

Development of Blockchain Based System for Secure Student Data Management

Ariesya Aprillia¹ , Ana Theriana² , Syaifuddin³ , Fhia Amelia^{4*} , Ramiro Santiago Ikhsan⁵

¹Faculty of Law and Digital Business, Maranatha Christian University, Indonesia

²Faculty of Language and Arts, State University of Semarang, Indonesia

³Faculty of Economics and Business, Prima Indonesia University, Indonesia

⁴Faculty of Science and Technology, University of Raharja, Indonesia

⁵Faculty of Science and Technology, ILearning Incorporation, Colombia

¹ariesya.aprillia@eco.maranatha.edu, ²anatheriana@students.unnes.ac.id, ³drsyafuddin@gmail.com, ⁴fhia@raharja.info

⁵santiagosan199@ilearning.co

*Corresponding Author

Article Info

Article history:

Submission, 14-10-2025

Revised, 12-11-2025

Accepted, 03-12-2025

Keywords:

Blockchain
Data Management
Transparency
Interoperability
Higher Education

ABSTRACT

Student data management in Indonesian higher education institutions continues to face challenges such as data duplication, academic record manipulation, limited transparency, and weak interoperability caused by centralized databases. These issues hinder institutional credibility, administrative efficiency, and trusted academic governance. **This study** aims to conceptually develop a blockchain-based framework to enhance data integrity, transparency, and efficiency in student data management. **Using a qualitative descriptive and comparative approach**, the research analyzes existing blockchain models and integrates technological and managerial perspectives to design a permissioned blockchain system supported by smart contracts. **The proposed** framework focuses on automating academic data validation, strengthening access control, and enabling secure inter-institutional data exchange. Comparative findings indicate that blockchain offers immutability, traceability, and accountability, positioning it as a transformative innovation for academic governance. **The study provides** a conceptual foundation for universities and policymakers to adopt secure and interoperable blockchain-based academic data systems aligned with Indonesia's digital transformation agenda in higher education. Future research is recommended to simulate or pilot the model for practical evaluation and implementation.

This is an open access article under the [CC BY 4.0](#) license.

DOI: <https://10.34306/bfront.v5i2.922>

This is an open-access article under the CC-BY license (<https://creativecommons.org/licenses/by/4.0/>)

©Authors retain all copyrights

1. INTRODUCTION

The management of student data in universities continues to encounter significant challenges, including data duplication, manipulation of academic records, and limited transparency among administrative departments [1, 2]. The centralized structure of existing systems further heightens vulnerability to data breaches and unauthorized modifications, compromising both accuracy and confidentiality. Moreover, bureaucratic inefficiencies in academic data validation often cause administrative delays in essential services such as grade reporting and diploma verification [3, 4].

Blockchain technology has emerged as a promising solution to overcome these challenges [5]. Through

its decentralized, transparent, and tamper-resistant nature, blockchain enables a more secure and efficient approach to data management [6, 7]. In the higher education context, blockchain can be applied to record and preserve academic informations such as transcripts, course histories, and digital certificates without dependence on a centralized authority [8, 9]. The adoption of such systems is expected to enhance data integrity, promote accountability, and strengthen mutual trust among universities, students, and external institutions [6].

However, research on the application of blockchain for student data management in Indonesian universities remains relatively scarce, particularly regarding its practical integration within real higher education environments [10, 11]. Most existing studies are still limited to conceptual discussions or simulation-based analyses, with few offering empirically tested frameworks. Hence, there is a growing need to develop a system model that not only conceptualizes the use of blockchain but also demonstrates its potential integration into university academic management processes [12, 13].

The objective of this study is to design and conceptually develop a blockchain-based student data management framework that can be simulated across multiple universities in Indonesia without direct implementation [14, 15]. To provide clearer research direction, this study addresses two main research questions:

- How effectively can the Proof of Authority (PoA) consensus mechanism support the validation of academic transactions within a multi-node university environment?
- To what extent can the proposed blockchain framework maintain data interoperability and integrity among institutions with heterogeneous academic data formats?

Through this conceptual prototype approach, the research aims to highlight the potential of blockchain technology to enhance security, transparency, and efficiency in student data management at the higher education level [16, 17].

The main contribution of this study lies in the formulation of an integrated conceptual model that can serve as a strategic reference for universities in Indonesia aiming to adopt blockchain-based academic management systems in the future [18]. Accordingly, the findings of this research not only contribute to the enrichment of academic discourse but also offer practical implications for policymakers and higher education administrators seeking to enhance data governance, transparency, and digital transformation within the education sector [19, 17].

