participating in the reliability study,
performing various TUG subtasks. The research methodology involved acquiring video data that captured the participants' movements
during the TUG activity. This video data was processed using the MediaPipe package to extract key points from each frame, resulting
in a 2D skeletal representation. The dataset was imported in CSV format to train multiple machine learning algorithms. The dataset
was partitioned into training data (70%) and test data (30%), and several machine learning models, including Stacking Ensemble, Hist
Gradient Boosting, XGBoost, CATBoost, Random Forest, and Gradient Boosting, were evaluated for their effectiveness in classifying
TUG subtasks. The evaluation was conducted by comparing the classification accuracy of each model with the posture detection
outcomes and overall performance metrics. The results indicated that the Stacking Ensemble method achieved the highest overall
accuracy (96.90%), outperforming models such as Hist Gradient Boosting (96.48%), XGBoost (95.63%), CATBoost (96.06%), Random
Forest (95.92%), and Gradient Boosting (95.21%). Each classifier was evaluated across sub-activities, and the results consistently
demonstrated the superior performance of the Stacking Ensemble. These findings suggest that the video-based system, when combined
with advanced machine learning techniques and human pose estimation, is a reliable and accurate tool for measuring and classifying
subtask movements in TUG among older adults.
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classified fall detection methods into three categories:
I. INTRODUCTION wearable sensors, ambient sensors, and camera or vision
systems. The field of fall detection technology continues to
advance, with machine learning algorithms playing a key role
in fall prevention [2]. Usmani et al. categorize systems into
two distinct groups: non-wearable systems and wearable
systems [3].

U-Fast technology utilizes a tri-axis accelerometer and
gyroscope sensor integrated into a smartphone. In the event of
fall, the system is capable of notifying registered family
members via telephone and Short Message Service (SMS). The
smartphone is placed in the left shirt pocket, and the location of
the elderly individual can be determined using Global
Positioning System (GPS) coordinates. In addition to detecting
different types of falls, the system can classify various activities,
such as walking and running [4]. Another innovative approach
for detecting falls and daily activities in older adults involves

According to data from the World Health Organization,
falls are the second most common cause of unintentional
fatalities worldwide. Individuals over the age of 60 are
particularly vulnerable, with falls often leading to fatal
outcomes. Each year, serious falls requiring medical attention
affect approximately 37.3 million people, underscoring the
need for a comprehensive prevention strategy. Such a strategy
should prioritize education, training, the creation of safer
environments, and developing effective policies to reduce the
risk of falls. Additionally, research focused on fall prevention
should be prioritized [1]. Extensive research has been
conducted to develop technologies to improve the quality of
life for older adults. One notable advancement is the
development of fall detection technologies. Mubashir et al.
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the use of a Shimmer™ wireless sensor attached to the chest.
This device is equipped with a triaxial accelerometer sensor,
and the extracted data from both the spatial and frequency
domains were used to train a machine learning model. The goal
was to distinguish falling events from non-falling events and
identify falls from other daily activities. The system
successfully classified six distinct daily activities and detected
nine different fall patterns, resulting in the development of the
'ShimFall&ADL' dataset [5]. Recently, researchers have
created fall detection and ADL datasets by utilising wearable
sensors, in addition to the existing datasets. The sensors
encompass accelerometers, gyroscopes, and magnetometers,
among other types [6], [7], [8], [9]. The purpose is to create a
model that can identify irregularities in the care of older
individuals by analyzing their vital signs, the environment in
which they live, and their mobility patterns [10].

Falls in the elderly are caused by two primary factors:
intrinsic and extrinsic. Intrinsic factors refer to conditions
within the individual, such as demographic characteristics,
comorbid diseases, and impaired vision. Extrinsic factors are
external conditions that increase the risk of falling, such as the
use of multiple medications, inadequate lighting, or slippery
floors [11].

Accurate fall risk assessment involves compiling and
analyzing multiple risk factors, which can be challenging to
identify and evaluate. Intrinsic factors necessitate intensive
medical examination, while extrinsic factors can vary with
environmental conditions and time. Fall risk assessment is
technically complex because not all gait abnormalities are
directly associated with a high risk of falls, making gait
analysis alone insufficient for predicting falls. Additionally,
some risk factors may occur intermittently, requiring
continuous and real-time gait monitoring. A brief outpatient
visit may not provide clinicians with sufficient time to detect
and objectively evaluate these factors, emphasizing the need
for remote monitoring outside hospital settings. The Inertial
Measurement Unit is one sensor that can be used for gait
analysis [12].

