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ABSTRACT 

Land use and land cover (LULC) changes can influence policies in a region due to economic and social 

conditions caused by population growth. The objective of this study is to analyze and map LULC 

changes in 2002, 2012, and 2022 using the Random Forest approach on Google Earth Engine, and 

to predict land use in 2042 using Markov-CA, thereby supporting the provision of accurate and 

sustainable policy data related to LULC in Banggai Islands Regency. This method can provide 

accurate information about the spatial distribution of rational LULC, balancing development 

demands with sustainable environmental protection. The study's results indicate that LULC has 

undergone significant changes from 2002 to 2022. There has been an increase in plantation land, 

open land, and settlements originating from forest and scrubland. Predictions of LULC changes in 

2042 show an increase in plantations, settlements, and open land, while other land uses are 

declining. Effective land use policies require spatial planning that considers the potential and 

limitations of land, as well as the space needs for residential, agricultural, and forest areas. This 

approach will facilitate the application of land conservation principles in sustainable, balanced 

agricultural and non-agricultural development in Banggai Islands Regency. 

Introduction 

Land is a vital natural resource that humans have utilized for various activities and sustenance. Over the years, 
land use and land cover change (LULC) has become a significant concern for many nations. Land use refers to 
the alterations made by humans to the Earth's surface, while land cover describes the physical and 
environmental characteristics of that surface [1]. Land is defined by distinct properties and essential elements 
that characterize its use and management. LULC is a prevalent issue in Indonesia, including the Banggai 
Islands Regency. Key drivers of LULC include rapid population growth, migration, and the transformation of 
rural areas into urban centers [2]. Given the region's limited land resources, the government must implement 
effective regulations for land management. Over the past two decades, numerous studies have explored 
various aspects of LULC; however, information remains incomplete in certain areas. Recent work by Anandhi 
et al. [3] has provided both narrow and broad definitions of land resources, encompassing ecological 
components such as climate, water, soil, landscape, flora, and fauna, as well as the socioeconomic systems 
that interact with agriculture, forestry, and other land uses within a defined system boundary. 

Identifying land use change is critical to addressing the rapid and uncontrolled change that is occurring, and 
is critical to understanding land development, loss, and degradation [2]. Assessing LULC changes is essential 
for the sustainable planning of each region [4], as unmanaged land use can lead to degradation and loss of 
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land capability, as well as overlapping regulations in land use in each sector. According to Alam et al. [5], 
evaluating land use and cover changes from various perspectives, such as land use planning and sustainable 
development, is critical to meeting the population's diverse needs [6]. 

Recent research on LULC has gained significant attention among researchers in Sulawesi [5–7]. According to 
Statistics Indonesia 2022, the area of forest cover in Central Sulawesi is over six million hectares [8]. This data 
is the basis for the importance of the research in Banggai Islands Regency. The area's rapidly increasing 
population is driving the need for land expansion to meet growing demands [9,10]. Furthermore, Dibaba et 
al. [11] note that population growth is a primary factor influencing LULC changes. Additionally, exploring LULC 
changes aims to enhance understanding through integrated research priorities [12], focusing on the causes 
and effects of these phenomena in the present and future contexts [13]. Furthermore, LULC studies are 
essential for updating data accurately [12] and providing policymakers with a comprehensive understanding 
of effective and sustainable land resource management [13,14]. There is a growing acknowledgment that 
policies significantly influence land use and management practices, extending beyond the traditional 
frameworks of land use and environmental planning systems. According to Munthali et al. [15], Kullo et al. 
[16], LULC information is crucial for environmental planners and observers due to its significant impact on 
both local and global environments. A wide variety of incentives and disincentives, including fiscal and tax 
incentives, industry subsidies, and the design of infrastructure or transport programmes, significantly 
influence decision-making and interventions across our region. However, these measures often result in 
negative consequences, such as loss of agricultural land, environmental degradation, and an increase in costly 
services [17]. 

Research on LULC is crucial for urban planners [18], policymakers in natural resource management [16,18], 
and agricultural and environmental experts [19,20]. Krawchenko and Tomaney [18] assert that the 
framework promotes an evaluation of incentives, disincentives, and complementarities across various 
policies and practices, highlighting the necessity for greater alignment to achieve land management 
objectives. Remote sensing serves as an effective tool for swiftly detecting changes in land cover. In the 
Banggai Islands, researching LULC change is essential for formulating timely policies, making remote sensing 
a necessary component of this study. Remote sensing involves processing satellite images through open-
source platforms that utilize big data, such as Google Earth Engine (GEE), which is commonly used for 
mapping and monitoring land cover, vegetation, and urban expansion [21]. The GEE platform supports 
various sensors, including Landsat and Sentinel, allowing for the storage and processing of large datasets to 
aid decision-making [22]. Geospatial remote sensing data available on GEE has been extensively applied in 
research related to regional socio-economics [23], land cover mapping [24], land change detection [25], 
urban studies [26], rice mapping [27], rice crop detection [28], and oil palm plantations [29]. Furthermore, 
GEE features a programming language that enables rapid and accurate analysis of land cover changes [30].  