This research aligns with the United Nations Sustainable Development Goals (SDGs), particularly Goal 4 on Quality Education and Goal 9 on Industry, Innovation, and Infrastructure. Through the introduction of a blockchain-based student data management framework, this study seeks to promote transparency, accountability, and operational efficiency in higher education governance [20, 21]. Such innovations aim to ensure equitable access to credible academic records while minimizing bureaucratic constraints and reducing the risk of data manipulation [22, 23]. Furthermore, the proposed model contributes to the establishment of a resilient digital infrastructure for Indonesian universities, fostering continuous innovation in educational governance and ensuring that technological advancements generate sustainable benefits for both institutions and learners [24, 25].

2. LITERATURE REVIEW

2.1. Concept and Principles of Blockchain Technology

Blockchain technology operates as a decentralized and transparent digital ledger that records transactions securely through consensus among network nodes [26, 27]. Unlike centralized databases, blockchain ensures data immutability and traceability, preventing unauthorized manipulation. The integration of smart contracts further enables automation in data validation and authorization, minimizing human error in administrative processes [28, 29]. In higher education, these principles support the establishment of reliable academic ecosystems where student records, transcripts, and certifications can be verified securely and efficiently [10].

2.2. Data Availability in Distributed Networks

The adoption of blockchain technology in the education sector has expanded rapidly over the past five years. Numerous studies have explored its application for digital certification, diploma tracking, and academic data security [30]. Implementations in various international universities demonstrate that blockchain enhances the transparency and reliability of academic processes, particularly in issuing transcripts and verifying

graduation certificates. Furthermore, the integration of blockchain into academic management systems fosters inter-institutional trust by providing a verifiable framework that upholds both transparency and student privacy [31, 31]. In addition, prior research emphasizes that blockchain-based approaches can reduce operational costs and improve data management efficiency by automating verification and minimizing manual administrative procedures.

2.3. Academic Data Management Systems in Universities

Student data management systems in most Indonesian universities still rely on centralized database architectures managed by internal administrative units. While adequate for routine operations, such systems remain susceptible to grade manipulation, data breaches, and administrative inconsistencies [32]. Moreover, interoperability between institutions remains limited due to variations in data structures and internal policy frameworks [33]. International research highlights that blockchain-based academic management models can mitigate these challenges by enabling secure and transparent data distribution across multiple stakeholders [34]. Within this framework, each participant students, lecturers, and administrators holds a unique digital key that governs access rights, reinforcing accountability, data integrity, and user sovereignty over academic information.

2.4. Challenges and Opportunities for Implementation in Indonesia

Despite the increasing recognition of blockchain's potential in the education sector, its adoption in Indonesia still encounters several institutional and infrastructural barriers. Limited digital literacy among administrative staff, uneven information and communication technology (ICT) readiness, and the absence of standardized data-sharing policies hinder large-scale implementation [35, 36]. Nevertheless, the growing momentum of national digital transformation initiatives such as *Merdeka Belajar* and *Kampus Merdeka* creates opportunities to introduce blockchain as part of a transparent and accountable academic ecosystem [37]. These developments highlight the importance of establishing a conceptual framework that integrates technological innovation with governance adaptability, forming the foundation for sustainable academic data management in Indonesia [38].

Beyond institutional and infrastructural challenges, the adoption of blockchain-based academic data management in Indonesia must also address regulatory and ethical considerations. Student academic records constitute sensitive personal data regulated under Indonesia's Personal Data Protection Law (UU PDP), requiring universities to ensure compliance with principles such as data minimization, informed consent, lawful processing, and strict access control. Ethical concerns also arise regarding student privacy, transparency boundaries, and the potential misuse of immutable records by unauthorized stakeholders [39]. Prior studies emphasize that the successful implementation of blockchain in higher education depends not only on technological readiness but also on alignment with national legal frameworks and ethical data governance standards. Therefore, understanding regulatory requirements and ethical implications becomes essential to establishing a secure, responsible, and trustworthy blockchain ecosystem for academic data management.

