
178

 Jurnal E-KOMTEK (Elektro-Komputer-Teknik)
Vol. 5, No. 2 (2021) pp. 178-189

https://jurnal.politeknik-kebumen.ac.id/index.php/E-KOMTEK

p-ISSN : 2580-3719 e-ISSN : 2622-3066

REST API Architecture Design on Multi-Platform Device Development

Yuda Syahidin , Randy Ramadhan
Department of Information System, Politeknik Piksi Ganesha Bandung, Indonesia, 40274

 yuda.syahidin@piksi.ac.id

 https://doi.org/10.37339/e-komtek.v5i2.762

Published by Politeknik Dharma Patria Kebumen

Artikel Info

Submitted:

30-10-2021

Revised:

03-11-2021

Accepted:

03-11-2021

Online first :

30-12-2021

Abstract

Multi-platform devices are becoming the standard technology in software development.

However, the problem of multi-platform is that it must provide a single parent data

source, so there is a good relationship between users of multi-platform devices and

servers. REST APIs are the best choices that bridge the servers and multiple platforms.

That way, the use of REST APIs will be very beneficial, both in terms of servers and

platforms as consumption. This research planned to create a REST API architecture that

can run in multi-platform with testing techniques using black boxes through postman

software. As the basis for making REST APIs, it is better to understand the Architecture

of REST APIs, especially REST APIs as a multi-platform device.

Keywords: Architecture, Multi-platform, REST API

 Abstrak

 Perangkat multi-platform menjadi teknologi standar dalam pengembangan perangkat lunak.

Namun, masalah multi-platform harus menyediakan sumber data single parent, sehingga ada

hubungan yang baik antara pengguna perangkat multi-platform dan server. REST API adalah

pilihan terbaik yang menjembatani server dan berbagai platform. Dengan begitu, penggunaan

REST API akan sangat menguntungkan, baik dari sisi server maupun platform sebagai

konsumsinya. Penelitian ini direncanakan untuk membuat arsitektur REST API yang dapat

berjalan secara multi platform dengan teknik pengujian menggunakan black box melalui software

tukang pos. Sebagai dasar untuk membuat REST API, lebih baik memahami Arsitektur REST

API, terutama REST API sebagai perangkat multi-platform.

Kata-kata kunci: Arsitektur, Mlti-Platform, REST API

 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0

International License.

https://jurnal.politeknik-kebumen.ac.id/index.php/E-KOMTEK
https://scholar.google.com/citations?hl=en&user=Y5vyWucAAAAJ
mailto:%20yuda.syahidin@piksi.ac.id
mailto:%20yuda.syahidin@piksi.ac.id
https://doi.org/10.37339/e-komtek.v5i2.762
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
mailto:yuda.syahidin@piksi.ac.id

© Yuda Syahidin, Randy Ramadhan

179

1. Introduction

Information and communication technology is vital today. The procurement of data and

software plays a very striking role to protect its users. In addition to this, the company's various

innovations resulted in many platforms, such as Smartphones, Smart TVs, and common

devices such as laptops and PCs. Undoubtedly, the applications made must be adjusted to the

platform, because the architecture on the hardware might be different. In other words, there

must be a synchronized data on the program, whether it is a smartphone or the web.

On the side of everyday users, certainly, the current situation is very helpful with the

aforementioned conditions. However, the problem occurs on the development side of the

software itself. Therefore, a bridge is primary, so that the data on multi-platform devices can

communicate properly.

Speaking of the development of data-driven technology, it needs to be thought of how

the data flow from the server is the same or synchronized with several platforms used at once.

That way, the communication across platforms runs smoothly without data redundancies,

which due to too much storage, might cause programs not effectively used.

In the previous research [1], shortcomings in the architecture were not applied and

explained in detail. The explanation was only oriented to the REST API application. In other

study [2], there is no authentication process, so the security on REST APIs was particularly

vulnerable to sensitive requests and responses.

To cover the shortcomings of these studies, the authors conducted the research and

created a multi-platform REST API architecture design that gives more meaning to the function

and usability of the REST API.

2. Method

Architectural Design is the art and science of designing and constructing buildings,

bridges, and so on [3]. In this case, architecture refers to designing and building a construction

of a REST API network to interact with multi-platform devices.

