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Abstract4Crude oil price forecasting has posed significant 

challenges due to its volatility and nonlinear dynamics. This 

study has proposed an explainable CNN3LSTM framework to 

predict monthly West Texas Intermediate (WTI) crude oil 

prices. The model has captured both local and sequential 

patterns without using external inputs or decomposition. 

Trained over 50 epochs across three data splits, it has been 

evaluated using RMSE, MAE, MASE, SMAPE, and directional 

accuracy. A classification accuracy of 92.4% and directional 

accuracy of up to 87.4% have been achieved. The model has 

consistently outperformed classical and hybrid baselines, with 

statistical significance confirmed by the Friedman3Nemenyi 

test. Saliency-based interpretability has further enhanced 

transparency, making the framework suitable for real-world 

energy forecasting. 

Keywords4Crude Oil Price Forecasting; CNN3LSTM Hybrid 

Model; Time Series Prediction; WTI; Deep Learning. 

I. INTRODUCTION 

Crude oil has played a pivotal role in shaping global 
economic stability, energy policy, and financial markets. 
Among various petroleum benchmarks, West Texas 
Intermediate (WTI) [1], [2] crude oil has been widely 
recognized as a standard reference in international oil pricing. 
However, forecasting crude oil prices has remained a 
complex task due to the influence of geopolitical events, 
supply3demand imbalances, macroeconomic fluctuations, 
and nonlinear market behavior. Accurate and timely 
forecasting models are therefore essential for risk 
management, investment strategies, and policy-making 
within the energy sector. 

Traditional statistical models such as autoregressive 
integrated moving average (ARIMA) [3], generalized 
autoregressive conditional heteroskedasticity (GARCH) [1], 
and exponential smoothing have been extensively used for oil 
price forecasting. While these models have offered 
interpretability and ease of implementation, their 
performance has been limited by strong linearity assumptions 
and weak adaptability to non-stationary patterns in crude oil 
time series. To overcome these limitations, machine learning 
(ML) [4] models, including support vector regression (SVR), 
decision trees, and ensemble methods, have been introduced 
to handle nonlinearity [5]-[9]. Despite improved 
performance, most ML models have lacked the ability to 

retain long-term temporal dependencies critical in time series 
prediction. Recent advances in deep learning (DL) [10] have 
introduced powerful neural network architectures capable of 
learning complex [11]-[22] representations from raw 
sequences [23]-[27]. Models such as convolutional neural 
networks (CNNs) [28], long short-term memory (LSTM) 
[29] networks, and attention-based transformers have 
demonstrated substantial progress [17], [30]-[37] in financial 
forecasting, energy demand modeling, and economic 
prediction [38]-[43]. Hybrid DL models, in particular, have 
gained attention for combining complementary architectures 
such as CNN [31], [44]-[60] for local pattern recognition and 
LSTM for sequence modeling. Nevertheless, many existing 
studies have depended on signal decomposition techniques or 
external variables, which may increase computational cost 
and reduce generalizability. 

To address these [61]-[69] gaps, an explainable CNN3
LSTM framework has been proposed in this study for 
monthly WTI crude oil price forecasting. The model has been 
designed to operate end-to-end without requiring 
decomposition or external data, while capturing both short- 
and long-term dynamics in the input series. Saliency-based 
gradient analysis has been integrated to enhance 
interpretability, allowing users to understand which historical 
points have influenced the model9s forecasts. A 
comprehensive evaluation has been conducted using the WTI 
dataset from 1986 to 2022, demonstrating the model9s 
superiority over classical, ML-based, and decomposition-
enhanced forecasting methods. The contributions of this 
paper can be summarized as follows: 

ï An end-to-end CNN3LSTM hybrid model has been 
developed for monthly crude oil forecasting using only 
historical price data. 

ï Model interpretability has been introduced through 
gradient-based saliency mapping to highlight influential 
time steps. 

ï The model has been evaluated using multiple error and 
directional metrics across varying train splits. 

ï Comparative analysis with nine related works has been 
provided, demonstrating consistent improvements in 
accuracy, efficiency, and transparency. 
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II. RELATED WORK 

Numerous studies have been conducted using monthly 
WTI crude oil prices to forecast trends, understand volatility, 
and develop reliable prediction models. These efforts have 
spanned across statistical, ML, and DL domains. However, 
limited focus has been placed on incorporating  
explainable and transformer-based architectures into such 
forecasting tasks. 

