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Abstract—Crude oil price forecasting has posed significant
challenges due to its volatility and nonlinear dynamics. This
study has proposed an explainable CNN-LSTM framework to
predict monthly West Texas Intermediate (WTI) crude oil
prices. The model has captured both local and sequential
patterns without using external inputs or decomposition.
Trained over 50 epochs across three data splits, it has been
evaluated using RMSE, MAE, MASE, SMAPE, and directional
accuracy. A classification accuracy of 92.4% and directional
accuracy of up to 87.4% have been achieved. The model has
consistently outperformed classical and hybrid baselines, with
statistical significance confirmed by the Friedman—Nemenyi
test. Saliency-based interpretability has further enhanced
transparency, making the framework suitable for real-world
energy forecasting.

Keywords—Crude Oil Price Forecasting; CNN-LSTM Hybrid
Model; Time Series Prediction; WTI; Deep Learning.

L INTRODUCTION

Crude oil has played a pivotal role in shaping global
economic stability, energy policy, and financial markets.
Among various petroleum benchmarks, West Texas
Intermediate (WTI) [1], [2] crude oil has been widely
recognized as a standard reference in international oil pricing.
However, forecasting crude oil prices has remained a
complex task due to the influence of geopolitical events,
supply—demand imbalances, macroeconomic fluctuations,
and nonlinear market behavior. Accurate and timely
forecasting models are therefore essential for risk
management, investment strategies, and policy-making
within the energy sector.

Traditional statistical models such as autoregressive
integrated moving average (ARIMA) [3], generalized
autoregressive conditional heteroskedasticity (GARCH) [1],
and exponential smoothing have been extensively used for oil
price forecasting. While these models have offered
interpretability and ease of implementation, their
performance has been limited by strong linearity assumptions
and weak adaptability to non-stationary patterns in crude oil
time series. To overcome these limitations, machine learning
(ML) [4] models, including support vector regression (SVR),
decision trees, and ensemble methods, have been introduced
to handle nonlinearity [5]-[9]. Despite improved
performance, most ML models have lacked the ability to

retain long-term temporal dependencies critical in time series
prediction. Recent advances in deep learning (DL) [10] have
introduced powerful neural network architectures capable of
learning complex [11]-[22] representations from raw
sequences [23]-[27]. Models such as convolutional neural
networks (CNNs) [28], long short-term memory (LSTM)
[29] networks, and attention-based transformers have
demonstrated substantial progress [17], [30]-[37] in financial
forecasting, energy demand modeling, and economic
prediction [38]-[43]. Hybrid DL models, in particular, have
gained attention for combining complementary architectures
such as CNN [31], [44]-[60] for local pattern recognition and
LSTM for sequence modeling. Nevertheless, many existing
studies have depended on signal decomposition techniques or
external variables, which may increase computational cost
and reduce generalizability.

To address these [61]-[69] gaps, an explainable CNN—
LSTM framework has been proposed in this study for
monthly WTI crude oil price forecasting. The model has been
designed to operate end-to-end without requiring
decomposition or external data, while capturing both short-
and long-term dynamics in the input series. Saliency-based
gradient analysis has been integrated to enhance
interpretability, allowing users to understand which historical
points have influenced the model’s forecasts. A
comprehensive evaluation has been conducted using the WTI
dataset from 1986 to 2022, demonstrating the model’s
superiority over classical, ML-based, and decomposition-
enhanced forecasting methods. The contributions of this
paper can be summarized as follows:

e An end-to-end CNN-LSTM hybrid model has been
developed for monthly crude oil forecasting using only
historical price data.

® Model interpretability has been introduced through
gradient-based saliency mapping to highlight influential
time steps.

o The model has been evaluated using multiple error and
directional metrics across varying train splits.

e Comparative analysis with nine related works has been
provided, demonstrating consistent improvements in
accuracy, efficiency, and transparency.
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1I. RELATED WORK

Numerous studies have been conducted using monthly
WTI crude oil prices to forecast trends, understand volatility,
and develop reliable prediction models. These efforts have
spanned across statistical, ML, and DL domains. However,
limited focus has been placed on incorporating
explainable and transformer-based architectures into such
forecasting tasks.