REST is a web service that uses the concept of transferring from state to state over HTTP

to make a specific connection [4],[5]. With a stateless REST nature, requests should always

include complete data and parameters. An API (Application Programming Interface) is an

interface that is implemented to software to interact with other lifters [5].

https://jurnal.uisu.ac.id/index.php/infotekjar/article/view/563
http://openjournal.unpam.ac.id/index.php/informatika/article/view/10033
https://journal.maranatha.edu/index.php/jutisi/article/view/610
http://repository.uib.ac.id/view/divisions/si/2015.html
https://www.amazon.com/REST-API-Development-Node-js-Capabilities-ebook/dp/B07G4DSSGX
https://www.amazon.com/REST-API-Development-Node-js-Capabilities-ebook/dp/B07G4DSSGX

© Yuda Syahidin, Randy Ramadhan

180

Software development is the activity of writing and managing program code, but in a

broad sense, the term encompasses all the things involved between the creation of desired

software through software finalization, ideally in a planned and structured process [6].

Therefore, software development may include research, new development, prototypes,

modifications, reuse, reengineering, management, or other activities that produce software

products [7].

Multi-platform is an application that can be run by any operating system. The function of

the multi-platform problem is as a "consumption" rest API created by the backend.

Technologies such as website platforms, mobile platforms, or desktop platforms. The

advantage of multi-platform use is the data that each platform can be interacted with each

other [8].

Architectural design uses object-based analysis and design, namely OOAD (Object

Oriented Analysis and Design). OOAD can be considered to be a relatively new project

management rather than analysis and design based on diagram data. Object Oriented Analysis

and Design is a method used to make objects or objects referred to as actors, namely

representations of humans who will interact with the system. The following Figure 1 describes

the design of objects based on Iterative and Incremental Development.

Figure 1. Iterative and Incremental Development [9]

By utilizing this basic concept of OOAD, it will be very easy to represent all forms of

behavior from the components of the analysis component to produce a clear REST API

architecture[10].

Web services are purpose-built web servers that support the needs of a site or any other

application. Client programs use application programming interfaces (APIs) to communicate

with web services. Generally speaking, an API exposes a set of data and functions to facilitate

interactions between computer programs and allow them to exchange information[11]. As

https://www.amazon.com/Object-Oriented-Software-Engineering-B-B-Bruegge-H-Dutoit/dp/B003WC8SEI
https://www.amazon.com/Object-Oriented-Software-Engineering-B-B-Bruegge-H-Dutoit/dp/B003WC8SEI
https://www.researchgate.net/publication/326231108_Rancang_Bangun_Aplikasi_E-Learning_Berbasis_Multiplatform_untuk_Mata_Pelajaran_Bahasa_Indonesia_dengan_Menggunakan_Pendekatan_Technology_Acceptance_Model_TAM
https://library.unai.edu/index.php?p=show_detail&id=477
https://www.sciencedirect.com/book/9780124186736/object-oriented-analysis-and-design-for-information-systems
https://books.google.co.id/books?id=eABpzyTcJNIC

© Yuda Syahidin, Randy Ramadhan

181

depicted in Figure 2, a Web API is the face of a web service, directly listening and responding

to client requests.

Figure 2. Web API [11]

The Architecture testing of the REST API used black-box testing. Blackbox testing is

testing the smoothness of programs that have been created, especially in the functional parts of

the architecture. Blackbox testing requires no design or program code, making it suitable for

Architecture testing of the REST API [12]. The following Figure 3 describes the design of Black-

Box Testing.

Figure 3. Black-Box Testing [12]

The software used to support black box testing is Postman. Postman is software that runs

on a multi-system computer operating system, where its function is as a client to test the REST

API that has been created [13]. To add parameters to an API endpoint in Postman, make sure

you have the Params tab selected and then put the name of the query parameter into the Key

field and the value into the Value field. In this case, we used the type parameter, so enter that

word into the Key field. For this endpoint, the type parameter allows filtering based on

whether the owner of a repository is or just a member. See Figure 4 that describes the Query

parameter type in an API call below.

Figure 4. Query parameter type in an API call [13]

https://www.amazon.com/Software-Testing-Craftsmans-Approach-Third/dp/0849374758
https://www.amazon.com/API-Testing-Development-Postman-practical/dp/1800569203

© Yuda Syahidin, Randy Ramadhan

182

The Research Stage consists of 5 stages, namely: (1) Identification, (2) Literature Study (3)

Analysis System, (4) Design Architecture and Implementation (5) Testing Blackbox REST API

on Postman. In flow, it is explained in Figure 5 below.

identification
literature

review
analysis system

ARCHITECTURE OF DESIGN REST API

Figure 5. Research Stage

The above research stages are elaborated as follows. The first stage is the identification of

the problem. To find the subject, namely the concept of a multi-platform rest API architecture.