The platform is both efficient and computationally advantageous, providing various algorithms, including the 
Random Forest (RF) algorithm, which facilitates access and classification [31–33]. Developed by Breiman in 
2001, the RF method is a non-parametric classification technique that employs multiple decision trees for 
effective decision-making [34,32]. Landsat imagery with a spatial resolution of 15–60 m and sentinel-2 with 
a spatial resolution of 10–60 m can be used in LULC classification [35,36] with a classification process using 
the Random Forest (RF) algorithm through the Google Earth Engine (GEE) mapping platform to monitor land 
use in the Banggai Islands Regency. The medium resolution of these images allows for adequate detail in area 
identification. Additionally, land use predictions in this study are conducted using Markov Chain and Cellular 
Automata (Markov-CA). Both Markov-CA models have been widely applied in spatial and geographic 
analyses, yielding accurate results in land use change assessments [37–39]. The Markov-CA model provides 
a more robust and comprehensive framework for predicting land use changes compared to single-method 
models. Its application in the Banggai Islands serves as a valuable tool for forecasting future land use 
dynamics. The Cellular Automata (CA) component utilizes neighbourhood interactions to model systems that 
evolve based on simple, predefined rules over time. Meanwhile, Markov chains, a fundamental aspect of 
probability theory, have increasingly been integrated into spatial sciences. This study employs the Markov-
CA approach to project land use changes, aiming to offer a spatial perspective that can inform regional 
planning aligned with anticipated land use patterns in the Banggai Islands Regency. 

The Banggai Islands are home to a variety of endemic species, including primates, reptiles, and birds. 
However, the biodiversity of the Banggai Islands is threatened by human activities such as illegal logging and 
unsustainable practices, including land use change from forest to agricultural land, which results in the loss 
of habitat for these endemic species. Current regulations governing the management of natural resources 
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and biodiversity in the Banggai Islands may be ineffective, partly due to limited human and financial resources 
that hinder conservation efforts. In addition, the involvement of local communities in managing these 
resources is still suboptimal, potentially leading to conflicts over resource use. The case study conducted in 
the Banggai Islands can provide valuable lessons on how to overcome complex land management challenges 
so that natural resources can be utilized appropriately and effectively, monitoring changes in land use 
provides valuable recommendations for policymakers in formulating appropriate and effective strategies. 
Furthermore, the findings of this study can be used as a reference for land management and for future 
research on more effective integration of various land uses to protect biodiversity in the Banggai Islands. 

Over the past three decades, the Banggai Islands Regency has undergone significant changes in LULC, 
primarily driven by population growth, agricultural expansion, and various development initiatives. However, 
systematic monitoring of these changes remains insufficient, and assessments are infrequently conducted. 
This study aims to evaluate and simulate the spatial and temporal dynamics of LULC changes in the Banggai 
Islands Regency. Specifically, it seeks to map and quantify LULC changes from 2002 to 2022 using Landsat 5, 
7, and Sentinel-2 satellite imagery. Additionally, the research projects on land use conditions in 2042 provide 
insights into land use conditions and the relevance of policies aimed at promoting appropriate and 
sustainable land use in the region. 

Materials and Methods 

Research Location 

The research was conducted in the Banggai Islands district of Central Sulawesi province, located 
geographically between 1°06‘30″–1°35’58″ N and 122°37‘6.3″–123°40’1.9” E, in the northeastern part of 
Sulawesi Island, covering an area of 2,376.71 km². To the north, it borders Banggai Regency, while the Maluku 
Sea lies to the east (Banggai Islands Central Statistics Agency 2022). The study area comprises 12 districts, as 
illustrated in Figure 1. 

 

Figure 1. Research location. 
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Data Collection and Processing 

The processing and analysis of remote sensing imagery begins with data pre-processing. According to Andries 
et al. [40], Wei et al. [41], land use and cover can be visually classified from images as needed. Agricultural 
patterns in the Banggai Islands Regency apply mixed agricultural patterns, such as agroforestry systems, so 
agricultural land use and plantations are classified into plantations. In this study, LULC types will be digitally 
classified, such as forests, plantations, Built-up, open land, mangroves, rice fields, shrubs, and water bodies, 
using the Random Forest (RF) algorithm (ntree=500) on the Google Earth Engine (GEE) [42]. The GEE platform 
offers corrected Landsat image data, streamlining the pre-processing phase. The RF algorithm, an ensemble 
model based on decision trees, was selected for its effectiveness in classifying remote sensing data [42,43]. 
Landsat and Sentinel image processing is done directly in GEE, with the output image set at a spatial 
resolution of 30 metres [44]. It employs a bootstrap method on 70% (1,600 sampling total) of the training 
dataset to create a new dataset, followed by a majority decision process that determines the mode from 
each decision tree's output. The dataset was obtained using LULC class polygons and distributed across all 
geographical characteristics of the study location, covering the entire administrative area.  

