Jurnal E-KOMTEK (Elektro-Komputer-Teknik)
Vol. 5, No. 2 (2021) pp. 178-189
https://jurnal.politeknik-kebumen.ac.id/index.php/E-KOMTEK
p-ISSN : 2580-3719 e-ISSN : 2622-3066

REST API Architecture Design on Multi-Platform Device Development

Yuda Syahidin ®), Randy Ramadhan
Department of Information System, Politeknik Piksi Ganesha Bandung, Indonesia, 40274

yuda.syahidin@piksi.ac.id
d_| https://doi.org/10.37339/e-komtek.v5i2.762

Published by Politeknik Dharma Patria Kebumen

Artikel Info
Submitted:
30-10-2021
Revised:
03-11-2021
Accepted:
03-11-2021
Online first :
30-12-2021

Abstract

Multi-platform devices are becoming the standard technology in software development.
However, the problem of multi-platform is that it must provide a single parent data
source, so there is a good relationship between users of multi-platform devices and
servers. REST APIs are the best choices that bridge the servers and multiple platforms.
That way, the use of REST APIs will be very beneficial, both in terms of servers and
platforms as consumption. This research planned to create a REST API architecture that
can run in multi-platform with testing techniques using black boxes through postman
software. As the basis for making REST APIs, it is better to understand the Architecture
of REST APIs, especially REST APIs as a multi-platform device.

Keywords: Architecture, Multi-platform, REST API

Abstrak

Perangkat multi-platform menjadi teknologi standar dalam pengembangan perangkat lunak.
Namun, masalah multi-platform harus menyediakan sumber data single parent, sehingga ada
hubungan yang baik antara pengguna perangkat multi-platform dan server. REST API adalah
pilihan terbaik yang menjembatani server dan berbagai platform. Dengan begitu, penggunaan
REST API akan sangat menguntungkan, baik dari sisi server maupun platform sebagai
konsumsinya. Penelitian ini direncanakan untuk membuat arsitektur REST API yang dapat
berjalan secara multi platform dengan teknik pengujian menggunakan black box melalui software
tukang pos. Sebagai dasar untuk membuat REST API, lebih baik memahami Arsitektur REST
API, terutama REST API sebagai perangkat multi-platform.

Kata-kata kunci: Arsitektur, Miti-Platform, REST API

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0
International License.

178

https://jurnal.politeknik-kebumen.ac.id/index.php/E-KOMTEK
https://scholar.google.com/citations?hl=en&user=Y5vyWucAAAAJ
mailto:%20yuda.syahidin@piksi.ac.id
mailto:%20yuda.syahidin@piksi.ac.id
https://doi.org/10.37339/e-komtek.v5i2.762
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
mailto:yuda.syahidin@piksi.ac.id

© Yuda Syahidin, Randy Ramadhan

1. Introduction

Information and communication technology is vital today. The procurement of data and
software plays a very striking role to protect its users. In addition to this, the company's various
innovations resulted in many platforms, such as Smartphones, Smart TVs, and common
devices such as laptops and PCs. Undoubtedly, the applications made must be adjusted to the
platform, because the architecture on the hardware might be different. In other words, there
must be a synchronized data on the program, whether it is a smartphone or the web.

On the side of everyday users, certainly, the current situation is very helpful with the
aforementioned conditions. However, the problem occurs on the development side of the
software itself. Therefore, a bridge is primary, so that the data on multi-platform devices can
communicate properly.

Speaking of the development of data-driven technology, it needs to be thought of how
the data flow from the server is the same or synchronized with several platforms used at once.
That way, the communication across platforms runs smoothly without data redundancies,
which due to too much storage, might cause programs not effectively used.

In the previous research [1], shortcomings in the architecture were not applied and
explained in detail. The explanation was only oriented to the REST API application. In other
study [2], there is no authentication process, so the security on REST APIs was particularly
vulnerable to sensitive requests and responses.

To cover the shortcomings of these studies, the authors conducted the research and
created a multi-platform REST API architecture design that gives more meaning to the function

and usability of the REST APL

2. Method

Architectural Design is the art and science of designing and constructing buildings,
bridges, and so on [3]. In this case, architecture refers to designing and building a construction
of a REST API network to interact with multi-platform devices.