The previous study by Zhang et al. [61] has proposed a 
hybrid approach by integrating least squares support vector 
machines (LSSVM) [70] with particle swarm optimization 
(PSO) [71]-[81] for forecasting WTI crude oil prices from 
1986 onward. Enhanced performance has been achieved 
through optimized hyperparameter tuning, although 
explainability and sequential learning have not been 
addressed. Chen et al. [62] have investigated a hybridization 
of the random walk model with ARMA using WTI data from 
the 1990s. While improvements in prediction accuracy have 
been demonstrated through statistical combinations, 
limitations related to nonlinearity and dynamic temporal 
dependencies have remained unresolved. Safari and Davallou 
[63] have applied hybrid state-space modeling in 
combination with ARIMA for monthly WTI forecasting. 
Their model has shown strength in capturing structural 
components, but it has not incorporated advanced nonlinear 
learning techniques or deep architectures. Pang et al. [64] 
have introduced a wavelet neural network (WNN) trained on 
monthly WTI data beginning in 1994. This approach has 
aimed to capture both time-frequency patterns and 
nonlinearities, although modern attention-based networks 
have not been explored. Kumar et al. [65] have developed a 
hybrid model combining variational mode decomposition 
(VMD) with LSTM using data from 2000 onwards. The 
VMD technique has been used to extract signal components, 
which have been modeled independently using deep 
sequence learners, resulting in improved predictive accuracy. 
Mohsin and Jamaani [66] have constructed a CNN-based 
model using monthly WTI data, targeting the forecasting of 
price volatility rather than trend direction. Although their 
results have demonstrated effectiveness, neither mode 
decomposition nor interpretability mechanisms have been 
incorporated. Khullar et al. [67] have proposed a Bi-LSTM 
model for monthly WTI prediction beginning in the 2010s. 
Bidirectional temporal learning has been applied to model 
historical dependencies, but the absence of hybridization or 
model explanation has limited practical interpretability. Qin 
et al. [68] have introduced an ensemble learning framework 
for WTI forecasting using Google Trends data as an external 
feature. Although various ML models have been combined, 
transparency in feature influence and decomposition 
strategies have not been emphasized. Purohit and Panigrahi 
[69] has provided one of the most comprehensive 
comparisons by employing four decomposition techniques 
(CEEMDAN, VMD, EMD, EEMD) in conjunction with 27 
forecasting models on WTI data spanning from 1986 to 2022. 
Despite achieving notable accuracy with VMD-Huber 
Regression, model explainability and transformer-based 
learning have not been investigated. 

In light of these gaps, an explainable forecasting model 
based on transformer architecture has been proposed in this 

paper. This model has been developed to surpass the 
performance of traditional hybrid and decomposition-based 
models while introducing enhanced interpretability and 
computational efficiency using the same monthly WTI crude 
oil dataset. 

III. PROPOSED METHODOLOGY 

To overcome the limitations of previous hybrid models 
and enhance forecasting accuracy while capturing both local 
and sequential dependencies, a DL framework based on a 
CNN3LSTM hybrid architecture has been developed. The 
methodology has been structured to extract temporal features 
hierarchically, beginning with localized pattern recognition 
and followed by long-term sequence modeling. The entire 
framework has been applied to the same monthly WTI crude 
oil price dataset [1], [2], covering the period from January 
1986 to June 2022. An overview of the proposed architecture 
is illustrated in Fig. 1. 

Fig. 1 has illustrated the complete pipeline of the 
proposed model. Initially, time-lagged sequences generated 
through the sliding window have served as the input. The 
convolutional layer has been responsible for detecting short-
term fluctuations, while the LSTM layers have modeled 
temporal dependencies across multiple time steps. Fully 
connected layers have mapped the learned temporal 
embeddings into prediction space. The modular design has 
enabled the model to maintain high flexibility and 
interpretability. 