This case study utilizes Landsat-5 Thematic Mapper (TM) and Landsat-7 Enhanced Thematic Mapper Plus 
(ETM+) imagery from 2002 and 2012, along with Sentinel-2 MultiSpectral Instrument (MSI) imagery from 
2022. The approach refers to Simonetti et al. [45], combining various bands to assess land use in the study 
area. The bands from all satellites include Green Band, Blue, Red, Near Infrared (NIR), and Short-wave 
infrared (SWIR). In addition, there are derivative indices used, namely NDVI, NDWI, NDMI, EVI, SAVI, ARVI, 
IBI, SLAVI, NDBI, GNDVI, MNDWI, MMRI, DVI, RVI, PSSRA, and LWSI, to improve processing performance. 
Validation involves assessing 30% of all samples for accuracy using the RF algorithm result data, with 
classification results compared against field checks or available reference data [46,47]. Field checks were 
conducted to gather information on land use, and the validation results were used to evaluate the accuracy 
of the 2022 image interpretation using the kappa value. 

Accuracy testing is conducted to evaluate classification errors and determine the percentage of accuracy. 
This is achieved by creating a contingency matrix, also known as an error or confusion matrix, calculated using 
the error matrix function in the GEE platform (Table 1). From this matrix, various accuracy metrics can be 
derived, including overall accuracy, user accuracy, producer accuracy, and kappa accuracy. According to 
Sivanpillai et al. [48], Hidayah et al. [49], the minimum accuracy value of more than 80% is required for land 
use interpretation to be classified as excellent. Overall accuracy is calculated using the formula where X 
represents the number of correctly interpreted land cover points aligned with ground truth results, and N is 
the total number of ground truth points [50]. Kappa value equal to 1 indicates the classification results get 
perfect agreement, while a kappa value equal to 0 indicates the classification results cannot be approved, 
Furthermore, Foody [51] defines kappa accuracy with equations (1 to 4). The kappa coefficient (κ) assesses 
how classification results compare to chance, calculated from the error matrix by combining diagonal and 
off-diagonal elements [48]. The range of kappa values and their classifications is presented in Table 2. 

Table 1. Error matrix. 

Classification result of land use 
Reference land use 

Pi+ Pi+ … … Pi+ Total 

Pi+ Xii     X+i 

Pi+  Xii    X+i 

…   Xii   X+i 

…    Xii  X+i 

Pi+     Xii X+i 

Total Xi+ Xi+ Xi+ Xi+ Xi+ N 

Where, P+i: The i-th land use type of the classification result; Pi+: The i-th land use type from field check; X+i: 
Number of classification result points on the i-th land use type; Xi+: Number of points from field check on the 
i-th land use type; Xii: Number of land use types that correspond to the classification result and the field 
check results; i: Row or column; r: Number of land use types; N: Number of land use points validated; k: Kappa 
value. The overall accuracy between the remote sensing classification data and the reference data can be 
calculated using the following Equations 1–4.   
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User accuracy (UA) = 
𝑋𝑖𝑗

𝑋𝑖+
𝑥 100%  (1) 

Producer accuracy (PA) = 
𝑋𝑖𝑗

𝑋𝑖+
𝑥 100%  (2) 

Overall accuracy (OA) = 
1

𝑁
∑ 𝑋𝑖𝑖

𝑟
𝑖=1 𝑥 100%  (3) 

Kappa accuracy (K) = 
𝑁 ∑ 𝑥𝑖𝑖 − ∑ (𝑋𝑖++ 𝑟

𝑛=1
𝑟
𝑖=1 𝑋+𝑖)

𝑁2−∑ (𝑋𝑖++𝑋+𝑖)𝑟
𝑛=1

  (4) 

Where Xii is the diagonal value of the confusion (error) matrix, and Xij is used for the land use class. The matrix 
size r = 2, Xi+ is the number of pixels in the row i obtained from remote sensing analysis, X+j is the number of 
columns of j obtained from referenced land use data, and N is the number of pixels in the data. 

Table 2. Categorization based on a range of kappa values. 

Kappa range Interpretation 

<0.00 Very poor 
0.00–0.20 Poor 
0.21–0.40 Fair 
0.40–0.60 Moderate 
0.61–0.80 Good 
>0.81  Very good 

Source: [52,48]. 