2.5. Conceptual Framework of the Study

The conceptual framework of this study integrates the principles of decentralization, transparency, and automation inherent in blockchain technology into a model for academic data management in higher education [40, 41]. Within this framework, universities function as validator nodes in a permissioned blockchain consortium, ensuring that data transactions are validated through the PoA mechanism. This approach maintains efficiency and integrity without sacrificing privacy or governance control [42, 43]. Smart contracts are incorporated to automate verification and authorization processes, minimizing administrative intervention while improving data reliability [44]. Furthermore, interoperability is achieved through standardized data exchange protocols, allowing seamless collaboration between institutions. This framework serves as a theoretical foundation for establishing a transparent, secure, and sustainable academic data ecosystem across Indonesian universities.

3. RESEARCH METHOD

3.1. Research Design

This study adopts a qualitative descriptive approach combined with conceptual design analysis [45]. The research focuses on developing and analyzing a conceptual framework for blockchain-based student data management rather than implementing or simulating a functional prototype [46, 47]. This approach enables the

exploration of both technical and managerial dimensions of blockchain application in higher education through theoretical modeling and comparative literature analysis. Figure 1 illustrates the workflow of academic data validation in the proposed blockchain-based framework. This workflow demonstrates how smart contracts automate the verification process for student records, ensuring that data integrity and authenticity are maintained throughout the transaction cycle.

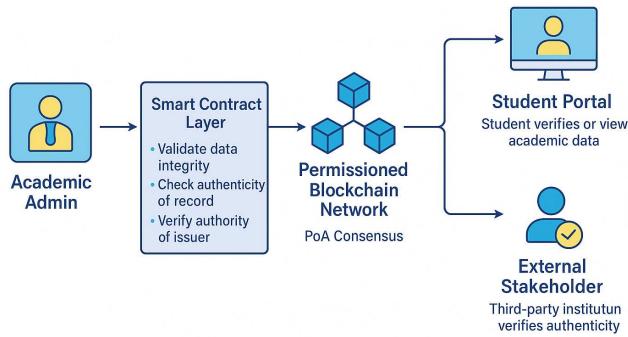


Figure 1. Workflow of Smart Contract-Based Academic Validation

As shown in Figure 1, the process begins with the academic administrator uploading academic data, which is then validated automatically through the smart contract layer. Once verified, the data is securely stored in the permissioned blockchain network using the PoA consensus mechanism. Both students and external stakeholders can subsequently verify academic information in real time through the respective portals, minimizing administrative intervention and reducing the potential for human error.

3.2. Research Procedure

- System Requirement Identification
Identification of problems in student data management through literature review and institutional documentation.
- Conceptual Framework Design
Development of a permissioned blockchain framework integrating smart contracts and validator nodes to ensure data integrity and transparency.
- Comparative Evaluation
Conceptual evaluation of the framework's potential performance by comparing with prior blockchain-based academic systems reported in the literature.
- Managerial Analysis
Interpretation of how the conceptual model contributes to transparency, administrative efficiency, and inter-university interoperability in Indonesia.

3.3. Data Sources

This study relies on secondary and conceptual data to develop and analyze the proposed blockchain-based framework. Secondary data were collected from academic journals, institutional reports, and policy documents addressing issues of data security, transparency, and digital transformation in higher education. These materials were used to identify the recurring challenges of centralized student data management and to establish the contextual foundation for system development in Indonesian universities.

In addition, conceptual data were derived from previously published models and frameworks related to blockchain implementation in academic environments [48]. These conceptual sources provided theoretical and structural insights such as permissioned blockchain design, consensus mechanisms, and the use of smart contracts which were adapted to construct the proposed framework. Together, both data types informed the conceptual synthesis of a system that balances technical reliability with managerial applicability.

3.4. Analytical Framework

The data analysis in this study applied a conceptual-comparative descriptive approach, focusing on synthesizing theoretical and practical insights from existing literature. The process began with identifying recurring themes related to blockchain implementation in education particularly data integrity, security, and interoperability. These themes were then aligned with the challenges and characteristics of student data management in Indonesian universities to ensure contextual relevance.

Furthermore, a comparative analytical lens was used to evaluate how different blockchain frameworks address issues of decentralization, validation, and system governance. By comparing conceptual similarities and structural variations among previous studies, this research formulated a unified framework that integrates both technical efficiency and managerial transparency [49]. The analysis therefore emphasizes theoretical depth over empirical measurement, aiming to build a foundation for future applied research [50].

3.5. Validity and Reliability.

The validity of this conceptual study was maintained through literature triangulation and consistency verification across multiple scholarly sources. References were cross-checked to ensure alignment between the proposed framework and established principles of blockchain architecture, data governance, and academic information management. This process minimized interpretive bias and ensured that each conceptual component such as consensus mechanism, access control, and data flow was grounded in recognized academic discourse.