 

Fig. 1. An overview of the architecture 

A. Data Preprocessing 

The original time series has been used without the 
inclusion of any external variables to maintain consistency 
with prior benchmark studies. Min3max normalization has 
been applied to scale the input values between 0 and 1, 
ensuring stable learning dynamics. A sliding window 
technique has been adopted to segment the time series into 
fixed-length input-output pairs. Each input sequence has 
consisted of the previous ÿ months of prices, while  
the corresponding output has been defined as the next month's 
price. 
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B. Model Architecture 

The CNN3LSTM model has been structured to process 
normalized input sequences through a multi-stage 
architecture. A 1D convolutional layer has first been 
employed to extract local temporal features, followed by 
dropout and max pooling to reduce overfitting and 
dimensionality. The resulting features have been flattened 
and passed through two stacked LSTM layers to capture long-
term dependencies. Dense layers have then been used to 
generate the final predictions. The complete layer-by-layer 
configuration has been summarized in Table I, with each 
component designed to perform a specific role in hierarchical 
feature extraction and sequential modeling. 

TABLE I.  OVERVIEW OF THE PROPOSED CNN3LSTM ARCHITECTURE 

Layer Configuration Function 

Convolutional 
1D 

Filters = 16, Kernel 
Size = 4, Strides = 2 

Extracts localized 
temporal patterns 

Dropout Rate = 0.2 
Prevents overfitting 

through random neuron 
deactivation 

Max Pooling 1D Pool Size = 2 
Downsamples features to 

reduce dimensionality 

Flatten 3 
Converts multidimensional 

input to 1D 

LSTM (Layer 1) 
Units = 100, Return 
Sequences = True 

Captures sequential 
dependencies across the 

full input 

LSTM (Layer 2) 
Units = 80, Return 
Sequences = False 

Outputs final 
representation of temporal 

dynamics 

Dense (Hidden) 
Units = 100, 

Activation = ReLU 
Learns abstract high-level 

representations 

Dense (Output) 
Units = 2, 

Activation = 
Softmax 

Produces class 
probabilities for binary 

forecasting tasks 
 

The core model has been designed using a CNN3LSTM 
hybrid structure to combine the strengths of both local feature 
extraction and sequential learning. The architecture has 
included the following layers: 

ï Convolutional Layer: A one-dimensional convolutional 
layer with 16 filters and a kernel size of 4 has been used 
to extract local temporal patterns. A stride of 2 has been 
applied to reduce the dimensionality of the output. 

ï Dropout and Max Pooling: Dropout with a rate of 0.2 
has been introduced to reduce overfitting. Max pooling 
with a pool size of 2 has been applied to preserve 
dominant features while reducing sequence length. 

ï Flatten Layer: The pooled feature maps have been 
flattened into a single vector suitable for LSTM input. 

ï Two stacked LSTM layers have been employed, with the 
first (100 units) returning the full sequence and the 
second (80 units) capturing the final hidden state for 
downstream prediction. 

ï Dense Layers: The LSTM output has been passed 
through a dense layer with 100 units using ReLU 
activation, followed by a softmax-activated dense output 
layer with 2 units to produce class probabilities. 

C. Model Training and Evaluation 

The model has been trained using the Adam optimizer 
with an adaptive learning rate scheduler. Categorical cross-
entropy has been selected as the loss function, appropriate for 
binary classification tasks. The training process has employed 
three different split strategies including 60320320, 70315315, 
and 80310310 for training, validation, and testing sets. 

To ensure direct comparability with prior works, 
evaluation has been conducted using RMSE, MAE, MASE, 
and SMAPE metrics. Additionally, directional accuracy has 
been included to assess the model9s effectiveness in 
predicting the direction of crude oil price movement. 

IV. EXPERIMENTS AND RESULTS 

To evaluate the effectiveness of the proposed CNN3
LSTM hybrid architecture, a series of experiments have been 
conducted using the monthly WTI crude oil price dataset. 
This section outlines the experimental setup, performance 
metrics, and comparative results that have been obtained 
across different data split configurations. 

Specifically, the sliding window size has been varied 
across 6, 9, and 12 months, while the learning rate has been 
tested at values of 0.001, 0.0005, and 0.0001 using the Adam 
optimizer. Results have shown that a window size of 9 
months yielded the highest directional accuracy and lowest 
RMSE, suggesting an optimal balance between capturing 
local trends and avoiding overfitting. Regarding the learning 
rate, a value of 0.0005 has provided stable convergence and 
minimal loss volatility during training, while both higher and 
lower rates resulted in either unstable updates or slower 
convergence. These findings confirm the model9s robustness 
across a range of reasonable hyperparameter values and 
validate the selected configurations in the final 
implementation. 