REST is a web service that uses the concept of transferring from state to state over HTTP
to make a specific connection [4],[5]. With a stateless REST nature, requests should always
include complete data and parameters. An API (Application Programming Interface) is an

interface that is implemented to software to interact with other lifters [5].

179

https://jurnal.uisu.ac.id/index.php/infotekjar/article/view/563
http://openjournal.unpam.ac.id/index.php/informatika/article/view/10033
https://journal.maranatha.edu/index.php/jutisi/article/view/610
http://repository.uib.ac.id/view/divisions/si/2015.html
https://www.amazon.com/REST-API-Development-Node-js-Capabilities-ebook/dp/B07G4DSSGX
https://www.amazon.com/REST-API-Development-Node-js-Capabilities-ebook/dp/B07G4DSSGX

© Yuda Syahidin, Randy Ramadhan

Software development is the activity of writing and managing program code, but in a
broad sense, the term encompasses all the things involved between the creation of desired
software through software finalization, ideally in a planned and structured process [6].
Therefore, software development may include research, new development, prototypes,
modifications, reuse, reengineering, management, or other activities that produce software
products [7].

Multi-platform is an application that can be run by any operating system. The function of
the multi-platform problem is as a "consumption" rest API created by the backend.
Technologies such as website platforms, mobile platforms, or desktop platforms. The
advantage of multi-platform use is the data that each platform can be interacted with each
other [8].

Architectural design uses object-based analysis and design, namely OOAD (Object
Oriented Analysis and Design). OOAD can be considered to be a relatively new project
management rather than analysis and design based on diagram data. Object Oriented Analysis
and Design is a method used to make objects or objects referred to as actors, namely
representations of humans who will interact with the system. The following Figure 1 describes

the design of objects based on Iterative and Incremental Development.

Object-Oriented

Functional
view

Structural Behavioral
view view

Figure 1. Iterative and Incremental Development [9]

By utilizing this basic concept of OOAD, it will be very easy to represent all forms of
behavior from the components of the analysis component to produce a clear REST API
architecture[10].

Web services are purpose-built web servers that support the needs of a site or any other
application. Client programs use application programming interfaces (APIs) to communicate
with web services. Generally speaking, an API exposes a set of data and functions to facilitate

interactions between computer programs and allow them to exchange information[11]. As

180

https://www.amazon.com/Object-Oriented-Software-Engineering-B-B-Bruegge-H-Dutoit/dp/B003WC8SEI
https://www.amazon.com/Object-Oriented-Software-Engineering-B-B-Bruegge-H-Dutoit/dp/B003WC8SEI
https://www.researchgate.net/publication/326231108_Rancang_Bangun_Aplikasi_E-Learning_Berbasis_Multiplatform_untuk_Mata_Pelajaran_Bahasa_Indonesia_dengan_Menggunakan_Pendekatan_Technology_Acceptance_Model_TAM
https://library.unai.edu/index.php?p=show_detail&id=477
https://www.sciencedirect.com/book/9780124186736/object-oriented-analysis-and-design-for-information-systems
https://books.google.co.id/books?id=eABpzyTcJNIC

© Yuda Syahidin, Randy Ramadhan

depicted in Figure 2, a Web API is the face of a web service, directly listening and responding

to client requests.

Request >
Web
'Resgonse APl

Figure 2. Web API [11]

Web Service

Client
2k Backend

The Architecture testing of the REST API used black-box testing. Blackbox testing is
testing the smoothness of programs that have been created, especially in the functional parts of
the architecture. Blackbox testing requires no design or program code, making it suitable for
Architecture testing of the REST API [12]. The following Figure 3 describes the design of Black-

Box Testing.

Inputs Outputs

—

Figure 3. Black-Box Testing [12]

The software used to support black box testing is Postman. Postman is software that runs
on a multi-system computer operating system, where its function is as a client to test the REST
API that has been created [13]. To add parameters to an API endpoint in Postman, make sure
you have the Params tab selected and then put the name of the query parameter into the Key
tield and the value into the Value field. In this case, we used the type parameter, so enter that
word into the Key field. For this endpoint, the type parameter allows filtering based on
whether the owner of a repository is or just a member. See Figure 4 that describes the Query

parameter type in an API call below.