LULC change prediction can be analyzed through multitemporal spatial changes [53,54]. This approach is 
recommended for its ability to model land use based on temporal trends. Cellular Automata (CA) is a crucial 
geospatial element that highlights the dynamics of change events and can simulate the characteristics of 
complex systems both spatially and temporally. In this study, spatial data from the initial year (T0), specifically 
2022, is utilized alongside 20 years of change data from 2002 to 2022, employing Markov Chain and Cellular 
Automata methods. Research by Bondansari et al. [55], Sejati et al. [56], Bindajam et al. [57] indicates that 
the Markov Chain and Cellular Automata (Markov-CA) method yields optimal predictions based on kappa 
values, particularly when the predicted year distance matches that of previous periods [58–60]. This method 
helps identify potential land use changes over specific time frames [61,62]. The integration of these two maps 
serves as input data for training the Markov-CA model, facilitating an evaluation of the 2022 land use 
simulation. The Markov-CA model can generate predictions for various LULC and development scenarios, as 
well as illustrating interactions between regions. 

The modelling process begins with land use data from 2012 and a transition area matrix covering 2002–2012 
to predict land use for 2022, which is then validated against actual land use data from that year. The Markov-
CA modelling and prediction for LULC is facilitated by the MOLUSCE (Modules for Land Use Change 
Simulations) plugin within the software QGIS 2.16 series. The prediction process involves several steps: first, 
input raster data from land use maps for 2002, 2012, and 2022, along with factors influencing LULC change, 
is prepared. Next, a correlation assessment is performed using the MOLUSCE plugin to evaluate relationships 
between rasters, where a value of 0 indicates no relationship, while values of 1 and -1 indicate strong 
relationships. This information is then automatically input into the transition probability matrix (TPM), which 
reflects the proportion of pixels expected to change from one land use type to another. The multilayer 
perceptron method is applied to optimize iterations and minimize the loss function, enhancing accuracy. 
Subsequently, Cellular Automata processes the land cover images to generate a probability transition matrix, 
transition area matrix, and iteration results for the desired land use prediction. Accuracy validation can also 
be conducted through ground checks, which are recorded in an error matrix. The error matrix serves as a tool 
for measuring the accuracy of the LULC change map. According to Jensen and Lulla [63], Jensen [64], Artikanur 
et al. [65], established guidelines, a validation value of 85% allows for predictions of LULC changes in 2042, 
using 2022 as the base input. Evaluation of the 2042 prediction model using the accuracy listed in the 
MOLUSCE plugin data processing. The overall process of transforming land use change data into predictive 
models is illustrated in Figure 2. 
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Figure 2. Data processing of land use and land cover change in 2002, 2012, 2022, and land use prediction in 2024. 

Results and Discussion 

Results 

Land Use and Land Cover (LULC) Identification in 2002, 2012, and 2022 

LULC identification was conducted through image classification from Google Earth Engine (GEE) for 2002 and 
2012, utilizing a combination of Landsat 5 and 7 imagery and Sentinel-2 imagery for 2022. The classification 
included eight land use types: forests, gardens, settlements, open land, shrubs, rice fields, mangroves, and 
water bodies. The overall accuracy of the RF classification for 2002, 2012, and 2022 was found to be 84%, 
90%, and 89%, respectively. According to Sivanpillai et al. [48], Hidayah et al. [49], these accuracy values fall 
within the excellent category, exceeding the 80% threshold. This indicates that the land use data for the 
Banggai Islands Regency meets the validation requirements, making the resulting land use map suitable for 
this study. The area proportions and LULC maps for the Banggai Islands Regency for 2002, 2012, and 2022 
are presented in Table 3 and Figures 3 and 4, while the patterns of land use/cover change from 2002 to 2022 
are detailed in Table 4. 
 

Table 3. Land use and land cover area in 2002, 2012, and 2022, in Banggai Islands Regency. 

No Land use and land cover 

Land area 

2002 2012 2022 

ha % ha % ha % 

1 Forest 132,786.9 55.9 94,780.2 39.9 97,148.4 40.9 
2 Plantation 70,809.5 29.8 130,911.5 55.1 104,194.0 43.8 
3 Built-up 529.7 0.2 1,014.2 0.4 1,795.3 0.8 
4 Open land 3,908.3 1.6 2,121.3 0.9 10,451.4 4.4 
5 Rice fields 142.7 0.1 313.2 0.1 315.2 0.1 
6 Shrubs 26,230.1 11.0 6,158.2 2.6 19,430.9 8.2 
7 Mangroves 1,588.9 0.7 1,446.4 0.6 1,636.8 0.7 
8 Waterbody 1,674.9 0.7 926.0 0.4 2,671.1 1.1 

Total 237,671 100 237,671 100 237,671 100 
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Figure 3. LULC map of 2002, 2012, and 2022 in the Banggai Islands Regency. 

 

Figure 4. Distribution of LULC patterns 2002–2022, the Banggai Islands Regency. 

Table 4. LULC from 2002 to 2022 period. 