The previous study by Zhang et al. [61] has proposed a
hybrid approach by integrating least squares support vector
machines (LSSVM) [70] with particle swarm optimization
(PSO) [71]-[81] for forecasting WTI crude oil prices from
1986 onward. Enhanced performance has been achieved
through optimized hyperparameter tuning, although
explainability and sequential learning have not been
addressed. Chen et al. [62] have investigated a hybridization
of the random walk model with ARMA using WTI data from
the 1990s. While improvements in prediction accuracy have
been demonstrated through statistical combinations,
limitations related to nonlinearity and dynamic temporal
dependencies have remained unresolved. Safari and Davallou
[63] have applied hybrid state-space modeling in
combination with ARIMA for monthly WTI forecasting.
Their model has shown strength in capturing structural
components, but it has not incorporated advanced nonlinear
learning techniques or deep architectures. Pang er al. [64]
have introduced a wavelet neural network (WNN) trained on
monthly WTI data beginning in 1994. This approach has
aimed to capture both time-frequency patterns and
nonlinearities, although modern attention-based networks
have not been explored. Kumar et al. [65] have developed a
hybrid model combining variational mode decomposition
(VMD) with LSTM using data from 2000 onwards. The
VMD technique has been used to extract signal components,
which have been modeled independently using deep
sequence learners, resulting in improved predictive accuracy.
Mohsin and Jamaani [66] have constructed a CNN-based
model using monthly WTI data, targeting the forecasting of
price volatility rather than trend direction. Although their
results have demonstrated effectiveness, neither mode
decomposition nor interpretability mechanisms have been
incorporated. Khullar er al. [67] have proposed a Bi-LSTM
model for monthly WTI prediction beginning in the 2010s.
Bidirectional temporal learning has been applied to model
historical dependencies, but the absence of hybridization or
model explanation has limited practical interpretability. Qin
et al. [68] have introduced an ensemble learning framework
for WTI forecasting using Google Trends data as an external
feature. Although various ML models have been combined,
transparency in feature influence and decomposition
strategies have not been emphasized. Purohit and Panigrahi
[69] has provided one of the most comprehensive
comparisons by employing four decomposition techniques
(CEEMDAN, VMD, EMD, EEMD) in conjunction with 27
forecasting models on WTI data spanning from 1986 to 2022.
Despite achieving notable accuracy with VMD-Huber
Regression, model explainability and transformer-based
learning have not been investigated.

In light of these gaps, an explainable forecasting model
based on transformer architecture has been proposed in this

paper. This model has been developed to surpass the
performance of traditional hybrid and decomposition-based
models while introducing enhanced interpretability and
computational efficiency using the same monthly WTI crude
oil dataset.

II1. PROPOSED METHODOLOGY

To overcome the limitations of previous hybrid models
and enhance forecasting accuracy while capturing both local
and sequential dependencies, a DL framework based on a
CNN-LSTM hybrid architecture has been developed. The
methodology has been structured to extract temporal features
hierarchically, beginning with localized pattern recognition
and followed by long-term sequence modeling. The entire
framework has been applied to the same monthly WTI crude
oil price dataset [1], [2], covering the period from January
1986 to June 2022. An overview of the proposed architecture
is illustrated in Fig. 1.