GET Get User Repos X e

» Get User Repos
GET v https://api.github.com/users/djwester/repos?type=member

Params @ Authorization Headers (8) Body Pre-requestScript Tests Settings
Query Params
KEY VALUE

type member

Figure 4. Query parameter type in an API call [13]

181

https://www.amazon.com/Software-Testing-Craftsmans-Approach-Third/dp/0849374758
https://www.amazon.com/API-Testing-Development-Postman-practical/dp/1800569203

© Yuda Syahidin, Randy Ramadhan

The Research Stage consists of 5 stages, namely: (1) Identification, (2) Literature Study (3)

Analysis System, (4) Design Architecture and Implementation (5) Testing Blackbox REST API

@CHITECTURE OF DESIGN REST ﬁ

on Postman. In flow, it is explained in Figure 5 below.

- =)

literature analysis system
review

identification

Figure 5. Research Stage

The above research stages are elaborated as follows. The first stage is the identification of
the problem. To find the subject, namely the concept of a multi-platform rest API architecture.
The problem can be solved if the server creates an HTTP REST API endpoint so that each
platform can consume the same data in one source. This resulted in synchronization between
platforms [14].

The next stage is designing the REST API Architecture using OOAD to be technically
clear, consisting of Use case Diagrams, Activity Diagrams, and Component Diagrams. Use case
Diagrams are used to analyze the behavior of the software application to be created and
describe an interaction between one or more actors and the application [9]. Use case Diagrams
in the design of the REST API architecture are used to find out what and who is involved in the
REST API architecture on multi-platform devices. Activity diagram describes the activities of a
system or business process or menu in the software [15], which is used to find out the flow of
how the REST API architecture works to be used by various multi-platform devices. The final
component diagram shows the organizational environment, configuration, and destitution of
the REST API and multi-platform devices.

The final stage is Blackbox testing, where testing is done on a created REST API endpoint,

and testing whether the REST API architecture can run properly on multi-platform devices.

182

https://www.amazon.com/Python-Artificial-Intelligence-Projects-Beginners-ebook/dp/B07G47PJKB
https://books.google.co.id/books?id=8Rg5wxGj818C

© Yuda Syahidin, Randy Ramadhan

3. Results and Discussion

There are two components or actors involved in the REST API architecture on multi-
platform devices, the first being servers, and multi-platform devices. In detail, the server can
configure any data that you want to issue as REST API data, and also has authorization so that
the data consumed by multi-platform devices are more secure and selected, especially sensitive
HTTP methods. On multi-platform devices, you can request rest API under what has been

provided by the server. To represent the above statement, the following Figure 6 is an analysis

of UML Use case diagram.
Arsitektur REST API
Konfigurasi REST API
|
/
® / | #
Authorisasi REST API --*ex::enc'—
|
5 |
Server ceincludes> ; Perangkat
| Multi-platform
Endpoint REST API

Figure 6. Use case Diagram

After knowing the design diagram UML use case, the next stage is to analyze the
activities of each actor involved. The server side initially set the functionality of each HTTP
endpoint to be used as a REST AP], in the functionality of each endpoint, there are several
customized configurations, one of which is the logic of the response or request. In conditions
where data addition, data renewal, and data deletion functions, must use authorization to
secure that data is not manipulated by users or platforms. Uses such as Oauth tokens on
headers from requested APIs are highly recommended for authentication security. Certainly,
some data are open to the public, such as displaying the entire data or specific data. Next is to
set the HTTP endpoint route so that it can be accessed by multi-platform devices.

Endpoint writing has essentially been standardized internationally. Here are the details
of how to write HTTP endpoint routes:
a) Use plural nouns such as: /products, /books, or /menus.
b) Use standard and relevant methods according to needs such as: GET, POST, PUT, or

DELETE.
c¢) Use sub-resources if there are table relationships such as: /posts/1/comments.

d) Use parameters as needed such as: /posts?search="rest&api' or data filter /post?filter="rest'".

183

© Yuda Syahidin, Randy Ramadhan

e) Use of HTTP code to return the response you want to issue. HTTP code is standardized
and has its own role, such as: HTTP code 200 to restore that data is available and can be
used, or HTTP code 401 to restore that data is not available.

f) Versioning REST API on HTTP is very must be so that the platform that uses it knows
when using what version of rest API. Versioning rest API also makes it easy to create new
versions of rest API and will not affect previous versions of development or production.
By utilizing the details of the standard way of writing, it is easy from the side of the

platform that consumes the REST API.