Screening for fall risk in hospitals can help identify patients
at risk of injury and prevent falls. A systematic approach is
needed to ensure timely and effective screening of patients
using risk assessment tools. However, certain considerations
should be taken into account before implementing these tools
in every inpatient setting. Screening tools should be easy and
quick to administer. The introduction of assessment tools
necessitates the training of clinical staff, and simpler tools can
facilitate the learning process and ensure consistent and
accurate application. This is particularly important in hospital
management, where high workloads prevail, especially since
periodic reassessment is required [13]. Fall risk assessment

encompasses a wide range of evaluations to determine fall risk.

Various methods are employed in this process, one of which
involves administering a series of questions. Based on the
responses, the physiotherapist evaluates the patient’s fall risk
level according to established standards [14].

Fall risk assessment tools can be broadly categorized into
two types: Multifactorial Assessment Tools (MAT) and
Functional Mobility Assessments (FMA). MAT covers a wide
range of fall risk factors, while FMA focuses more on
physiological conditions such as balance, gait, and related
factors. In this process, the assessor, typically a
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physiotherapist or physician, instructs the subject to perform
specific physical activities. The assessor monitors these
activities and compares them against established standards
[15]. Several fall risk assessments use a series of functional
tests, such as the Berg Balance Scale (BBS), Mini BBS, 5
Times Sit to Stand (STSTS) test, Timed Up and Go TEST
(TUGT), and others [16]. The TUG test is an adaptation of
the Get-Up and Go test, modified to include time as a factor
for test completion. The equipment required includes an
armchair with a height of approximately 46 cm, a 3-meter
track area, and a stopwatch. In the TUG test, the participant
begins seated in the chair with their back against the backrest,
arms resting on the armrests, and, if necessary, a walking aid
in hand. Upon the physiotherapist's instruction to "go," the
participant must rise from the chair and walk at a comfortable,
safe speed along the 3-meter track, then turn around, return to
the chair, and sit down. [17].

The Timed Up and Go Test (TUGT) is a rapid,
straightforward, and highly efficient tool for evaluating
mobility and fall risk. Its minimal equipment and time
requirements make it suitable for widespread use in both
clinical and community settings. With a 15-second threshold,
the TUGT demonstrates optimal sensitivity and specificity,
making it a robust predictor of fall risk, particularly when
combined with cognitive evaluations. Its user-friendliness and
adaptability across diverse populations highlight its
importance as an effective screening tool for fall prevention
programs [18]. The TUGT is one of the tests recommended
by the World Guidelines for the Prevention and Management
of Falls in Older Adults [19].

There are several categories of fall risk assessments based
on the time required to complete a series of tests. The first is
the Timed Up and Go Test (TUGT), one of the most widely
used fall risk assessment tools. In this test, participants are
asked to stand up from a chair, walk 3 meters, turn around,
walk back 3 meters, and sit down again. The Berg Balance
Scale (BBS) is another fall risk assessment tool, but it takes
longer to administer compared to the TUG test, as it involves
14 different activities. The Tinetti test, which has several
variations, is also used for fall risk assessment. One version
of the test, the Performance Oriented Mobility Assessment
(POMA), takes approximately 20 minutes to complete [20].

Eichler et al. applied a Microsoft Kinect camera to capture
characteristics from each phase of the Berg Balance Scale test.
The categorization process was performed using machine
learning techniques. According to their fall risk prediction
model, the 14 activities of the Berg Balance Scale test can be
reduced to 4 to 6 activities. The experimental results, referred
to as the Efficient-Berg Balance Scale (E-BBS), demonstrate
that the number of tasks can be reduced by approximately
50%, while still maintaining an accuracy level of 97%. The
assessment results are classified into three categories: low,
medium, and high fall risk. This study utilized two cameras in
total [21]. Kampel et al. [22] presented an automated TUG
method using an RGB-D camera. It employed an automated
subtask approach to assess functional decline in 11 elderly
individuals with Kinect Version 2. Rule-based strategies
utilized features such as shoulder z-axis velocity in
conjunction with other parameters. Researchers have since
developed alternative methods for various purposes,
including an innovative deep learning-based approach for



segmenting subtasks in the TUG test. This system uses a
single RGB-D camera and a dilated temporal convolutional
network [22].