No Land use 

Extent 

2002–2012 2012–2022 2002–2022 

ha % ha % ha % 

1 Forest -38,006.7 -16.0 2,368.2 1.0 -35,638.5 -15.0 

2 Plantation 60,102.0 25.3 -26,717.5 -11.2 33,384.5 14.0 

3 Built-up 484.6 0.2 781.1 0.3 1,265.6 0.5 

4 Open land -1,787.0 -0.8 8,330.1 3.5 6,543.1 2.8 

5 Rice fields 170.5 0.1 30.0 0.0 200.5 0.1 

6 Shrubs -20,071.9 -8.4 13,272.7 5.6 -6,799.2 -2.9 

7 Mangroves -142.5 -0.1 190.4 0.1 47.9 0.0 

8 Waterbody -749.0 -0.3 1,745.1 0.7 996.1 0.4 
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LULC in the Banggai Islands Regency was assessed based on classifications from 2002, 2012, and 2022, 
highlighting the extent of changes in LULC. Table 4 illustrates these changes, revealing that the decline in land 
use was inconsistent. This is because farmers clear agricultural land in a mobile manner, and after harvesting, 
they will leave the land for eight years before reopening it. Naturally, the abandoned land will become 
overgrown with wild plants and will be detected as forest, as well as other land uses. For instance, the forest 
area decreased by 16% from 2002 to 2012, followed by a slight increase of 1% from 2012 to 2022. Similarly, 
the plantation area increased by 25.3% during 2002–2012 but decreased by 11.2% in the subsequent period. 
The reduction in plantation area can be attributed to population growth, which frequently leads to the 
conversion of plantation land to non-plantation uses. Furthermore, local government policies have not 
sufficiently supported the plantation sector in Banggai Islands Regency. Juniyanti et al. [66] notes that a 
significant factor contributing to the decline in plantation land is the government's lack of emphasis on 
plantations and agriculture, as policies prioritize other sectors. This shift can diminish farmers' motivation to 
sustain their plantations or agricultural land.  

The transitions in open land and shrubs also exhibited variability, attributed to shifting agricultural practices, 
with changes of 0.8% and 8.4% for open land and shrubs in 2002–2012, and 3.5% and 5.6% in 2012–2022, 
respectively. In contrast, residential land steadily increased over the 20 years, growing from 529.7 ha (0.2%) 
in 2002 to 1,795.3 ha (0.8%) by 2022. Paddy fields experienced significant growth as well, with an increase of 
170.5 ha from 2002 to 2012 and an additional 30 ha from 2012 to 2022. Mangrove areas, however, displayed 
unstable changes, decreasing by 142.5 ha between 2002 and 2012 due to unsustainable harvesting for 
firewood, but rebounding with an increase of 190.4 ha from 2012 to 2022. Water bodies in the study area 
experienced a decrease of 0.3% from 2002 to 2012, followed by an increase of 0.7% between 2012 and 2022. 
This fluctuation is attributed to seasonal droughts lasting from ten months to a year, during which the lake's 
water levels drop significantly. However, the lake replenishes during the rainy season, leading to an increase 
in water levels. 

Land Use and Land Cover (LULC) Change in Banggai Islands Regency from 2002 to 2022 

This study analyzed LULC changes over two years, using 2002 as the baseline and 2022 as the endpoint. The 
initial analysis of land use changes from 2002 to 2022 produced a matrix detailing the increases and decreases 
in the area of each land use type, illustrating the transitions between different land uses. The land use change 
matrix is presented in Table 5.  

Table 5. LULC transition matrix 2002 to 2022. 

LULC 2022 

2002 1 2 3 4 5 6 7 8 

1 75,174.8 
(31.6%) 

47,411.81 
(19.9%) 

167.35 
(0.07%) 

2,586.79 
(1.09%) 

84.06 
(0.04%) 

6,193.16 
(2.6%) 

403.86 
(0.17%) 

850.78 
(0.35%) 

2 17,817.8 
(7.49%) 

40,008.36 
(16.8%) 

469.96 
(0.2%) 

4,274.16 
(1.8%) 

119.32 
(0.05%) 

7,856.97 
(3.3%) 

45.58 
(0.02%) 

261.22 
(0.1%) 

3 
  

519.66 
(0.22%) 

     

4 443.3 
(0.19%) 

1,620.93 
(0.68%) 

330.28 
(0.14%) 

644.56 
(0.27%) 

8.42 
(0.00%) 

694.36 
(0.29%) 

13.16 
(0.01%) 

155.53 
(0.07%) 

5 0.36 
(0.00%) 

12.31 
(0.01%) 

0.69 
(0.00%) 

3.61 
(0.00%) 

84.3 
(0.04%) 

28.64 
(0.01%) 

0.65 
(0.00%) 

1.46 
(0.00%) 

6 3,677.81 
(1.55%) 