The problem can be solved if the server creates an HTTP REST API endpoint so that each

platform can consume the same data in one source. This resulted in synchronization between

platforms [14].

The next stage is designing the REST API Architecture using OOAD to be technically

clear, consisting of Use case Diagrams, Activity Diagrams, and Component Diagrams. Use case

Diagrams are used to analyze the behavior of the software application to be created and

describe an interaction between one or more actors and the application [9]. Use case Diagrams

in the design of the REST API architecture are used to find out what and who is involved in the

REST API architecture on multi-platform devices. Activity diagram describes the activities of a

system or business process or menu in the software [15], which is used to find out the flow of

how the REST API architecture works to be used by various multi-platform devices. The final

component diagram shows the organizational environment, configuration, and destitution of

the REST API and multi-platform devices.

The final stage is Blackbox testing, where testing is done on a created REST API endpoint,

and testing whether the REST API architecture can run properly on multi-platform devices.

https://www.amazon.com/Python-Artificial-Intelligence-Projects-Beginners-ebook/dp/B07G47PJKB
https://books.google.co.id/books?id=8Rg5wxGj818C

© Yuda Syahidin, Randy Ramadhan

183

3. Results and Discussion

There are two components or actors involved in the REST API architecture on multi-

platform devices, the first being servers, and multi-platform devices. In detail, the server can

configure any data that you want to issue as REST API data, and also has authorization so that

the data consumed by multi-platform devices are more secure and selected, especially sensitive

HTTP methods. On multi-platform devices, you can request rest API under what has been

provided by the server. To represent the above statement, the following Figure 6 is an analysis

of UML Use case diagram.

Figure 6. Use case Diagram

After knowing the design diagram UML use case, the next stage is to analyze the

activities of each actor involved. The server side initially set the functionality of each HTTP

endpoint to be used as a REST API, in the functionality of each endpoint, there are several

customized configurations, one of which is the logic of the response or request. In conditions

where data addition, data renewal, and data deletion functions, must use authorization to

secure that data is not manipulated by users or platforms. Uses such as Oauth tokens on

headers from requested APIs are highly recommended for authentication security. Certainly,

some data are open to the public, such as displaying the entire data or specific data. Next is to

set the HTTP endpoint route so that it can be accessed by multi-platform devices.

Endpoint writing has essentially been standardized internationally. Here are the details

of how to write HTTP endpoint routes:

a) Use plural nouns such as: /products, /books, or /menus.

b) Use standard and relevant methods according to needs such as: GET, POST, PUT, or

DELETE.

c) Use sub-resources if there are table relationships such as: /posts/1/comments.

d) Use parameters as needed such as: /posts?search='rest&api' or data filter /post?filter='rest'.

© Yuda Syahidin, Randy Ramadhan

184

e) Use of HTTP code to return the response you want to issue. HTTP code is standardized

and has its own role, such as: HTTP code 200 to restore that data is available and can be

used, or HTTP code 401 to restore that data is not available.

f) Versioning REST API on HTTP is very must be so that the platform that uses it knows

when using what version of rest API. Versioning rest API also makes it easy to create new

versions of rest API and will not affect previous versions of development or production.

By utilizing the details of the standard way of writing, it is easy from the side of the

platform that consumes the REST API.

The last stage of the server-side is to return the data according to the request of the multi-

platform device. Several conditions must be handled by the server when multi-platform

devices make requests, including:

1. Successful response

Successful responses are used when a request is successful. For example, the requested

data is on the server. Returns made using JSON in the following formats:

{

 "status": "success",

 "Data":

 },

 "message": "Data successfully in"

}

2. Error response

The second treatment is when data or endpoints are not available on the server. Returns

made of course use JSON with the following format:

{

 "status": "error",

 "data": null,

 "message": "message error",

 "errorCode":401

}

Requests exist to respond to requests from multi-platform devices, so they can be used or

processed as needed. Here in Figure 7 is an activity diagram on the server-side.

© Yuda Syahidin, Randy Ramadhan

185

Figure 7. Activity Server Diagram

On the platform side, it initially set the route endpoint HTTP you want to access. In this

section, adjusted to the methods used and authorization when needed. If the data is received,

the platform will process the data, either displayed directly or reprocessed. In authorization,

authentication is stored in an HTTP header, in the form of JSON, so it can be read by the server.