Previous research on the automated segmentation of fall
risk assessment subtasks can be categorized into four types
based on the technology used: wearable devices, video-based
systems, ambient technologies, and smartphone-based
solutions. Each technology has its own advantages and
limitations.  Video-based technology offers several
advantages, including being non-intrusive, as the device does
not need to be attached to the body, and the ability to
synchronize with other technologies. Additionally, video
recordings can be replayed for later assessment, providing a
valuable tool for detailed analysis. However, this approach
also has limitations. Privacy concerns are significant, as
individuals may be uncomfortable being recorded. In crowded
environments, multiple people within the camera’s field of
view can lead to confusion or misidentification. The camera's
viewing area can be obstructed, and it must be positioned
correctly to capture the necessary footage. Furthermore,
effective use of video-based technology requires adequate
lighting, which may not always be available [23].

The use of video-based systems has gained increasing
attention in movement analysis. The markerless video-based
approach is a highly adaptable method for data collection,
allowing participants to move naturally in various ambient
settings. However, few studies have examined TUG subtasks
using traditional video-based methods. One study employed
the Microsoft Kinect environmental sensor to automate this
process, reducing the subjectivity of outcome measurements
and providing additional data on patient performance. The
Kinect's depth imaging automatically detects each stage of the
TUG test [24]. A new system was developed to automate the
TUG test using the Kinect camera, version 2. This system was
specifically designed to directly compare the performance of
RGB and RGB-D based techniques. The methodology uses
advanced machine learning and refinement techniques to
generate 3D skeletal structures from a single RGB video. The
effectiveness of both the proposed deep learning-based and
Kinect-based RGB-D skeletons is then evaluated in
segmenting the TUG test, using manually labeled ground
truth data for comparison [25].

Other researchers developed a video-based system that
allows for the assessment of individual movement
characteristics. The objective of this study was to investigate
the accuracy and consistency of a video-based system for
measuring the speed of several tasks within the Timed Up and
Go (TUG) test among older adults. The validity study
involved twenty older participants, while the reliability study
included ten older adults. We measured the speed at which
participants completed each subtask of the TUG test under
both comfortable and fast speed conditions across two
sessions. The Pearson correlation coefficient was used to
evaluate the validity of the video-based system compared to
the motion analysis method [26].

There remains a need for further development of
technologies capable of accurately measuring TUG and
STSTS repeatedly and without continuous supervision in
community  settings or therapeutic  rehabilitation
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environments. Dependable, closely monitored measurements
conducted by older adults in such settings are crucial. These
systems utilize a range of sensors, including RGB-D cameras,
RFID, accelerometers, gyroscopes, magnetometers, and
barometers [27], [28]. Another system was developed using a
Raspberry Pi embedded system equipped with three cameras
and additional sensors. This system serves multiple functions,
including the assessment of the TUG test, as well as the
monitoring and evaluation of walking speed and standing
balance. The work introduces an automated camera-based
device for monitoring and assessing walking speed, standing
balance, and the 5-Times Sit-to-Stand (STSTS) test. The data
collected can be used to evaluate the physical performance of
elderly individuals undergoing cancer treatment [29]. This
paper makes two primary contributions:

a. A novel approach to the TUG test action recognition
using the MediaPipe Pose architecture and ensemble
learning model.

. A new dataset was generated by utilizing videos from
six participants, each of whom performed six distinct
types of actions, including the stand-to-sit, walking in,
turning, walking out, turning-around, and sit-to-stand
phases. The videos were tagged and processed under the
standards of benchmark datasets.