Reliability was ensured through systematic documentation of the framework design and analytic procedures. Each stage of conceptual synthesis from data collection to comparative evaluation was recorded in a structured format, allowing replication by future researchers. Moreover, theoretical reliability was reinforced by comparing the resulting model with analogous blockchain systems implemented in educational contexts, confirming internal coherence and methodological soundness.

4. RESULT AND DISCUSSION

4.1. Proposed Conceptual Model

The conceptual model of the blockchain-based student data management system integrates decentralization, validation automation, and access control to ensure data security and transparency. Each university node in the permissioned blockchain network acts as a validator responsible for verifying academic transactions such as grade input and certificate issuance. The system utilizes smart contracts to automate verification procedures based on institutional academic policies. This approach not only reduces human error but also ensures that all transactions are immutable and traceable. Consequently, the model establishes a trust-based digital ecosystem that enhances data reliability and transparency across higher education institutions.

4.2. Technical Validation of the Model

The conceptual technical findings highlight blockchain's capacity to maintain data integrity and reliability while optimizing academic data validation processes. The technology serves not only as a data storage mechanism but also as a structural framework for digital trust and auditability.

Table 1. Conceptual Technical Results of Blockchain-Based Academic Data Management

Aspect	Technical Concept	Expected Outcome
Data Integrity	Distributed ledgers preserve immutable academic records through cryptographic validation.	Ensured authenticity and prevention of grade manipulation.
Validation Automation	Smart contracts automatically verify grades and transcripts.	Reduced human intervention and faster academic transactions.
Network Reliability	Consensus among university nodes maintains stable operations.	Consistent data synchronization and minimized downtime.
Access Security	Role-based private keys restrict unauthorized access to academic records.	Enhanced privacy protection and regulatory compliance.

Table 1 illustrates how a blockchain-based technical approach strengthens the integrity and security of academic data through the implementation of distributed ledgers and smart contracts. The distributed system

eliminates single points of failure while ensuring every record remains traceable and auditable. Automated validation further reduces administrative bottlenecks and minimizes potential human error in grade or diploma verification. Moreover, the private key based access mechanism guarantees that only authorized parties can modify academic data, ensuring transparent and accountable data governance.

4.3. Comparative Analysis with Existing Models

Several blockchain-based academic data systems have been proposed in previous studies; however, most remain limited in scope and do not fully support integrated academic data governance across multiple universities. Before presenting Table 2, the key gaps in prior models are briefly highlighted to justify the need for evaluating the proposed framework.

Table 2. Comparison of Blockchain-Based Academic Models

Aspect	Existing Models	Proposed Model
Implementation Scope	Focus on a single function	Covers multiple academic processes within one integrated framework
Blockchain Type	Public, with open access	Permissioned, with restricted and authorized access
Consensus Mechanism	Generic	PoA tailored for university consortium validation
Process Automation	Limited, partly manual	Smart contracts automate academic validation processes
Data Privacy & Security	Weak due to open ledger access	Stronger through controlled access rights and institutional nodes

After reviewing the comparison in Table 2, it becomes evident that the proposed model provides a more holistic, secure, and context-appropriate solution for higher education. Compared to previous approaches, the framework integrates security, automation, and inter-university collaboration, making it more suitable for academic data governance in Indonesia.

4.4. Managerial and Strategic Implications

From a managerial perspective, the implementation of blockchain represents a significant transformation in how universities manage and authenticate academic data. The conceptual model not only focuses on technological advancement but also promotes transparency, efficiency, and collaboration among higher education institutions three essential pillars supporting Indonesia's higher education digital transformation agenda.

Table 3. Managerial and Strategic Implications of the Proposed Blockchain Framework

Dimension	Managerial Focus	Practical Implication
Transparency and Accountability	Immutable data records ensure auditability and institutional integrity.	Strengthened stakeholder confidence in academic information.
Administrative Efficiency	Automated processes reduce manual verification workload.	Accelerated academic services and reduced bureaucratic barriers.
Inter-University Collaboration	Standardized blockchain protocols enable secure cross-institutional data exchange.	Foundation for a nationally integrated academic interoperability system.

Table 3 demonstrates that blockchain adoption provides not only technical efficiency but also substantial managerial benefits for university governance. The transparency resulting from immutable records reinforces institutional accountability and enhances public trust in the authenticity of academic credentials. Automated workflows contribute to faster academic services and reduced administrative redundancy, allowing human resources to focus on strategic academic development. Furthermore, standardized blockchain architecture facilitates inter-university collaboration, paving the way for a unified national academic data interoperability framework.