14,636.22 
(6.16%) 

330.6 
(0.14%) 

2,891.11 
(1.22%) 

19.1 
(0.01%) 

4,623.9 
(1.95%) 

1.31 
(0.00%) 

60.21 
(0.03%) 

7 11.45 
(0.00%) 

289.15 
(0.12%) 

7.72 
(0.00%) 

1.54 
(0.00%) 

0.09 
(0.00%) 

5.43 
(0.00%) 

1,095.78 
(0.46%) 

177.79 
(0.07%) 

8 17.21 
(0.01%) 

214.12 
(0.09%) 

173.45 
(0.07%) 

5.71 
(0.00%) 

 
28.42 
(0.01%) 

76.5 
(0.03%) 

1,159.83 
(0.49%) 

Notes: LULC = land use and land cover; 1 = forest; 2 = plantation; 3 = Built-up; 4 = open land; 5 = paddy field; 6 = shrubs; 7 = mangrove; 8 = water body.  

Overall, the Banggai Islands Regency experienced a decline in forest and shrub areas from 2002 to 2022, with 
reductions of 15% and 2.9%, respectively. This loss of forest land was converted into various land uses, 
including water bodies, open land, mangroves, Built-up areas, plantations, rice fields, and shrubs. Forests that 
have been detected to have changed into built-up land are located in the capital development expansion 
area, while open land and shrubs are found in shifting plantations. In addition, the opening of new rice fields 
has been linked to the conversion of forests into rice fields. Meanwhile, forest conversion to water bodies is 
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observed in coastal lake areas, where land transitions from forested to waterlogged regions—a phenomenon 
more prevalent in island environments. In the study area, this conversion from forest to aquatic zones, such 
as lakes, occurs naturally.  

In line with the results of research by Juniyanti et al. [66], changes in mixed gardens, open land, and forests 
can occur, and experience changes to water bodies. These areas will be detected on the coastal part of the 
island around the mangrove area. As detailed in Table 4, forest land was transformed into plantations 
covering 47,411.8 ha, Built-up totaling 167.4 ha, mangroves at 403.9 ha, and rice fields at 84.1 ha. 
Additionally, 6,193.2 ha of forest were converted to shrubs, and 2,586.8 ha to open land. Consequently, LULC 
changes in the Banggai Islands Regency varied, with areas classified as open land and shrubs in 2002 reverting 
to forest by 2012, while forested areas transitioned to open land by 2022. An example of land use change in 
the study area can be seen in Figure 5. 

 

Figure 5. (a) LULC change from forest to open land; (b) LULC change from forest and plantation to developed land; (c) 

LULC change from forest and open land to plantation; and (d) LULC change from mangrove and water body to 

developed land. 

Predicted LULC in Banggai Islands Regency in 2042 

The modeling process will initially assess the model's capability to predict LULC for the target year. The 
prediction for land use in 2022 was derived from the trends observed in 2002 and 2012 using the CA-Markov 
simulation model. The accuracy of this prediction for the Banggai Islands Regency in 2022 was determined to 
be 93%, allowing for further predictions of land use in 2042. The proportions of land use and cover areas are 
presented in Figure 6 and Table 6. In contrast, the distribution map illustrating predicted land use changes 
for 2042 in the Banggai Islands Regency is shown in Figure 7. 

 

Figure 6. Projected pattern of LULC in 2042.  
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Table 6. Projected land use and land cover change in Banggai Island Regency in 2042. 

No Land use and land cover 

Land area 

2022 2042 Land change 

ha % ha % ha % 

1 Forest 97,148.4 40.9 90,570.9 38.1 -6,577.5 -2.77 
2 Plantation 104,194.0 43.8 120,294.0 50.6 16,100.0 6.77 
3 Built-up 1,795.3 0.8 2,910.9 1.2 1,115.6 0.47 
4 Open land 10,451.4 4.4 10,526.6 4.4 75.2 0.03 
5 Rice fields 315.2 0.1 215.7 0.1 -99.5 -0.05 
6 Shrubs 19,430.9 8.2 10,239.3 4.3 -9,191.6 -3.87 
7 Mangroves 1,636.8 0.7 1,601.8 0.7 -35.0 -0.01 
8 Waterbody 2,671.1 1.1 1,312.1 0.6 -1,359.0 -0.57 

Total 237,671 100 237,671 100 237,671 100 

 

Figure 7. Predicted LULC in Banggai Islands Regency in 2042. 