II. MATERIALS AND METHOD

A. General Context

The Health Research Ethics Committee of the Health
Polytechnic, Ministry of Health, Semarang, Indonesia
approved this study. The present work developed an ensemble
machine learning approach that employed Hist Gradient
Boosting, XGBoost, CATBoost, Random Forest, Gradient
Boosting, and Stacking Ensemble models to estimate the
subtasks of TUG test activities. This approach is illustrated in
Figure 1, which presents a systematic method for assessing
fall risk through the TUG test by integrating computer vision
and machine learning techniques. The data collection phase
involved  high-resolution  1080p video recordings
documenting participants’ movements during the TUG exam.
These recordings captured key movements, including
standing, walking, turning, and sitting, which are critical for
evaluating a subject's mobility and potential fall risk.

In the next phase, MediaPipe Pose Estimation, a
component of the MediaPipe library, was used to analyze the
recorded videos by identifying key human body points in two-
dimensional space for each frame. These key points
correspond to various joints and anatomical landmarks, and
their movement patterns are crucial for assessing the subject's
physical performance. The identified key points from each
frame were aggregated into a 2D Keypoints Dataset and
stored in CSV format for further data manipulation and
machine learning model training. After generating the dataset,
it was divided into training and testing subsets, with 70%
designated for training and 30% for testing. Labels
representing various activities were encoded to organize the
dataset for machine learning applications. This balanced
partitioning ensures that the model can generalize effectively
to new data while minimizing the risk of overfitting.
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Fig. 1 The method that is being proposed for the model.

The model training phase involves inputting the training
data into a machine learning algorithm, aiming to identify
patterns in the subject's actions that may signify an elevated
risk of falling. With time, the model acquires the ability to
categorize various activities and evaluate fall risk based on the
trajectory and configuration of keypoints. The performance
evaluation phase assesses the model's efficacy. This phase
entails utilizing the trained model on the test dataset and
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evaluating its accuracy, precision, and recall, among other
metrics, to verify the TUG test's classification.

The experiments in this study were conducted in a room
measuring 6 meters in length and 6 meters in width. The trial
had six able-bodied participants, two males and four females,
who had no documented mobility limitations. The participants
ages ranged from 17 to 75. Figure 2 illustrates the setup for
capturing TUGT video footage.

bl

Fig. 2 Illustration of the space utilized for the TUG Test

The chair and cone were positioned 3 meters apart,
following the specifications of the 3-meter TUG test, a
standard balance assessment. The camera was mounted on a
tripod at a height of 1.5 meters above the ground. It was
placed laterally to the participant, with a distance of 3 meters
between the camera and the track. It was assumed that any
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object moving along the track would remain within the
camera’s field of view. The TUG test comprises six activities,
categorized according to Hsieh et al. [30]. The subject begins
seated in a chair and, upon receiving the "go" signal, performs
the SIT TO STAND activity, transitioning from seated to
standing. The next activity, WALKING OUT, involves the



participant advancing towards the cone. The TURNING
activity requires the subject to navigate around the cone, while
the subsequent WALKING IN activity involves walking
back towards the chair. Upon reaching the chair, the
participant performs the TURNING AROUND maneuver.
The final action, termed STAND TO_ SIT, involves
transitioning from a standing posture back to a seated position
in the chair. The video recordings of the TUG test activities
varied in duration, starting with the initiation of the
SIT TO_STAND phase and ending with the completion of
the STAND TO SIT phase. Each video was recorded at a
resolution of 1080p and a frame rate of 30 frames per second.

B. TUGT Activity Feature Extraction

The Camera application on Windows 11 is compatible with
the JETE 1080P Webcam, which was utilized to take video of
the TUG test activities. This webcam delivers 1080p HD
video resolution at a frame rate of 30 fps, rendering it
appropriate for detailed motion capture. The standards include
centered and wide-angle coverage, ensuring a clear and
comprehensive view of the subject during balance
assessments, which is essential for accurately capturing the
subtle movements required for precise evaluation of the TUG
test. The JETE 1080P camera is equipped with low-light

capabilities, allowing for consistent video quality in varying
lighting conditions. This feature is critical for maintaining the
integrity of video data across multiple sessions.