The last stage of the server-side is to return the data according to the request of the multi-
platform device. Several conditions must be handled by the server when multi-platform
devices make requests, including:

1. Successful response
Successful responses are used when a request is successful. For example, the requested

data is on the server. Returns made using JSON in the following formats:

"status": "success”,
"Data":

b

"message": "Data successfully in"

}

2. Error response

The second treatment is when data or endpoints are not available on the server. Returns
made of course use JSON with the following format:
{

"status": "error",

"data": null,

"n,on

"message": "message error",
"errorCode":401

Requests exist to respond to requests from multi-platform devices, so they can be used or

processed as needed. Here in Figure 7 is an activity diagram on the server-side.

184

© Yuda Syahidin, Randy Ramadhan

Konfigurasi

L Pengaturan
fungsionalitas Request dan

Response

Mengatur Route
endpoint HTTP

Authentikasi?

Penggunaan Oauth ¥a

Mengatur
Authentikasi

Figure 7. Activity Server Diagram
On the platform side, it initially set the route endpoint HTTP you want to access. In this
section, adjusted to the methods used and authorization when needed. If the data is received,
the platform will process the data, either displayed directly or reprocessed. In authorization,
authentication is stored in an HTTP header, in the form of JSON, so it can be read by the server.
If the server provides HTTP code 200, the data is successfully retrieved or manipulated. The

activity diagram is displayed in Figure 8 as follows.

Menampilkan data
atau mengelolanya

Mengatur konsumsi

Kelola Response

akses route server

Request Data

Authentikasi?

Ya

Penggunaan Oauth
Authentikasi

Figure 8. Activity Platform Diagram
In this part of the activity, it can be seen that the interaction between the server and the
multi-platform device has been integrated and synchronized with each other.

a) The final analysis of the REST API Architecture on multi-platform devices is representing
the organizations technically involved using component diagrams. In this section, it is
depicted that both the server and the platform are outside the scope of the architecture.
Internal architecture has several components as follows: Endpoint Component. This
component is used as a portal for either a server that configures endpoints or a platform

that accesses a specific endpoint.

185

© Yuda Syahidin, Randy Ramadhan

b) Function Component
This component serves as a handler to address the functionality of the REST API request
and response to the platform.

c¢) Authenticate Component
If the function component succeeds without constraints, the final stage is on the
authentication component, which means that if there is a functional component that
requires authentication, then this component will check, both on HTTP methods and uses
such as Oauth for authentication security. The entire rest API architecture component is

described in Figure 9 as follows:

<<SubSystem>> ;F |

Arsitektur REST AP

<<ccomponent>> 2 Raiqtjest/ Raspcinod

= ch
(._. Endpoint Component © (.
Server

Server
<ccomponeni 2 |
P> Py Function Component
| (

Platform Platform At ikasi |

FronN

<<component>> P .
Authenticate | |
Component
Authentikasi

Figure 9. Component Diagram REST API
To find out the OOAD plan runs smoothly, then testing is needed. Therefore, black-box
testing is used. Blackbox testing will be limited to endpoint access only because the purpose of
black-box testing is to find out whether the server can respond to the data as desired or not. For
examples of testing the REST API architecture, use APIs that have been adjusted both in
configuration and functionality. Here are the results of requests and responses to the REST API

using Postman (see Figure 10).

Figure 10. Request data with GET Method

186

© Yuda Syahidin, Randy Ramadhan

It is explained that the request data with the get method in Figure 10 was successfully
overcome as a response from the server. Displayed JSON response structure with HTTP code

200, and the duration needed to respond is 417 ms.

Figure 11. Request data with GET method accompanied by parameters

|
Figure 12. Request data with the GET method accompanied by parameters that do not exist

The use of requests on HTTP, whether it is data contained in the database or not, is
handled properly. Both Figure 11 and Figure 12, in the form of JSON and each HTTP 200 code
for available data, and HTTP 404 code for data are not available. The time it takes to request

available data is 2.08 s and for unavailable data, it takes 608 ms.