4.5. Key Findings Synthesis

Overall, the results indicate that blockchain serves as both a technical enabler and a governance innovation in higher education. Technically, it ensures data immutability, automates validation, and enhances information security. From a managerial standpoint, it promotes efficiency, transparency, and inter-institutional collaboration in academic data governance. This conceptual framework provides a foundation for future implementation of blockchain-based academic systems that can advance national interoperability, simplify administrative processes, and strengthen the integrity of higher education governance in Indonesia.

Although the proposed model offers a comprehensive conceptual foundation for blockchain-based academic data management, several limitations must be acknowledged. As a purely conceptual framework, it does not include empirical system testing, performance evaluation, or real-world implementation scenarios that would validate the model's operational feasibility. The analysis also does not account for variations in technological capacity, infrastructure readiness, and human resource competencies across Indonesian universities, which may significantly affect adoption outcomes. Furthermore, the framework assumes that institutions can align on standardized data formats and governance protocols, an assumption that may be challenging in practice due to diverse institutional policies. These limitations indicate the need for further simulation-based studies, prototype development, and stakeholder readiness assessments to ensure the model's applicability in real higher education environments.

5. MANAGERIAL IMPLICATIONS

The conceptual framework developed in this study provides several managerial implications for higher education institutions and policymakers in Indonesia. First, the integration of blockchain into academic data governance encourages a shift from centralized administration toward a transparent and accountable digital ecosystem. University administrators can utilize this framework as a strategic guideline for improving data interoperability, ensuring that student records, certifications, and administrative transactions remain consistent across institutions. Second, the model emphasizes the importance of adopting a permissioned blockchain structure, allowing each institution to maintain autonomy while participating in a trusted inter-university network. This approach supports collaborative verification without compromising data privacy. Third, the implementation of smart contracts within university systems can streamline academic validation processes, reducing administrative workload and human error.

From a policy perspective, this framework can serve as a foundation for developing national standards for academic data management that align with ongoing digital transformation programs such as *Merdeka Belajar Kampus Merdeka* (MBKM). Policymakers are encouraged to establish regulatory guidelines and technical infrastructure that facilitate blockchain adoption in higher education. Overall, the framework highlights the strategic role of digital trust and interoperability in shaping a secure, efficient, and sustainable academic ecosystem across Indonesian universities.

6. CONCLUSION

This study develops a conceptual framework for a blockchain-based student data management system designed to improve the transparency, security, and efficiency of academic governance in higher education. By integrating decentralization, immutability, and smart contract automation within a permissioned blockchain structure, the model ensures secure and verifiable academic transactions while maintaining data privacy and institutional autonomy. The conceptual analysis shows that the PoA consensus mechanism is effective for validating academic records across multiple university nodes and supports standardized data exchange to achieve interoperability.

To support future practical adoption, a structured implementation roadmap is essential for translating the proposed conceptual framework into an operational blockchain-based academic system. The roadmap should begin with a small-scale proof-of-concept involving a limited set of academic records to evaluate system stability, consensus performance, and interoperability mechanisms. Following this stage, universities can progress to pilot testing across multiple faculties or partner institutions, enabling assessment of real-time data validation, integration with existing platforms such as PDDIKTI, and institutional workflow alignment. Subsequent phases should focus on capacity building for academic and administrative staff, development of regulatory guidelines, and establishment of governance mechanisms for inter-university collaboration. The final

phase would involve full-scale deployment supported by continuous monitoring, cybersecurity stress testing, and iterative refinement to ensure long-term system sustainability and compliance with national digital transformation goals. From a managerial perspective, the proposed framework promotes a shift from centralized data management to a transparent and trusted digital ecosystem. The model offers strategic value for universities by streamlining academic processes, reducing administrative burdens, and strengthening accountability in academic record management. It also encourages inter-university collaboration through secure data sharing, supporting national initiatives aimed at accelerating digital transformation in higher education.

As a conceptual study, this research calls for further empirical validation through simulations or pilot implementation to assess technological performance, stakeholder readiness, regulatory alignment, and integration with national higher education data platforms. Future studies are encouraged to explore cost-benefit analysis, digital literacy preparedness, and policy development to ensure sustainable implementation of blockchain-based academic data governance in Indonesia.