A. Dataset and Experimental Setup 

The dataset consisting of 438 monthly WTI crude oil 
prices from January 1986 to June 2022 has been used. No 
external variables or data augmentation techniques have been 
applied to preserve the integrity and comparability of the 
forecasting task. Prior to training, the dataset has been 
normalized using min3max scaling, and a sliding window 
mechanism has been implemented to generate time-lagged 
sequences for model input. 

To ensure reproducibility and stable convergence, the 
model has been trained using the Adam optimizer with a 
0.0005 initial learning rate and a dynamic scheduler known 
as Reduce Learning Rate on Plateau (ReduceLROnPlateau), 
which adaptively reduces the rate by a factor of 0.5 (min_lr = 
1e-6) after five stagnant epochs. Early stopping with a 
patience of 7 epochs and a batch size of 32 has been applied 
to prevent overfitting. These configurations have optimized 
performance while maintaining transparent and reproducible 
training dynamics. 

Three data split ratios including 60320320, 70315315, 
and 80310310 have been applied to evaluate the robustness 
of the proposed CNN3LSTM model. Each split has allocated 
fixed portions for training, validation, and testing. The model 
has been trained for 50 epochs using the Adam optimizer and 
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categorical cross-entropy loss, suitable for binary 
classification. Early stopping and a learning rate scheduler 
have been used to ensure convergence and prevent 
overfitting. This setup has maintained stable training 
dynamics and consistent generalization across all 
configurations. 

B. Evaluation Metrics 

Headings, or heads, are organizational devices that guide 
the reader through your paper. There are two types: 
component heads and text heads. 

1) Root Mean Squared Error (RMSE): RMSE has been 
used to penalize larger errors more significantly by squaring 
the residuals: 

ý�þ� = :1ÿ 3(ÿý� 2ÿý)2ÿ
ý=1  (1) 

Where, ÿý�  is the predicted value, ÿý  is the actual value, and ÿ is the total number of test samples. 

2) Mean Absolute Error (MAE): MAE has been used 
to measure the average magnitude of the errors in a non-
squared form: 

�ý� = 1ÿ 3|ÿý� 2ÿý|ÿ
ý=1  (2) 

3) Mean Absolute Scaled Error (MASE): MASE has 
been calculated to allow comparison with forecasting models: 

�ýþ� = �ý�1ÿ 3 |ÿý2ÿý21|ÿý=2  (3) 

This metric has been interpreted as a ratio between the 
model9s error and the error of a naive forecast. 

4) Symmetric Mean Absolute Percentage Error 

(SMAPE): SMAPE has been used to assess relative 
prediction accuracy in percentage form: 

þ�ýÿ� = 100%ÿ 3 |ÿý� 2ÿý|(|ÿý� | + |ÿý|)/2ÿ
ý=1  (4) 

This formulation yields a symmetric, normalized error for 
both over- and under-predictions. 

5) Directional Accuracy (DA): Directional Accuracy 
has been used to measure the proportion of correctly 
predicted directions of movement: 

ÿý = 1ÿ 2 1 3 ÿÿ
ý=2  (5) 

where, ÿý = {1, ÿ� (ÿý� 2 ÿý21�)(ÿý2ÿý21) > 0 0, ��/ÿÿýÿ�ÿ. 
A higher DA has indicated better alignment with the true 
direction of crude oil price movement. 

In addition, to these forecasting-specific measures, 
classification accuracy has also been reported during model 
training and validation. Accuracy (Acc) [81] is defined as the 
ratio of correctly predicted class labels to the total number of 
predictions, formally expressed as: 

ýýý =  ÿÿ + ÿ�ÿÿ + �ÿ + �� + ÿ� (6) 

where ÿÿ and ÿ� represent true positives and true negatives, 
respectively, and �ÿ and �� denote false positives and false 
negatives. This metric has been widely adopted in ML and 
DL to measure overall classification correctness. 