If the server provides HTTP code 200, the data is successfully retrieved or manipulated. The

activity diagram is displayed in Figure 8 as follows.

Figure 8. Activity Platform Diagram

In this part of the activity, it can be seen that the interaction between the server and the

multi-platform device has been integrated and synchronized with each other.

a) The final analysis of the REST API Architecture on multi-platform devices is representing

the organizations technically involved using component diagrams. In this section, it is

depicted that both the server and the platform are outside the scope of the architecture.

Internal architecture has several components as follows: Endpoint Component. This

component is used as a portal for either a server that configures endpoints or a platform

that accesses a specific endpoint.

© Yuda Syahidin, Randy Ramadhan

186

b) Function Component

This component serves as a handler to address the functionality of the REST API request

and response to the platform.

c) Authenticate Component

If the function component succeeds without constraints, the final stage is on the

authentication component, which means that if there is a functional component that

requires authentication, then this component will check, both on HTTP methods and uses

such as Oauth for authentication security. The entire rest API architecture component is

described in Figure 9 as follows:

Figure 9. Component Diagram REST API

To find out the OOAD plan runs smoothly, then testing is needed. Therefore, black-box

testing is used. Blackbox testing will be limited to endpoint access only because the purpose of

black-box testing is to find out whether the server can respond to the data as desired or not. For

examples of testing the REST API architecture, use APIs that have been adjusted both in

configuration and functionality. Here are the results of requests and responses to the REST API

using Postman (see Figure 10).

Figure 10. Request data with GET Method

© Yuda Syahidin, Randy Ramadhan

187

It is explained that the request data with the get method in Figure 10 was successfully

overcome as a response from the server. Displayed JSON response structure with HTTP code

200, and the duration needed to respond is 417 ms.

Figure 11. Request data with GET method accompanied by parameters

Figure 12. Request data with the GET method accompanied by parameters that do not exist

The use of requests on HTTP, whether it is data contained in the database or not, is

handled properly. Both Figure 11 and Figure 12, in the form of JSON and each HTTP 200 code

for available data, and HTTP 404 code for data are not available. The time it takes to request

available data is 2.08 s and for unavailable data, it takes 608 ms.

Figure 13. Request data with POST method without OAuth

© Yuda Syahidin, Randy Ramadhan

188

Figure 14. Request OAuth

Figure 15. Request data with POST method with Oauth

 The use of OAuth certainly affects the response server; the server will read the

authentication of the request header. In Figure 14, in Request without OAuth, the server will

respond to an invalid token with the form of JSON and HTTP code 244, and when we request

the token in Figure 15 and enter the token in the header request, then in Figure 11 in the server

explained responded correctly. The entire response server above is collected in detail in the

Table 1.

Table 1. Black Box Rest API Test Results on Postman

No. Endpoint Information
Time

Used
Ouput Result

1 /questions Request data 417ms GET HTTP JSON
Succeeded with response

200 OK

2
/quiz/mice-

and-place
Request data 2.08 ms

GET HTTP JSON

with correct

parameters

Succeeded with response

200 OK

3
/quiz/mice-

and-places
Request data 608 ms

GET HTTP JSON

with wrong

parameters

Succeeded with response

404 Not Found

4
/admin/que

stion
Request data 7 ms

POST HTTP JSON

with Header without

authentication

Succeeded with response

244

5
/admin/que

stion
Request data 2.82 s

POST HTTP JSON

Header

authentication

Succeeded with response

200 OK

© Yuda Syahidin, Randy Ramadhan

189

4. Conclusion

To solve the problem of multi-platform devices that are not synchronized with servers, an

intermediate bridge is needed to connect servers and many devices or multi-platforms, namely

by using the REST API architecture. The use of REST APIs has three important elements: the

use of endpoints to access rest APIs by platforms, functionality to overcome response and

request logic, and authentication to protect the manipulation of sensitive data. If all three

elements are met, the REST API is following international standards. Rest API architecture

testing on multi-platform devices can be tested well by the architectural analysis conducted, so

it can be proven that rest API is good for multi-platform software development.

References

[1] M. A. K. Perdana, “PENGEMBANGAN REST API LAYANAN PENYIMPANAN
MENGGUNAKAN METODE RAPID APPLICATION DEVELOPMENT (STUDI KASUS:

PT. XYZ).”