Video recordings of each test activity were extracted using
the Mediapipe framework. Mediapipe is an adaptable
framework that combines open-source technology to create
pipelines for processing perceptual data, such as audio, video,
and images. Mediapipe offers machine-learning-powered
solutions such as hand gestures, face detection, hand tracking,
iris tracking, body pose tracking, and other functionalities
[28]. We applied the MediaPipe posture estimation method to
each frame of the video to segment the TUG test activities and
assign labels to the initial locations. The parameters used were
min_detection_confidence = 0.5 and model complexity = 2.
This study involves the extraction of two-dimensional (x and
y) data from each video frame. The objective is to generate 33
skeleton points, each corresponding to 33 coordinates (x and
y). Each skeleton point is assigned two unique identifiers
when stored in the CSV file used for model training. This
study employed the same six classes of TUG test sub-tasks as
those proposed by Hsieh et al. [30]. The Mediapipe
framework is used to estimate poses in a TUG test video, as
shown in Figure 3.

Sit-1o-stand

Walking-out

Turning

Walking-in

Turning-arround

Stand-to-sit

Fig. 3 Examples of pose estimation subtask TUG tests using Mediapipe

As a result, we collected a total of 2365 frames from the
dataset of six activity classes and six participants. This
research employed an intra-person methodology utilizing the
5-fold cross-validation technique. The data from each
participant was partitioned into many folds, with each fold
sequentially serving as test data while the remaining folds
were utilized for training. This guarantees that the model is
both trained and evaluated using data from the same
individual, to enhance the prediction of fall risk for each
participant based on their prior data. To train and evaluate the
samples, the dataset is separated into training (70% of samples)
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and testing (30% of samples). After selecting the frame videos
with well-matched key points, they were input into machine
learning to train the TUG test activity key point detection
model. Finally, the key point label results of each accurate
TUG test activity are used for further processing. All
experiments were implemented on a workstation with an
Intel® Core™ i7-12700H central processing unit, 16 GB of
RAM, and an NVIDIA GeForce RTX 3050 GPU on a
Windows 11 64-bit operating system. The experiment was
conducted using Python as the programming language and
Anaconda 3.0 as the software development environment.



Figure 4 illustrates the distribution of different activities
performed by six subjects, designated as Subject A to
Subject F. The activities include SIT TO STAND,
STAND TO SIT, TURNING, TURNING AROUND,
WALKING IN, and WALKING OUT, with the y-axis
representing the frequency of each activity. Each individual
demonstrates unique patterns in activity frequency,
highlighting inter-subject heterogeneity. For Subject A, the
predominant activities are TURNING and STAND TO SIT,
each performed approximately 90-100 times, while the least

frequent activity is SIT TO STAND, with fewer than 30
occurrences. This pattern suggests that Subject A frequently
engages in dynamic activities, such as turning or transitioning
between postures, rather than rising from a seated position.
Similarly, Subject B exhibits a comparable pattern, with
TURNING being the most frequent activity and
SIT TO_STAND the least. The consistency observed in both
subjects indicates that turning and postural adjustments may
play a significant role in their daily routines.

Activities by Users

120

100

80

count

60

subject_A

subject_B subject_C

Activity
B SIT_TO_STAND
W STAND_TO_SIT
N TURNING
N TURNING_AROUND
== WALKING_IN
= WALKING_OUT

subject_D subject_E subject_F

subject

Fig. 4 The quantity of frames allocated for each participant's sub-task activity.

Subjects C and D display somewhat different distributions.
For Subject C, TURNING remains the most frequent activity,
while WALKING IN and WALKING OUT are also notably
represented. Subject D shows a more balanced distribution of
activities, with TURNING AROUND and WALKING OUT
occurring more frequently than SIT TO STAND, which
remains below 20 occurrences. These variations highlight the
distinct movement patterns of each individual, potentially
influenced by their daily routines or physical habits. For
Subjects E and F, TURNING and WALKING OUT are the
predominant activities, with Subject E demonstrating the
highest frequency of TURNING among all subjects.
Subject F also regularly engages in these activities, albeit at
slightly lower frequencies. In both cases, SIT TO STAND
remains consistently low, indicating that transitions from
sitting to standing are less frequent for these individuals
compared to more active behaviors such as walking and
turning.