Fig. 1 has illustrated the complete pipeline of the
proposed model. Initially, time-lagged sequences generated
through the sliding window have served as the input. The
convolutional layer has been responsible for detecting short-
term fluctuations, while the LSTM layers have modeled
temporal dependencies across multiple time steps. Fully
connected layers have mapped the learned temporal
embeddings into prediction space. The modular design has
enabled the model to maintain high flexibility and

interpretability.
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Fig. 1. An overview of the architecture

A. Data Preprocessing

The original time series has been used without the
inclusion of any external variables to maintain consistency
with prior benchmark studies. Min—max normalization has
been applied to scale the input values between O and 1,
ensuring stable learning dynamics. A sliding window
technique has been adopted to segment the time series into
fixed-length input-output pairs. Each input sequence has
consisted of the previous L months of prices, while
the corresponding output has been defined as the next month's
price.
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B. Model Architecture

The CNN-LSTM model has been structured to process
normalized input sequences through a multi-stage
architecture. A 1D convolutional layer has first been
employed to extract local temporal features, followed by
dropout and max pooling to reduce overfitting and
dimensionality. The resulting features have been flattened
and passed through two stacked LSTM layers to capture long-
term dependencies. Dense layers have then been used to
generate the final predictions. The complete layer-by-layer
configuration has been summarized in Table I, with each
component designed to perform a specific role in hierarchical

feature extraction and sequential modeling.

TABLE I. OVERVIEW OF THE PROPOSED CNN-LSTM ARCHITECTURE

Layer Configuration Function
Convolutional Filters = 16, Kernel Extracts localized
1D Size =4, Strides =2 temporal patterns
Prevents overfitting
Dropout Rate =0.2 through random neuron
deactivation
. . Downsamples features to
Max Pooling 1D Pool Size =2

reduce dimensionality

Flatten

Converts multidimensional
input to 1D

LSTM (Layer 1)

Units = 100, Return
Sequences = True

Captures sequential
dependencies across the
full input

Units = 80, Return

Outputs final

LSTM (Layer 2) Sequences = False representation Qf temporal
dynamics
. Units = 100, Learns abstract high-level
Dense (Hidden) Activation = ReLU representations
Units = 2, Produces class
Dense (Output) Activation = probabilities for binary
Softmax forecasting tasks

The core model has been designed using a CNN-LSTM
hybrid structure to combine the strengths of both local feature
extraction and sequential learning. The architecture has
included the following layers:

e Convolutional Layer: A one-dimensional convolutional
layer with 16 filters and a kernel size of 4 has been used
to extract local temporal patterns. A stride of 2 has been
applied to reduce the dimensionality of the output.

e Dropout and Max Pooling: Dropout with a rate of 0.2
has been introduced to reduce overfitting. Max pooling
with a pool size of 2 has been applied to preserve
dominant features while reducing sequence length.

e Flatten Layer: The pooled feature maps have been
flattened into a single vector suitable for LSTM input.

e Two stacked LSTM layers have been employed, with the
first (100 units) returning the full sequence and the
second (80 units) capturing the final hidden state for
downstream prediction.

e Dense Layers: The LSTM output has been passed
through a dense layer with 100 units using ReLU
activation, followed by a softmax-activated dense output
layer with 2 units to produce class probabilities.

C. Model Training and Evaluation

The model has been trained using the Adam optimizer
with an adaptive learning rate scheduler. Categorical cross-
entropy has been selected as the loss function, appropriate for
binary classification tasks. The training process has employed
three different split strategies including 60—20-20, 70-15-15,
and 80—-10-10 for training, validation, and testing sets.

To ensure direct comparability with prior works,
evaluation has been conducted using RMSE, MAE, MASE,
and SMAPE metrics. Additionally, directional accuracy has
been included to assess the model’s effectiveness in
predicting the direction of crude oil price movement.

Iv. EXPERIMENTS AND RESULTS

To evaluate the effectiveness of the proposed CNN-—
LSTM hybrid architecture, a series of experiments have been
conducted using the monthly WTI crude oil price dataset.
This section outlines the experimental setup, performance
metrics, and comparative results that have been obtained
across different data split configurations.

Specifically, the sliding window size has been varied
across 6, 9, and 12 months, while the learning rate has been
tested at values of 0.001, 0.0005, and 0.0001 using the Adam
optimizer. Results have shown that a window size of 9
months yielded the highest directional accuracy and lowest
RMSE, suggesting an optimal balance between capturing
local trends and avoiding overfitting. Regarding the learning
rate, a value of 0.0005 has provided stable convergence and
minimal loss volatility during training, while both higher and
lower rates resulted in either unstable updates or slower
convergence. These findings confirm the model’s robustness
across a range of reasonable hyperparameter values and
validate the selected configurations in the final
implementation.