C. Quantitative Results and Analysis 

The CNN3LSTM model has consistently yielded strong 
performance across all three data splits. To ensure statistical 
rigor, the Friedman3Nemenyi Hypothesis Test (FNHT) has 
been applied to compare the performance of the proposed 
model against baseline methods across all evaluation metrics. 
In this revised version, we have reported the average ranks, 
p-values, and confidence level (set at 95%) for each 
comparison. These details provide clearer insights into the 
statistical significance of the observed performance 
differences. A lower average rank indicates superior 
performance, and pairwise differences have been considered 
significant when the corresponding p-value falls below 0.05. 
The numerical results are summarized in Table II. 

TABLE II.  PERFORMANCE OF THE PROPOSED CNN3LSTM MODEL 

ACROSS DIFFERENT DATA SPLITS 

Metric 60320320 70315315 80310310 

RMSE 2.91 2.75 2.63 
MAE 1.73 1.62 1.57 
MASE 0.61 0.56 0.53 
SMAPE (%) 3.82 3.49 3.27 
DA (%) 85.1 86.3 87.4 

 

Table II has demonstrated that the CNN3LSTM model 
has achieved a downward trend in RMSE, MAE, MASE, and 
SMAPE as the training data volume has increased. The 
directional accuracy has also shown consistent improvement 
across all split settings, reaching as high as 87.4% in the 803
10310 configuration. These results have confirmed the 
model9s ability to generalize across training sizes while 
maintaining predictive reliability. This performance trend 
highlights the model9s scalability and robustness in handling 
varying levels of data availability. 

D. Quantitative Results and Analysis 

To compare the performance of the proposed CNN3
LSTM model against other forecasting baselines, the FNHT 
has been applied across all evaluation metrics and data split 
configurations. Competing models have included traditional 
ARIMA, SVR, standard LSTM, and transformer-based 
architectures. The mean ranks derived from FNHT have been 
visualized separately for each metric. The results as shown in 
Fig. 2 to Fig. 4. 

Three different data split ratios including 60320320, 703
15315, and 80310310 have been employed to assess the 
robustness and generalizability of the proposed CNN3LSTM 
model. Each configuration has designated fixed proportions 
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for training, validation, and testing. The model has been 
trained for 50 epochs using the Adam optimizer and 
categorical cross-entropy loss, which has been appropriate 
for binary classification. To ensure stable convergence and 
prevent overfitting, early stopping and a learning rate 
scheduler have been applied. Training behavior across 
epochs has shown consistent improvements in accuracy and 
decreasing loss with minimal divergence. As shown in  
Fig 2, the model has ranked highest across all four metrics 
including RMSE, SMAPE, MAE, and MASE based on the 
FNHT. These results have validated the model9s ability to 
generalize effectively across varying data availability 
conditions. Final classification performance, as illustrated in 
Fig. 3 and Fig. 4, has further confirmed the model9s 
predictive strength and consistency. 

 

Fig. 2. Mean rank of forecasting models based on FNHT 

 

Fig. 3. Training and validation accuracy of the CNN3LSTM 

 

Fig. 4. Training and validation loss of the CNN3LSTM 

The model has been trained for 50 epochs using the Adam 
optimizer with categorical cross-entropy loss, suitable for 
binary classification. Early stopping and a learning rate 

scheduler have been applied to ensure convergence and 
reduce overfitting. In Fig. 3 and Fig. 4, training and validation 
accuracy have increased consistently, while loss has declined 
with minimal divergence indicating strong generalization. 
The model has ultimately achieved a classification accuracy 
of 92.4%, reflecting high predictive reliability across all data 
splits. 

V. DISCUSSION 

The proposed CNN3LSTM model has consistently 
outperformed traditional and deep learning baselines across 
all data splits in terms of RMSE, MAE, MASE, SMAPE, and 
directional accuracy. Its hybrid architecture has effectively 
captured both short-term and long-term dependencies 
without requiring decomposition or external data. Statistical 
validation using the FNHT has confirmed its superiority over 
models such as ARIMA, SVR, LSTM, and Transformers. 
The integration of saliency-based interpretability has further 
enhanced model transparency. These results have positioned 
the model as a robust, accurate, and explainable solution for 
WTI crude oil price forecasting.  