C. Performance Metric

To evaluate the findings of the study, we employed four
widely accepted performance metrics: accuracy, Fl-score,
precision, and recall. These evaluation metrics are computed
using the following definitions: TP represents the number of
true positive samples correctly identified in the testing set, TN
represents the number of true negative samples correctly
identified in the testing set, FP represents the number of false
positive samples incorrectly identified in the testing set, and
FN represents the number of false negative samples
mistakenly identified in the testing set.

The accuracy metric measures the proportion of correctly
identified samples in the testing set out of the total number of
data samples. Precision measures the ratio of correctly
identified positive samples in the testing set to the total
number of both false positives (FP) and true positives (TP).
Recall is calculated by dividing the number of true positive
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(TP) instances in the testing dataset by the sum of TP and false
negative (FN) instances. The Fl-score, which provides a
balanced measure of precision and recall, can be calculated
using Equation 4, based on the precision and recall values.
[31].

Accuracy = _(TPrTN) (1
(TP+FP+TN+FN )
Precision = ——22 2)
(TP+FP)
_(TP)
Recall = TPerm 3)
F1— score = (Precision x Recall) (4)

( Precision +Recall)

III. RESULTS AND DISCUSSION

The variation in the number of frames for each participant's
TUG test sub-task is attributed to individual differences in the
time taken to complete each task. Figure 4 presents the
number of frames associated with each participant's sub-task
activity. The bar chart illustrates the frequency of six distinct
actions performed by six individuals, identified as Subjects A
to F. The activities are color-coded as follows: Sit-to-stand
(blue), Stand-to-sit (orange), Turning (green), Turning-
around (red), Walking-in (purple), and Walking-out (brown).
For Subject A, the predominant activities are Walking-in and
Turning-around, each occurring approximately 80 to 90 times,
followed by Walking-out and Turning, which occur around 70
times each. The Stand-to-sit action occurs 60 times, while Sit-
to-stand happens around 20 times.

Subject B shows Walking-in and Walking-out as the most
frequent behaviors, occurring more than 80 times. Turning
and Turning-around occur between 70 and 75 times. The
Stand-to-sit action occurs 50 times, whereas Sit-to-stand
occurs fewer than 20 times. Subject C primarily engages in



Walking-out, which occurs 90 times. Turning and Walking-in
are the next most frequent activities, each occurring 80 times.
Turning-around occurs 70 times, and Stand-to-sit occurs 60
times. The Sit-to-stand activity is recorded fewer than 20
times. Subject D’s activity pattern is generally consistent,
with the exception of the Sit-to-stand action, which occurs 20
times. The frequency of other activities ranges from 60 to 80,
with Turning and Walking-out being the most predominant.

Subject E exhibits a high frequency of walking-in, with
over 100 counts, and walking-out, with over 90 counts, as the
most common activities. The activities of turning-around and
turning have roughly 80 counts each. Stand-to-sit has an
approximate count of 60, while sit-to-stand has about 20
counts. Subject F exhibits the highest number of occurrences
in the Walking-out category, with approximately 90 instances,
and in the Walking-in category, with around 70 instances.
This is followed by Turning-around with 60 instances,
Turning with about 50 instances, Stand-to-sit with around 40
instances, and Sit-to-stand with about 20 instances. The chart
indicates that Walking-in and Walking-out are the most
frequently performed activities across all subjects, whereas
Sit-to-stand is the least frequent. This provides a clear
understanding of the distribution and frequency of various
activities undertaken by each individual.

Figures 5-10 display confusion matrices used to evaluate
the TUG test sub-task activity classification model based on
an ensemble learning method. The matrices consist of six
activities: Sit-to-stand, Walking-out, Turning, Walking-in,
Turning-around, and Stand-to-sit. The matrices are color-
coded in shades ranging from deep blue to pale blue,
corresponding to different levels of predictions, with the color
scale indicated on the right side of the diagrams. Each element
in the matrix represents the number of predictions relative to
the true labels.