According to LULC predictions for 2042, the area of forest and shrubs is estimated to decrease by 6,577.5 ha 
and 9,191.6 ha, respectively. Conversely, the plantation area is projected to increase by 16,100 ha due to the 
conversion of forest and shrub lands. Additionally, residential land in the Banggai Islands Regency is 
anticipated to grow by 1,115.6 ha, driven by population growth, with the population growth rate in Banggai 
Islands Regency reaching 0.96% per year. However, paddy fields are expected to decrease by 127.6 ha, as 
local farmers face challenges in rice cultivation due to high costs and low yields. Furthermore, water body 
areas will decline by 1,359 ha, with much of this land transitioning to open land and shrubs. This shift can be 
attributed to seasonal variations in the region; during the rainy season, lake areas may expand, causing 
adjacent open land and shrubs to be classified as water bodies. 

Discussion 

The identification of LULC changes in the Banggai Islands Regency over the past 20 years (2002–2022) reveals 
a clear decline in forest and shrub areas, while other land uses have increased. A similar study on land use 
change conducted by Yulianto et al. [7] in Tondano, North Sulawesi, found a decrease in forest and shrubland 
area over 20 years. Meanwhile, research identifying land use changes conducted over 15 years found that 
forest area continued to increase. This increase in forest area was due to conversion to plantations and rice 
fields [9]. The most significant decline in forest area in the Banggai Islands occurred between 2002 and 2012, 
primarily attributed to human activities driven by population growth, which increased land demand for 
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purposes such as agriculture and plantations (notably coconut and clove cultivation) and illegal logging. This 
decline was exacerbated by inadequate local government oversight of forest management and land use 
practices. However, from 2012 to 2022, there was a slight increase in forest area, albeit only by 1%. This 
uptick was facilitated by more active government oversight and improved planning, though it still lagged 
other regions. The decline in forest cover during the earlier period was largely a result of extensive 
development initiatives by both central and local governments, as the region had established itself as a new 
district capital. Consequently, the central government developed office facilities in the district's urban center, 
leading to the conversion of land into built-up areas within Banggai Islands Regency. Additionally, the rapid 
conversion of forests to plantations is driven by farmers' needs for agricultural land to support their families 
[67]. The substantial decrease in forest areas is largely due to land being repurposed for agriculture, with 
plantations accounting for 47,411.81 ha. This is because the indigenous people of Banggai do not hesitate to 
convert forests if their income increases, resulting in a very significant decline of 15% of the total forest area. 
This study is similar to research conducted by Juniyanti et al. [66] in analyzing LULC changes on Bengkalis 
Island, Riau, where the sharp decline in forest cover converted to plantations reached 10% of the total.  
According to Meyer and Turner [68], Halim et al. [69], Dibaba et al. [11], population growth is a critical factor 
influencing this conversion, as it increases the demand for housing and agricultural activities. While the 
expansion of plantations may economically benefit farmers by potentially increasing their income, the loss 
of forest cover poses significant environmental risks, including damage to ecosystems and biodiversity [70] 
the conversion of forested areas into other land uses can lead to detrimental impacts on the environment 
and the land's ecological potential [71]. 

Plantations in the Banggai Islands Regency saw significant growth from 2002 to 2022, largely due to the use 
of agricultural land for mixed plantations that include food and horticultural crops such as pepper, tomatoes, 
taro, and Banggai yam, which are cultivated alongside clove, coconut, and nutmeg trees (Agriculture Office 
of Banggai Islands Regency 2022). This expansion is driven by the annual increase in the local population, 
necessitating that farmers enlarge their agricultural and plantation areas to meet their needs. The community 
employs a rotational agricultural system, resulting in a relatively high presence of open land and shrubs in 
the region. According to Mulyani and Agus [72], Jin et al. [73], this open land and shrub area holds 
considerable economic potential if developed for agricultural purposes, which could enhance local incomes. 
According to McNicol et al. [74], the shifting cultivation practices are vital for the regeneration of native 
plants, contributing to the abundance of open land and shrubs. In this context, based on information from 
Banggai yam farmers and agricultural extension workers, that Banggai yam farmers in Banggai Kepulauan 
Regency usually return to using previously cultivated land after about ten land rotation cycles, reflecting the 
tradition of shifting cultivation that persists today. 

In the Banggai Islands, farmers practicing shifting agriculture believe that land left fallow for several years 
can regain fertility without the need for fertilizers upon reuse. Consistent rotation and resting of land can 
promote ecosystem maturity and enhance land stability over time [75]. This agricultural pattern is crucial as 
it facilitates soil recovery [74]. Similarly, rice fields in the study area are mostly rainfed, which are usually 
suited to lowland conditions. However, their management is often ineffective due to individual land 
ownership, leading to cultivation at specific times and leaving fields idle for extended periods without 
alternative crops [76]. Utilizing rain-fed paddy fields for replacement crops, such as Banggai yam, could 
benefit farmers; otherwise, neglect may lead to the conversion of these fields. Additionally, mangrove areas 
in the region have significantly increased from 2002 to 2022, largely due to local government initiatives since 
2016 aimed at monitoring and replanting mangroves to protect the ecosystem. According to Marois and 
Mitsch [77], mangroves are very important because they can withstand storm surges and wind, thus 
protecting beaches, housing, and other infrastructure, such as those in the Banggai Islands Regency. 