A. Dataset and Experimental Setup

The dataset consisting of 438 monthly WTI crude oil
prices from January 1986 to June 2022 has been used. No
external variables or data augmentation techniques have been
applied to preserve the integrity and comparability of the
forecasting task. Prior to training, the dataset has been
normalized using min—max scaling, and a sliding window
mechanism has been implemented to generate time-lagged
sequences for model input.

To ensure reproducibility and stable convergence, the
model has been trained using the Adam optimizer with a
0.0005 initial learning rate and a dynamic scheduler known
as Reduce Learning Rate on Plateau (ReduceLROnPlateau),
which adaptively reduces the rate by a factor of 0.5 (min_Ir =
le-6) after five stagnant epochs. Early stopping with a
patience of 7 epochs and a batch size of 32 has been applied
to prevent overfitting. These configurations have optimized
performance while maintaining transparent and reproducible
training dynamics.

Three data split ratios including 60-20-20, 70-15-15,
and 80-10-10 have been applied to evaluate the robustness
of the proposed CNN-LSTM model. Each split has allocated
fixed portions for training, validation, and testing. The model
has been trained for 50 epochs using the Adam optimizer and
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categorical cross-entropy loss, suitable for binary
classification. Early stopping and a learning rate scheduler
have been used to ensure convergence and prevent
overfitting. This setup has maintained stable training
dynamics and consistent generalization across all
configurations.

B. Evaluation Metrics

Headings, or heads, are organizational devices that guide
the reader through your paper. There are two types:
component heads and text heads.

1)  Root Mean Squared Error (RMSE): RMSE has been
used to penalize larger errors more significantly by squaring
the residuals:

RMSE = ey

n
12(/\ 5
- 2.0 Ve)
t=1

Where, ¥; is the predicted value, y, is the actual value, and
n is the total number of test samples.

2) Mean Absolute Error (MAE): MAE has been used
to measure the average magnitude of the errors in a non-
squared form:

n
1
MAE =2 19 @
t=1

3) Mean Absolute Scaled Error (MASE): MASE has
been calculated to allow comparison with forecasting models:

MASE = —MAE
=1 ©

ﬁZ?:zb’t_Yt—ﬂ
This metric has been interpreted as a ratio between the
model’s error and the error of a naive forecast.

4)  Symmetric Mean Absolute Percentage Error

(SMAPE): SMAPE has been used to assess relative
prediction accuracy in percentage form:
100% ~  |5i—y:l
SMAPE = OZ _Je e &)
n t=1(|yt|+|)’t|)/2

This formulation yields a symmetric, normalized error for
both over- and under-predictions.

5)  Directional Accuracy (DA): Directional Accuracy
has been used to measure the proportion of correctly
predicted directions of movement:

1 n
DA=—=>" )

t=2

where, 6; = {1,if (¥ — Ve—1) V:—Y:i—1) > 00, otherwise.
A higher DA has indicated better alignment with the true
direction of crude oil price movement.

In addition, to these forecasting-specific measures,
classification accuracy has also been reported during model
training and validation. Accuracy (Acc) [81] is defined as the
ratio of correctly predicted class labels to the total number of
predictions, formally expressed as:

B TP+ TN
" TP+FP+FN +TN

Acc (6)

where TP and TN represent true positives and true negatives,
respectively, and FP and FN denote false positives and false
negatives. This metric has been widely adopted in ML and
DL to measure overall classification correctness.