7. DECLARATIONS

7.1. About Authors

Ariesya Aprillia (AP) <https://orcid.org/0000-0003-0152-2348>

Ana Theriana (AT) <https://orcid.org/0009-0003-4907-6153>

Syaifuddin (SS) <https://orcid.org/0000-0002-6977-5256>

Fhia Amelia (FA) <https://orcid.org/0009-0001-9222-2879>

Ramiro Santiago Ikhsan (RS) <https://orcid.org/0009-0005-3957-8576>

7.2. Author Contributions

Conceptualization: AP, AT, and SS; Methodology: FA; Software: RS; Validation: AP and AT; Formal Analysis: SS and RS; Investigation: FA; Resources: RS; Data Curation: AP; Writing Original Draft Preparation: FA and AT; Writing Review and Editing: FA; Visualization: AT; All authors, AP, AT, SS, FA and RS, have read and agreed to the published version of the manuscript.

7.3. Data Availability Statement

The data presented in this study are available on request from the corresponding author.

7.4. Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

7.5. Declaration of Conflicting Interest

The authors declare that they have no conflicts of interest, known competing financial interests, or personal relationships that could have influenced the work reported in this paper.

REFERENCES

- [1] C. L. Borgman and A. Brand, "Data blind: Universities lag in capturing and exploiting data," *Science*, vol. 378, no. 6626, pp. 1278–1281, 2022.
- [2] L. R. V, "Technical guidance for pddikti operators, capacity building enhancement," <https://lldikti5.kemdikbud.go.id/en/detailpost/bimtek-pengelola-pddikti-tingkat-dasar-peningkatan-capacity-building>, 2024.
- [3] A. Piazza, S. Vasudevan, and M. Carr, "Cybersecurity in uk universities: mapping (or managing) threat intelligence sharing within the higher education sector," *Journal of Cybersecurity*, vol. 9, no. 1, p. tyad019, 2023.
- [4] F. W. Andersson, H. Jordahl, and A. Kärnä, "Ballooning bureaucracy? stylized facts of growing administration in swedish higher education," *Constitutional Political Economy*, vol. 35, no. 2, pp. 303–326, 2024.

[5] G. P. L. Permana and K. A. W. Martatika, "Potential and challenges of blockchain technology implementation in higher education: A systematic literature review," *Review of Management, Accounting, and Business Studies*, vol. 5, no. 1, pp. 57–67, 2024.

[6] Y. Kistaubayev, F. Liébana-Cabanillas, A. A. Shaikh, G. Mutanov, O. Ussatova, and A. Shinbayeva, "Enhancing transparency and trust in higher education institutions via blockchain: A conceptual model utilizing the ethereum consortium approach," *Sustainability*, vol. 17, no. 20, p. 9350, 2025.

[7] E. A. Nabila and M. I. Ali, "Transformation of blockchain and opportunities for education 4.0," *landscape*, vol. 3, no. 3, pp. 222–231, 2021.

[8] B. Awaji and E. Solaiman, "Design, implementation, and evaluation of blockchain-based trusted achievement record system for students in higher education," *arXiv preprint arXiv:2204.12547*, 2022.

[9] R. G. Munthe, M. Abbas, R. Fernandez, and N. Ulita, "The impact of educational information systems on learning accessibility in higher education," *International Transactions on Education Technology (ITEE)*, vol. 3, no. 1, pp. 94–103, 2024.

[10] A. A. Rafdhi and E. N. Hayati, "Leveraging blockchain for academic credentialing and student data management in universities," *International Journal of Research and Applied Technology (INJURATECH)*, vol. 3, no. 2, pp. 429–436, 2023.

[11] A. A. Jabar, I. Hermadi, and Y. Arkeman, "Academic information system design blockchain based college: Desain sistem informasi akademik perguruan tinggi berbasis blockchain," *Systematics*, vol. 3, no. 3, pp. 281–294, 2021.

[12] A. N. Sari and T. Gelar, "Prototype of blockchain-based diploma transcript authentication method," *Journal of Computer Engineering, Electronics and Information Technology*, vol. 4, no. 2, pp. 91–102, 2025.

[13] I. D. Girinzio, A. Ramadan, D. B. Saputra, G. Mustika, and Sulistio, "Improve critical thinking students in indonesia for new learning management system," pp. 111–121, 2023.

[14] T. Green, H. R. Chakim, D. Andayani, U. Rusilowati *et al.*, "Implementation of blockchain in academic data management," *Jurnal MENTARI: Manajemen, Pendidikan dan Teknologi Informasi*, vol. 4, no. 1, pp. 74–82, 2025.