Sit-to-stand | 59 0 0 0 2 1
walking-out

turning

True label

walking-in
turning-around

stand-to-sit

Predicted label

Fig. 5 Confusion Matrix of Hist Gradient Boosting.
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Fig. 6 Confusion Matrix of Extreme Gradient Boosting.
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Figure 5 presents the confusion matrix of the Hist Gradient
Boosting model. The classifiers demonstrate varying degrees
of accuracy for different sub-activities. For instance, the
"Walking-out' activity is classified with 100% accuracy,
achieving 154 correct predictions out of 154 cases. This
indicates the classifier's high proficiency in recognizing this
particular activity. Similarly, the 'Turning' and 'Walking-in'
activities also exhibit high accuracy, with 147 and 135 correct
classifications, respectively. Conversely, the activities 'Sit-to-
stand' and 'Turning-around' show lower classification
accuracy, with 59 and 80 correct predictions, respectively,
suggesting that the classifier has more difficulty accurately
identifying these activities. This challenge may be attributed
to the similarity of motion patterns in certain activities,
leading to misclassifications.

The non-diagonal elements provide insight into specific
instances of misclassification. For example, the action known
as 'Sit-to-Stand' is occasionally misclassified as '"Turning-
Around' in two cases and as 'Stand-to-Sit' in one case.
Similarly, the action of "Turning' is frequently misclassified as
'Walking-In' in three instances, while 'Turning-Around' is
misclassified as 'Stand-to-Sit' in four instances. These
misclassifications suggest potential avenues for improving the

model, possibly through implementing more advanced feature
extraction techniques or fine-tuning the model.

Figure 10 illustrates that the stacking ensemble model
accurately predicted the walking-out behavior in 154
instances; however, it did make a few errors, including
misclassifying two instances of walking-out as sit-to-stand.

Table 1 compares the performance of six ensemble
machine learning models: Hist Gradient Boosting, XGBoost,
CATBoost, Random Forest, Gradient Boosting, and Stacking
Ensemble. These models were evaluated based on their ability
to classify different sub-activities, namely sit-to-stand,
walking-out, turning, walking-in, turning-around, and stand-
to-sit. Each sub-activity was evaluated using metrics such as
Precision, Recall, and F1-score. The highest F1-score for Hist
Gradient Boosting was found in the turning activity, with a
value of 97.67%. The walking-out and sit-to-stand activities
exhibited Fl-scores of 98.09% and 95.93%, respectively,
resulting in a total accuracy of 96.48% for the model. The
XGBoost model demonstrated superior performance in
turning, achieving a Precision of 98.01% and an F1-score of
97.69%, leading to an overall accuracy of 95.63%. CATBoost
achieved the best overall accuracy of 96.06%. Among the
various activities, turning had the highest Precision of 98.01%,
while walking-out received an F1-score of 97.14%.

TABLEI
PERFORMANCE ANALYSIS OF DIFFERENT ALGORITHM IN CLASSIFICATION
Hist gradient boosting XGBoost CATBoost
. . Precision Recall F1-score Precision Recall Fl-score  Precision Recall F1-score

Sub-Activity %)

Sit to Stand 96.72 95.16 95.93 93.44 91.94 92.68 98.31 93.55 95.87
Walking_out 98.09 98.09 98.09 95.62 97.45 96.53 96.84 97.45 97.14
Turning 98.66 96.71 97.67 98.01 97.37 97.69 98.01 97.37 97.69
Walking_in 95.74 97.83 96.77 96.32 94.93 95.62 96.30 94.20 95.24
Turning_arround 91.95 91.95 91.95 90.91 91.95 91.43 89.13 94.25 91.62
Stand_to_sit 95.65 96.49 96.07 96.49 96.49 96.49 96.52 97.37 96.94
Overall Accuracy 96.48 95.63 96.06

Random Forest Gradient Boosting Stacking Ensemble
.. Precision Recall F1-score Precision Recall Fl-score  Precision Recall F1-score

Sub-Activity %)

Sit to Stand 96.77 96.77 96.77 95.08 93.55 94.31 96.72 95.16 95.93
Walking_out 97.45 97.45 97.45 95.54 95.54 95.54 98.09 98.09 98.09
Turning 97.33 96.05 96.69 97.35 96.71 97.03 99.32 96.71 98.00
Walking_in 94.93 94.93 94.93 96.38 96.38 96.38 96.43 97.83 97.12
Turning_arround 91.95 91.95 91.95 89.77 90.80 90.29 91.21 95.40 93.26
Stand _to_sit 95.69 97.37 96.52 94.78 95.61 95.20 97.35 96.49 96.92
Overall Accuracy 95.92 95.21 96.90