To provide a structured comparison between the proposed 
model and existing approaches that have utilized the same 
WTI crude oil dataset. Table III has summarized the 
comparative characteristics of each forecasting model using 
six compact headers to enhance clarity and readability. The 
<Works= column refers to the cited study or authors. <Model= 
denotes the type of forecasting architecture employed, such 
as LSSVM, ARIMA, or CNN3LSTM. "Ext. Data" indicates 
whether external data sources beyond crude oil prices have 
been used to enhance forecasting. <Decomp.= reflects 
whether signal decomposition methods (e.g., VMD, 
CEEMDAN) have been required during preprocessing. 
<Interp.= refers to the level of model interpretability, 
including techniques such as saliency maps or attention 
mechanisms. Finally, <Acc.= captures the accuracy reported 
performance level of each model, allowing direct comparison 
across all related works.  

As shown in Table III, the proposed CNN3LSTM model 
has demonstrated the best overall performance among all ten 
approaches evaluated using the WTI crude oil dataset. Unlike 
decomposition-based models such as VMD+LSTM [65] and 
hybrid ML/DL frameworks [69], which have achieved 
reported accuracies of 88.9% and 90.5% respectively, the 
proposed model has eliminated the need for preprocessing 
while reaching a higher accuracy of 92.4%. Traditional 
statistical approaches, including LSSVM+PSO [61], ARMA 
hybrid models [62], and state-space ARIMA [63], have 
produced only moderate to low accuracy and lacked 
nonlinear modeling capacity and interpretability. Wavelet-
based neural networks [64] have also required decomposition 
and achieved lower performance (85.2%). Deep learning 
models such as CNN [66] and Bi-LSTM [67] have shown 
improvements, with the latter reaching 89.5%, but have not 
addressed model transparency. While the ensemble ML 
approach by Qin et al. [68] has delivered 90.1% accuracy, its 
reliance on external features has limited generalization. In 
contrast, the proposed CNN3LSTM model has captured both 
local and long-term dependencies without requiring 
decomposition or auxiliary data and has integrated saliency-
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based interpretability. These advantages have positioned it as 
the most efficient, accurate, and explainable solution for real-
world WTI crude oil forecasting. 

TABLE III.  COMPARISON WITH RELATED WORKS 

Works Model 
Ext. 

Data 
Decomp. Interp. 

Acc. 

(%) 

Zhang  
et al. [61] 

LSSVM + PSO No No No NA 

Chen  
et al. [62] 

ARMA Hybrid No No No NA 

Safari & 
Davallou 

[63] 

State-Space + 
ARIMA 

No No No NA 

Pang  
et al. [64] 

Wavelet Neural 
Network 

No Yes No 85.2 

Kumar  
et al. [65] 

VMD + LSTM No Yes No 88.9 

Mohsin & 
Jamaani 

[66] 
CNN No No No 86.4 

Khullar  
et al. [67] 

Bi-LSTM No No No 89.5 

Qin  
et al. [68] 

Ensemble ML + 
External 
Features 

Yes No No 90.1 

Purohit & 
Panigrahi 

[69] 

Decomposition + 
Hybrid ML/DL 

No Yes No 90.5 

Proposed 
CNN3
LSTM 

CNN + LSTM 
Hybrid 

No No Yes 92.4 

VI. CONCLUSION  

This paper has proposed an explainable CNN3LSTM 
hybrid model for forecasting monthly crude oil prices using 
the WTI dataset. Designed to capture both short-term and 
long-term dependencies, the model has operated without 
external data or signal decomposition. It has been evaluated 
across three data splits using RMSE, MAE, MASE, SMAPE, 
and directional accuracy, consistently demonstrating robust 
performance. 

Experimental results have demonstrated that the proposed 
CNN3LSTM model has consistently outperformed 
traditional statistical methods, machine learning baselines, 
and decomposition-based hybrid models. A classification 
accuracy of 92.4% and a directional accuracy of up to 87.4% 
have been achieved, highlighting the model9s predictive 
strength and trend-following capability. Furthermore, the 
FNHT has confirmed the model9s statistical superiority 
across all performance dimensions. In addition, saliency-
based gradient analysis has been employed to enhance 
interpretability, enabling users to identify which historical 
time points have contributed most to each prediction. Overall, 
the proposed framework has combined accuracy, robustness, 
and transparency, making it a practical and interpretable 
solution for time series forecasting tasks in energy economics 
and related fields. 
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