[15] A. Mufron, M. E. Najoan, and B. Utomo, "Strategy for implementing blockchain technology in higher education administrative management," *International Journal of Educational Narratives*, vol. 2, no. 2, pp. 249–258, 2024.

[16] V. D. Tran, S. Ata, T. H. Tran, D. K. Lam, and H. L. Pham, "Blockchain-powered education: A sustainable approach for secured and connected university systems," *Sustainability*, vol. 15, no. 21, p. 15545, 2023.

[17] M. Rusdan and M. T. Anwar, "Blockchain-based academic information system to enhance data security," *Jurnal Sistem Informasi dan Teknologi Informasi*, vol. 2, no. 1, pp. 186–193, 2024.

[18] I. Iswahyudi, D. Hindarto, and R. E. Indrajit, "Digital transformation in university: enterprise architecture and blockchain technology," *Sinkron: jurnal dan penelitian teknik informatika*, vol. 7, no. 4, pp. 2501–2512, 2023.

[19] K. Vaher, A. Simanjuntak, E. Sugiharto *et al.*, "Securing academic records with blockchain technology a data-driven approach for university management," *Jurnal MENTARI: Manajemen, Pendidikan dan Teknologi Informasi*, vol. 4, no. 1, pp. 52–62, 2025.

[20] A. Sekartika and M. D. Leandro, "Exploring the implementation and impact of blockchain technology on student academic data management in higher education," *Journal Basic Science and Technology*, vol. 13, no. 2, pp. 71–80, 2024.

[21] A. Mudinillah, B. Jonathan, N. G. Karomah, N. F. Handayani *et al.*, "Blockchain technology for enhancing transparency and accountability in educational administration," *Journal of Social Science Utilizing Technology*, vol. 2, no. 4, pp. 542–551, 2024.

[22] A. D. Chatra, "Analysis of the application of blockchain technology in learning evaluation systems in higher education," *Journal of Education Innovation and Curriculum Development*, vol. 2, no. 1, pp. 1–11, 2024.

[23] P. Edastama, A. Dudhat, and G. Maulani, "Use of data warehouse and data mining for academic data: A case study at a national university," *International Journal of Cyber and IT Service Management*, vol. 1, no. 2, pp. 206–215, 2021.

[24] H. Pasaribu, A. Widiatmoko, D. Supriyanto *et al.*, "Decentralized educational administration: A blockchain model for transparent governance," *Journal of Social Science Utilizing Technology*, vol. 2, no. 3, pp. 386–399, 2024.