LULC in Banggai Islands Regency in 2042 is predicted to decrease in forest land use by 2.77%. This underscores 
the need for effective regulation and monitoring of forest areas to prevent disturbances, crimes, and threats 
[78]. Forests are crucial for oxygen production and play a vital role in maintaining water systems, preventing 
floods, controlling erosion, and sequestering carbon. Additionally, locally managed forests provide significant 
economic and social benefits to communities [79]. Given the critical importance of forests for the residents 
of Banggai Islands, enhancing oversight of these areas is essential for ensuring their integrity and 
sustainability, particularly regarding ecosystem services and biodiversity [80]. Considering the current 
degradation of forest areas, such as illegal logging and land conversion, one viable alternative is to designate 
these lands for agroforestry, which can create jobs, optimize land use, and increase farmers' income in the 
Banggai Islands. This approach is supported by the Regulation of the Minister of Environment and Forestry 
of the Republic of Indonesia Number 4 of 2023 concerning the management of social forestry in forest areas 
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with special management, through social forestry with special management, including areas with potential 
for agrosilvopastoral activities. Although this regulation does not specifically promote agrosilvopastoralism, 
it regulates social forestry more broadly. Furthermore, changes in plantation land use are projected to 
increase by 120,294 hectares (6.77%) by 2042.  

Based on the Spatial Plan for the Banggai Islands Regency, agricultural areas generally cover 136,900.02 ha 
of the total land area. This growth is driven by economic and social factors, including limited land resources, 
population growth, and economic development [81]. In the Banggai Islands Regency, the rising population 
exacerbates land scarcity, while economic growth encourages plantation activities at a pace that often 
exceeds land availability. The heightened demand for plantation land, fueled by socio-economic pressures, 
has led to rapid expansion in this sector [67]. Therefore, the implementation of sustainable agricultural 
systems, such as agroforestry (integration of trees and agriculture), organic farming, and LEISA (Low External 
Input Sustainable Agriculture), can support sustainable land use. Plantation expansion can be carried out in 
tandem with biodiversity conservation through the implementation of local agroforestry practices. 
Agroforestry is a system that integrates plantation crops with trees and other natural vegetation, thereby 
helping to reduce deforestation, increase community resilience, and preserve biodiversity. This approach 
utilises traditional practices that have long been applied by local farmers in the Banggai Islands, such as 
planting various species of plants in the same field. 

Additionally, the increase in settlements in the Banggai Islands is expected to reach 0.47% by 2042. Although 
this growth is relatively slow compared to other regions, proactive measures are necessary to manage it 
effectively. Converting land to settlements can negatively impact soil properties, particularly in terms of 
water absorption. According to Kurowska et al. [82], changes from green spaces to built-up environments 
can disrupt runoff and water infiltration, resulting in the loss of plantation, forest, and agricultural lands.  To 
mitigate land conversion, particularly of underutilized rice fields, farmers could cultivate more profitable 
crops such as horticultural products, taro, and Banggai yam. Rotating crops on the same land can optimise its 
use, reduce costs, and increase revenue. Furthermore, several previous studies, such as [83–85], have stated 
that the application of progressive taxes on land use can encourage the maximum utilization of existing land 
without the need to develop new land, thereby minimizing environmental damage. Reducing settlement 
rates can also be achieved through land-saving principles, such as promoting the construction of multi-story 
buildings. However, these policies require revitalization of land conversion regulations to support sustainable 
development. This can be accomplished by reformulating policy directions, objectives, and instruments, 
ensuring alignment between land use and spatial patterns as established by regional regulations in the 
Banggai Islands Regency. 

Conclusions 

The results of this study achieved a kappa value of 89% for LULC in 2022, with model validation yielding a 
kappa of 93%, indicating its suitability for land change predictions through 2042. Over the 20 years from 2002 
to 2022, the Banggai Islands Regency experienced a 15% decrease in forest area, primarily due to human 
activities such as agricultural expansion and illegal logging, particularly between 2002 and 2012, when 
47,411.81 hectares were converted to plantations. Projections for 2042 indicate further declines in forest, 
shrubs, rice fields, mangrove, and water body areas by 7.27%, while plantation land is expected to increase 
by 6.77% due to socio-economic factors. Built-up growth is anticipated at 0.47%, necessitating proactive 
management to mitigate negative impacts on soil and water absorption. Strategies to optimize land use 
include planting profitable crops on land that has not been optimally utilized. The involvement of 
stakeholders in implementing agroforestry systems can lead to a sustainable land management system, 
providing economic, social, and environmental benefits to the community. Further research on the alignment 
between LULC and the Regional Spatial Plan is essential to evaluate the effectiveness of the planning efforts 
of the Banggai Islands Regency. 
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