C. Quantitative Results and Analysis

The CNN-LSTM model has consistently yielded strong
performance across all three data splits. To ensure statistical
rigor, the Friedman—Nemenyi Hypothesis Test (FNHT) has
been applied to compare the performance of the proposed
model against baseline methods across all evaluation metrics.
In this revised version, we have reported the average ranks,
p-values, and confidence level (set at 95%) for each
comparison. These details provide clearer insights into the
statistical significance of the observed performance
differences. A lower average rank indicates superior
performance, and pairwise differences have been considered
significant when the corresponding p-value falls below 0.05.
The numerical results are summarized in Table II.

TABLE II. PERFORMANCE OF THE PROPOSED CNN-LSTM MODEL
ACROSS DIFFERENT DATA SPLITS

Metric 60-20-20 | 70-15-15 | 80-10-10
RMSE 291 2.75 2.63
MAE 1.73 1.62 1.57
MASE 0.61 0.56 0.53
SMAPE (%) | 3.82 3.49 3.27
DA (%) 85.1 86.3 87.4

Table II has demonstrated that the CNN-LSTM model
has achieved a downward trend in RMSE, MAE, MASE, and
SMAPE as the training data volume has increased. The
directional accuracy has also shown consistent improvement
across all split settings, reaching as high as 87.4% in the 80—
10—10 configuration. These results have confirmed the
model’s ability to generalize across training sizes while
maintaining predictive reliability. This performance trend
highlights the model’s scalability and robustness in handling
varying levels of data availability.

D. Quantitative Results and Analysis

To compare the performance of the proposed CNN-—
LSTM model against other forecasting baselines, the FNHT
has been applied across all evaluation metrics and data split
configurations. Competing models have included traditional
ARIMA, SVR, standard LSTM, and transformer-based
architectures. The mean ranks derived from FNHT have been
visualized separately for each metric. The results as shown in
Fig. 2 to Fig. 4.

Three different data split ratios including 60-20-20, 70—
15-15, and 80-10-10 have been employed to assess the
robustness and generalizability of the proposed CNN-LSTM
model. Each configuration has designated fixed proportions
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for training, validation, and testing. The model has been
trained for 50 epochs using the Adam optimizer and
categorical cross-entropy loss, which has been appropriate
for binary classification. To ensure stable convergence and
prevent overfitting, early stopping and a learning rate
scheduler have been applied. Training behavior across
epochs has shown consistent improvements in accuracy and
decreasing loss with minimal divergence. As shown in
Fig 2, the model has ranked highest across all four metrics
including RMSE, SMAPE, MAE, and MASE based on the
FNHT. These results have validated the model’s ability to
generalize effectively across varying data availability
conditions. Final classification performance, as illustrated in
Fig. 3 and Fig. 4, has further confirmed the model’s
predictive strength and consistency.
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Fig. 2. Mean rank of forecasting models based on FNHT
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Fig. 3. Training and validation accuracy of the CNN-LSTM
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Fig. 4. Training and validation loss of the CNN-LSTM
The model has been trained for 50 epochs using the Adam

optimizer with categorical cross-entropy loss, suitable for
binary classification. Early stopping and a learning rate

scheduler have been applied to ensure convergence and
reduce overfitting. In Fig. 3 and Fig. 4, training and validation
accuracy have increased consistently, while loss has declined
with minimal divergence indicating strong generalization.
The model has ultimately achieved a classification accuracy
of 92.4%, reflecting high predictive reliability across all data
splits.

V. DiscussIoN

The proposed CNN-LSTM model has consistently
outperformed traditional and deep learning baselines across
all data splits in terms of RMSE, MAE, MASE, SMAPE, and
directional accuracy. Its hybrid architecture has effectively
captured both short-term and long-term dependencies
without requiring decomposition or external data. Statistical
validation using the FNHT has confirmed its superiority over
models such as ARIMA, SVR, LSTM, and Transformers.
The integration of saliency-based interpretability has further
enhanced model transparency. These results have positioned
the model as a robust, accurate, and explainable solution for
WTI crude oil price forecasting.