- [25] A. S. Alammari, "Building a sustainable digital infrastructure for higher education: A blockchain-based solution for cross-institutional enrollment," *Sustainability*, vol. 17, no. 1, p. 194, 2024.
- [26] D. Mhlanga, "Block chain technology for digital financial inclusion in the industry 4.0, towards sustainable development?" *Frontiers in Blockchain*, vol. 6, p. 1035405, 2023.
- [27] B. Bordel, R. Alcarria, and T. Robles, "A blockchain ledger for securing isolated ambient intelligence deployments using reputation and information theory metrics," *Wireless Networks*, vol. 30, no. 6, pp. 5887–5903, 2024.
- [28] H. Taherdoost, "Smart contracts in blockchain technology: A critical review," *Information*, vol. 14, no. 2, p. 117, 2023.
- [29] C. O. Putri, J. Williams, L. Anastasya, and D. Juliastuti, "The use of blockchain technology for smart contracts in future business agreements," *Blockchain Frontier Technology*, vol. 4, no. 1, pp. 1–6, 2024.
- [30] A. Rustemi, F. Dalipi, V. Atanasovski, and A. Risteski, "Diar: a blockchain-based system for generation and verification of academic diplomas," *Discover Applied Sciences*, vol. 6, no. 6, p. 297, 2024.
- [31] J. A. Berrios Moya, J. Ayoade, and M. A. Uddin, "A zero-knowledge proof-enabled blockchain-based academic record verification system," *Sensors*, vol. 25, no. 11, p. 3450, 2025.
- [32] W. Chan, K. Gai, J. Yu, and L. Zhu, "Blockchain-assisted self-sovereign identities on education: a survey," *Blockchains*, vol. 3, no. 1, p. 3, 2025.
- [33] A. Mohammad and S. Vargas, "Barriers affecting higher education institutions' adoption of blockchain technology: A qualitative study," in *Informatics*, vol. 9, no. 3. MDPI, 2022, p. 64.
- [34] T. Handra, S. Purnama, A. J. Kusumo, and D. Bennet, "Blockchain in digital transformation: Enhancing security, transparency, and efficiency in modern systems," *Blockchain Frontier Technology*, vol. 4, no. 1, pp. 23–28, 2024.
- [35] N. F. V. Moshia and P. Ngulube, "Barriers impeding research data sharing on chronic disease prevention among the older adults in low-and middle-income countries: a systematic review," *Frontiers in Public Health*, vol. 12, p. 1437543, 2024.
- [36] U. Rahardja, Q. Aini, A. S. Bist, S. Maulana, and S. Millah, "Examining the interplay of technology readiness and behavioural intentions in health detection safe entry station," *JDM (Jurnal Dinamika Manajemen)*, vol. 15, no. 1, pp. 125–143, 2024.
- [37] S. Ahmad, S. Umirzakova, G. Mujtaba, M. S. Amin, and T. Whangbo, "Education 5.0: requirements, enabling technologies, and future directions," *arXiv preprint arXiv:2307.15846*, 2023.
- [38] H. Purwanto, A. Rahayu, V. Gaffar, L. A. Wibowo, M. A. Asmara, A. Munawar, and D. Saepudin, "Strategic alignment for higher education's digital transformation journey," *TRIKONOMIKA: Jurnal Ekonomi*, vol. 23, no. 2, pp. 83–97, 2024.
- [39] D. Hariyani, P. Hariyani, S. Mishra, and M. K. Sharma, "A literature review on transformative impacts of blockchain technology on manufacturing management and industrial engineering practices," *Green Technologies and Sustainability*, p. 100169, 2025.
- [40] R. Widayanti, A. B. Mutiara, and A. Tarigan, "Data governance in blockchain-based systems for internship grade conversion," *Aptisi Transactions on Technopreneurship (ATT)*, vol. 6, no. 3, pp. 509–521, 2024.
- [41] P. M. Pondkule and S. Kothari, "Implementation of blockchain-based document management system for higher education organizations," *International Journal on Smart Sensing and Intelligent Systems*, vol. 18, no. 1, 2025.
- [42] P. Wicaksono, P. Hatta, and Y. H. Arisetyagama, "Comparative analysis of pos and poa consensus in ethereum environment for blockchain based academic transcript systems," *Bulletin of Electrical Engineering and Informatics*, vol. 14, no. 3, pp. 2380–2392, 2025.
- [43] R. A. Jaafar and S. N. Alsaad, "Enhancing educational certificate verification with blockchain and ipfs: A decentralized approach using hyperledger fab," *TEM Journal*, vol. 12, no. 4, 2023.
- [44] D. L. Fekete and A. Kiss, "Toward building smart contract-based higher education systems using zero-knowledge ethereum virtual machine," *Electronics*, vol. 12, no. 3, p. 664, 2023.
- [45] S. Hall and L. Liebenberg, "Qualitative description as an introductory method to qualitative research for master's-level students and research trainees," p. 16094069241242264, 2024.
- [46] S. A. Sultana, C. Rupa, R. P. Malleswari, and T. R. Gadekallu, "Ipfs-blockchain smart contracts based conceptual framework to reduce certificate frauds in the academic field," *Information*, vol. 14, no. 8, p. 446, 2023.

- [47] I. E. Khairuddin, M. K. Zaini, S. Zakaria, and N. Ahmad Uzir, "Credential verification on blockchain: A conceptual framework of internet of education (ioe) for tertiary education," *International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies*, vol. 15, no. 1, pp. 1–9, 2024.
- [48] H. A. Alsobhi, R. A. Alakhtar, A. Ubaid, O. K. Hussain, and F. K. Hussain, "Blockchain-based micro-credentialing system in higher education institutions: Systematic literature review," *Knowledge-Based Systems*, vol. 265, p. 110238, 2023.
- [49] S. H. Said, M. A. Dida, E. M. Kosia, and R. S. Sinde, "A blockchain-based conceptual model to address educational certificate verification challenges in tanzania," *Engineering, Technology & Applied Science Research*, vol. 13, no. 5, pp. 11 691–11 704, 2023.
- [50] X. Wang, X. Xu, V. N.-L. Lei, and S. Hao, "Conceptual design of the blockchain-based student identity management system (bsims) model for higher education personal learning environments," *Discover Computing*, vol. 28, no. 1, p. 42, 2025.