The Random Forest model, positioned in the lower section
of the table, exhibited an overall accuracy of 95.92%, with the
highest F1-score of 97.45% for the walking-out category. The
Gradient Boosting and Stacking Ensemble models
demonstrated overall accuracies of 95.21% and 96.90%,
respectively. Among these models, the Stacking Ensemble
exhibited the highest overall accuracy, particularly excelling
in the walking-out activity with an F1-score of 98.09% and in
the turning activity with an Fl-score of 98.00%. This
thorough comparison examines the advantages and
disadvantages of each model, revealing that CATBoost and
Hist Gradient Boosting generally achieve a good balance
between accuracy and performance. However, the Stacking
Ensemble model outperforms the others in certain TUG test
activities, demonstrating higher overall performance.
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Each study presents a distinct method for evaluating
physical mobility through the Timed Up and Go (TUG) test.
Your research achieves high accuracy using video-based pose
estimation, suitable for non-invasive environments. In
contrast, the IMU-based research is particularly relevant in
clinical settings. The camera-based system enables real-time
monitoring for cancer patients, while the Kinect-based
research integrates machine learning with fall risk assessment,
providing an economical home-use solution. Collectively,
these studies highlight the adaptability of the TUG test across
various demographics and technological contexts. A
comparison was conducted between various state-of-the-art
approaches for segmenting the subtasks of TUG tests and the
proposed method, with findings reported in Table II.



TABLE III
COMPARISON OF METHODS FOR SEGMENTING TUG SUBTASKS AND THE PROPOSED APPROACH

Reference
Parameter : - :
This work Hsieh et al. [30] Duncan et al. [32] Dubois et al. [24]

Technology Video-based (MediaPipe) IMUs (accelerometers) Multi-camera (Raspberry Pi) Depth sensor (Kinect)
Data Modality Video pose data Motion data (IMU) Camera-based video Depth data (Kinect)
Participants 6 subjects 26 subjects 8 subjects 43 subjects
Machine Learning Models  Stacking, XGBoost, AdaBoost, Support Vector CSRT (Channel Spatial SVM, RF, Neural

Random Forest Machine Reliability Tracking) Netwotk , Naive Bayes
Tested Population General subtasks, low risk ~ TKA patients Older adults with cancer Elderly individuals (fall

risk)

Accuracy 96.90% (Stacking 92% (AdaBoost) >95% (gait speed), >97% 100% (SVM, RF with two

Ensemble) (timing) parameters)

IV. CONCLUSIONS

We present a fully automated segmentation technique for
the subtasks of the Timed Up and Go (TUG) test in video
recordings. Our method employs a human learning-based
ensemble machine learning methodology for pose estimation,
making it significantly more practical to adopt than previous
systems. Among the models studied, the Stacking Ensemble
approach achieved the highest overall accuracy of 96.90%,
surpassing the performance of other algorithms such as Hist
Gradient Boosting and CATBoost, both of which also
demonstrated commendable precision and Fl-scores.
Although XGBoost is robust, it exhibited marginally inferior
precision and recall in the majority of subtasks compared to
the leading methodologies. Despite Random Forest and
Gradient Boosting displaying competitive efficacy, they
failed to surpass the performance of the Stacking Ensemble.
While the efficiency enhancements of the Stacking Ensemble
method are significant, particularly in practical applications,
the increase in accuracy relative to simpler techniques like
Hist Gradient Boosting may appear minimal. We argue that
this modest enhancement justifies the added complexity when
considering the broader context of fall-risk screening, where
even small improvements in accuracy can yield substantial
clinical benefits. However, the computational complexity of
ensemble methods remains a potential limitation that requires
careful consideration. In real-world applications, evaluating
the trade-offs between model complexity and performance
improvements is crucial, particularly in resource-limited
settings.

In the future, researchers intend to explore techniques to
reduce computational costs while maintaining accuracy,
thereby enhancing the method's accessibility in clinical
environments. Furthermore, utilizing multimodal sensor data
could improve the method's efficacy, providing a more
comprehensive solution for early fall-risk assessment by
healthcare  practitioners, including physicians and
physiotherapists.
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