Figure 13. Request data with POST method without OAuth

187

Figure 15. Request data with POST method

© Yuda Syahidin, Randy Ramadhan

CreatedAt: “000
UpdatedAt: '
DeletedA

SocialID

Provider
Avatar
Role: T

with Oauth

The use of OAuth certainly affects the response server; the server will read the

authentication of the request header. In Figure 14, in Request without OAuth, the server will

respond to an invalid token with the form of JSON and HTTP code 244, and when we request

the token in Figure 15 and enter the token in the header request, then in Figure 11 in the server

explained responded correctly. The entire response server above is collected in detail in the

Table 1.

Table 1. Black Box Rest API Test Results on Postman

Time
No. i j Resul
o Endpoint Information Used Ouput esult
1 /questions Request data 417ms GET HTTP JSON Succeeded with response
200 OK
o GET HTTP JSON .
9 Iquiz/mice- Reauest data 9 08 ms with corr]ect Succeeded with response
and-place 1 ' 200 OK
parameters
GET HTTP JSON
3 Iquiz/mice- Reauest data 608 ms with wro]n Succeeded with response
and-places 1 & 404 Not Found
parameters
. POST HTTP JSON .
4 /admz'n/que Request data 7 ms with Header without Succeeded with response
stion . 244
authentication
ladmin/que POST HTTP JSON Succeeded with response
5 . Request data 2.82s Header
stion .. 200 OK
authentication

188

© Yuda Syahidin, Randy Ramadhan

4. Conclusion

To solve the problem of multi-platform devices that are not synchronized with servers, an
intermediate bridge is needed to connect servers and many devices or multi-platforms, namely
by using the REST API architecture. The use of REST APIs has three important elements: the
use of endpoints to access rest APIs by platforms, functionality to overcome response and
request logic, and authentication to protect the manipulation of sensitive data. If all three
elements are met, the REST API is following international standards. Rest API architecture
testing on multi-platform devices can be tested well by the architectural analysis conducted, so

it can be proven that rest APl is good for multi-platform software development.

References

[1] M. A. K Perdana, “PENGEMBANGAN REST API LAYANAN PENYIMPANAN
MENGGUNAKAN METODE RAPID APPLICATION DEVELOPMENT (STUDI KASUS:
PT. XYZ).”

[2] E. Yanti, Sari Noorlima; Rihyanti, “Penerapan Rest API untuk Sistem Informasi Film
Secara Daring.”

[3] Y. Syahidin, “Arsitektur Sistem Informasi Government To Government (G2G G)
Perencanaan dan an Penganggaran Barang Milik Daerah dengan engan Metode Unified
Software Development Process,” J. Tek. Inform. Dan Sist. Informasi, 2(1).
https//doi.org/10.28932/jutisi.v2i1.610, vol. 2, no. April, pp. 75-88, 2016.

[4] J. Herlian, “Perancangan Sistem Mobile POS (Point of Sale) Dengan Menggunakan
Restful Web Services,” 2015.

[5] F. Doglio, REST API Development with Node.js: Manage and Understand the Full
Capabilities of Successful REST Development. 2018.

[6] B.B. & A. H. Dutoit, Object-Oriented Software Engineering Using UML, Patterns, and
JavaTM Third Edition, vol. 821 LNCS. 1994.

[7] M. Rahmani, SOFTWARE MODELING AND DESIGN UML, Use Cases, Patterns, and
Software Architectures, vol. 36, no. 4. 2011.

[8] T. Kristanto, R. K. Hapsari, V. S. Nita, and S. Maimunah, “Rancang Bangun Aplikasi E-
Learning Berbasis Multiplatform untuk Mata Pelajaran Bahasa Indonesia dengan
Menggunakan Pendekatan Technology Acceptance Model (TAM),” J. Tek. Inform. dan
Sist. Inf., vol. 1, no. 3, 2015, doi: 10.28932/jutisi.v1i3.408.

[9] A. O. Approach, SYSTEMS ANALYSIS & DESIGN An Object-Oriented Approach with
UML.

[10] R. S. Wazlawick, “Object-Oriented Analysis and Design for Information Systems,”
Object-Oriented Anal. Des. Inf. Syst., 2014, doi: 10.1016/c2012-0-06942-6.

[11] M. Mark, REST API Design Rulebook, vol. 53, no. 9. 2013.

[12] P.C.Jorgensen, Software testing: A craftsman’s approach, third edition. 2013.