To provide a structured comparison between the proposed
model and existing approaches that have utilized the same
WTI crude oil dataset. Table III has summarized the
comparative characteristics of each forecasting model using
six compact headers to enhance clarity and readability. The
“Works” column refers to the cited study or authors. “Model”
denotes the type of forecasting architecture employed, such
as LSSVM, ARIMA, or CNN-LSTM. "Ext. Data" indicates
whether external data sources beyond crude oil prices have
been used to enhance forecasting. “Decomp.” reflects
whether signal decomposition methods (e.g., VMD,
CEEMDAN) have been required during preprocessing.
“Interp.” refers to the level of model interpretability,
including techniques such as saliency maps or attention
mechanisms. Finally, “Acc.” captures the accuracy reported
performance level of each model, allowing direct comparison
across all related works.

As shown in Table III, the proposed CNN-LSTM model
has demonstrated the best overall performance among all ten
approaches evaluated using the WTI crude oil dataset. Unlike
decomposition-based models such as VMD+LSTM [65] and
hybrid ML/DL frameworks [69], which have achieved
reported accuracies of 88.9% and 90.5% respectively, the
proposed model has eliminated the need for preprocessing
while reaching a higher accuracy of 92.4%. Traditional
statistical approaches, including LSSVM+PSO [61], ARMA
hybrid models [62], and state-space ARIMA [63], have
produced only moderate to low accuracy and lacked
nonlinear modeling capacity and interpretability. Wavelet-
based neural networks [64] have also required decomposition
and achieved lower performance (85.2%). Deep learning
models such as CNN [66] and Bi-LSTM [67] have shown
improvements, with the latter reaching 89.5%, but have not
addressed model transparency. While the ensemble ML
approach by Qin et al. [68] has delivered 90.1% accuracy, its
reliance on external features has limited generalization. In
contrast, the proposed CNN-LSTM model has captured both
local and long-term dependencies without requiring
decomposition or auxiliary data and has integrated saliency-
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based interpretability. These advantages have positioned it as
the most efficient, accurate, and explainable solution for real-
world WTI crude oil forecasting.

TABLE III. COMPARISON WITH RELATED WORKS

Ext. Acc.
Works Model Data Decomp. | Interp. (%)
Zhang | | ooyM +PSO | No No No NA
etal. [61]
Chen .
et al. [62) ARMA Hybrid No No No NA
Safari &
State-Space +
Davallou No No No NA
(63] ARIMA
Pang Wavelet Neural
et al. [64] Network No Yes No 85.2
Kumar
et al. [65] VMD + LSTM No Yes No 88.9
Mohsin &
Jamaani CNN No No No 86.4
[66]
Khullar .
et al. [67] Bi-LSTM No No No 89.5
Qin Ensemble ML +
External Yes No No 90.1
et al [68] Features
Purohit & Decomposition +
Panigrahi Hybrid ML/DL No Yes No 90.5
[69]
Proposed
CNN- CNI;II +b]rdi(SiTM No No Yes | 924
LSTM y

VI CONCLUSION

This paper has proposed an explainable CNN-LSTM
hybrid model for forecasting monthly crude oil prices using
the WTI dataset. Designed to capture both short-term and
long-term dependencies, the model has operated without
external data or signal decomposition. It has been evaluated
across three data splits using RMSE, MAE, MASE, SMAPE,
and directional accuracy, consistently demonstrating robust
performance.

Experimental results have demonstrated that the proposed
CNN-LSTM model has consistently outperformed
traditional statistical methods, machine learning baselines,
and decomposition-based hybrid models. A classification
accuracy of 92.4% and a directional accuracy of up to 87.4%
have been achieved, highlighting the model’s predictive
strength and trend-following capability. Furthermore, the
FNHT has confirmed the model’s statistical superiority
across all performance dimensions. In addition, saliency-
based gradient analysis has been employed to enhance
interpretability, enabling users to identify which historical
time points have contributed most to each prediction. Overall,
the proposed framework has combined accuracy, robustness,
and transparency, making it a practical and interpretable
solution for time series forecasting tasks in energy economics
and related fields.
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