[13] D. Westerveld, API Testing and Development with Postman with Postman.

[14]]. Eckroth, Python Artificial Intelligence Projects for Beginners: Get up and Running with
Artificial Intelligence Using 8 Smart and Exciting Al Applications. Packt Publishing, 2018.

[15] K. A. H. Booch, Grady; A.Maksismchuk, Robert; W.Engle, Michael.,]J.Young, Bobbi;
Conallen, Jim, Object-Oriented Analysis And Design with Applications - Third Edition.

189

https://jurnal.uisu.ac.id/index.php/infotekjar/article/view/563
https://jurnal.uisu.ac.id/index.php/infotekjar/article/view/563
https://jurnal.uisu.ac.id/index.php/infotekjar/article/view/563
http://openjournal.unpam.ac.id/index.php/informatika/article/view/10033
http://openjournal.unpam.ac.id/index.php/informatika/article/view/10033
https://journal.maranatha.edu/index.php/jutisi/article/view/610
https://journal.maranatha.edu/index.php/jutisi/article/view/610
https://journal.maranatha.edu/index.php/jutisi/article/view/610
https://journal.maranatha.edu/index.php/jutisi/article/view/610
http://repository.uib.ac.id/view/divisions/si/2015.html
http://repository.uib.ac.id/view/divisions/si/2015.html
https://www.amazon.com/REST-API-Development-Node-js-Capabilities-ebook/dp/B07G4DSSGX
https://www.amazon.com/REST-API-Development-Node-js-Capabilities-ebook/dp/B07G4DSSGX
https://www.amazon.com/Object-Oriented-Software-Engineering-B-B-Bruegge-H-Dutoit/dp/B003WC8SEI
https://www.amazon.com/Object-Oriented-Software-Engineering-B-B-Bruegge-H-Dutoit/dp/B003WC8SEI
https://www.amazon.com/Object-Oriented-Software-Engineering-B-B-Bruegge-H-Dutoit/dp/B003WC8SEI
https://www.amazon.com/Object-Oriented-Software-Engineering-B-B-Bruegge-H-Dutoit/dp/B003WC8SEI
https://www.researchgate.net/publication/326231108_Rancang_Bangun_Aplikasi_E-Learning_Berbasis_Multiplatform_untuk_Mata_Pelajaran_Bahasa_Indonesia_dengan_Menggunakan_Pendekatan_Technology_Acceptance_Model_TAM
https://www.researchgate.net/publication/326231108_Rancang_Bangun_Aplikasi_E-Learning_Berbasis_Multiplatform_untuk_Mata_Pelajaran_Bahasa_Indonesia_dengan_Menggunakan_Pendekatan_Technology_Acceptance_Model_TAM
https://www.researchgate.net/publication/326231108_Rancang_Bangun_Aplikasi_E-Learning_Berbasis_Multiplatform_untuk_Mata_Pelajaran_Bahasa_Indonesia_dengan_Menggunakan_Pendekatan_Technology_Acceptance_Model_TAM
https://www.researchgate.net/publication/326231108_Rancang_Bangun_Aplikasi_E-Learning_Berbasis_Multiplatform_untuk_Mata_Pelajaran_Bahasa_Indonesia_dengan_Menggunakan_Pendekatan_Technology_Acceptance_Model_TAM
https://library.unai.edu/index.php?p=show_detail&id=477
https://library.unai.edu/index.php?p=show_detail&id=477
https://www.sciencedirect.com/book/9780124186736/object-oriented-analysis-and-design-for-information-systems
https://www.sciencedirect.com/book/9780124186736/object-oriented-analysis-and-design-for-information-systems
https://books.google.co.id/books?id=eABpzyTcJNIC
https://www.amazon.com/Software-Testing-Craftsmans-Approach-Third/dp/0849374758
https://www.amazon.com/API-Testing-Development-Postman-practical/dp/1800569203
https://www.amazon.com/Python-Artificial-Intelligence-Projects-Beginners-ebook/dp/B07G47PJKB
https://www.amazon.com/Python-Artificial-Intelligence-Projects-Beginners-ebook/dp/B07G47PJKB
https://books.google.co.id/books?id=8Rg5wxGj818C
https://books.google.co.id/books?id=8Rg5wxGj818C