[2] E. Yanti, Sari Noorlima; Rihyanti, “Penerapan Rest API untuk Sistem Informasi Film

Secara Daring.”

[3] Y. Syahidin, “Arsitektur Sistem Informasi Government To Government (G2G G)
Perencanaan dan an Penganggaran Barang Milik Daerah dengan engan Metode Unified

Software Development Process,” J. Tek. Inform. Dan Sist. Informasi, 2(1).
https//doi.org/10.28932/jutisi.v2i1.610, vol. 2, no. April, pp. 75–88, 2016.

[4] J. Herlian, “Perancangan Sistem Mobile POS (Point of Sale) Dengan Menggunakan
Restful Web Services,” 2015.

[5] F. Doglio, REST API Development with Node.js: Manage and Understand the Full

Capabilities of Successful REST Development. 2018.

[6] B. B. & A. H. Dutoit, Object-Oriented Software Engineering Using UML, Patterns, and

JavaTM Third Edition, vol. 821 LNCS. 1994.

[7] M. Rahmani, SOFTWARE MODELING AND DESIGN UML, Use Cases, Patterns, and

Software Architectures, vol. 36, no. 4. 2011.

[8] T. Kristanto, R. K. Hapsari, V. S. Nita, and S. Maimunah, “Rancang Bangun Aplikasi E-

Learning Berbasis Multiplatform untuk Mata Pelajaran Bahasa Indonesia dengan

Menggunakan Pendekatan Technology Acceptance Model (TAM),” J. Tek. Inform. dan

Sist. Inf., vol. 1, no. 3, 2015, doi: 10.28932/jutisi.v1i3.408.

[9] A. O. Approach, SYSTEMS ANALYSIS & DESIGN An Object-Oriented Approach with

UML.

[10] R. S. Wazlawick, “Object-Oriented Analysis and Design for Information Systems,”
Object-Oriented Anal. Des. Inf. Syst., 2014, doi: 10.1016/c2012-0-06942-6.

[11] M. Mark, REST API Design Rulebook, vol. 53, no. 9. 2013.

[12] P. C. Jorgensen, Software testing: A craftsman’s approach, third edition. 2013.
[13] D. Westerveld, API Testing and Development with Postman with Postman.

[14] J. Eckroth, Python Artificial Intelligence Projects for Beginners : Get up and Running with

Artificial Intelligence Using 8 Smart and Exciting AI Applications. Packt Publishing, 2018.

[15] K. A. H. Booch, Grady; A.Maksismchuk, Robert; W.Engle, Michael., J.Young, Bobbi;

Conallen, Jim, Object-Oriented Analysis And Design with Applications - Third Edition.

https://jurnal.uisu.ac.id/index.php/infotekjar/article/view/563
https://jurnal.uisu.ac.id/index.php/infotekjar/article/view/563
https://jurnal.uisu.ac.id/index.php/infotekjar/article/view/563
http://openjournal.unpam.ac.id/index.php/informatika/article/view/10033
http://openjournal.unpam.ac.id/index.php/informatika/article/view/10033
https://journal.maranatha.edu/index.php/jutisi/article/view/610
https://journal.maranatha.edu/index.php/jutisi/article/view/610
https://journal.maranatha.edu/index.php/jutisi/article/view/610
https://journal.maranatha.edu/index.php/jutisi/article/view/610
http://repository.uib.ac.id/view/divisions/si/2015.html
http://repository.uib.ac.id/view/divisions/si/2015.html
https://www.amazon.com/REST-API-Development-Node-js-Capabilities-ebook/dp/B07G4DSSGX
https://www.amazon.com/REST-API-Development-Node-js-Capabilities-ebook/dp/B07G4DSSGX
https://www.amazon.com/Object-Oriented-Software-Engineering-B-B-Bruegge-H-Dutoit/dp/B003WC8SEI
https://www.amazon.com/Object-Oriented-Software-Engineering-B-B-Bruegge-H-Dutoit/dp/B003WC8SEI
https://www.amazon.com/Object-Oriented-Software-Engineering-B-B-Bruegge-H-Dutoit/dp/B003WC8SEI
https://www.amazon.com/Object-Oriented-Software-Engineering-B-B-Bruegge-H-Dutoit/dp/B003WC8SEI
https://www.researchgate.net/publication/326231108_Rancang_Bangun_Aplikasi_E-Learning_Berbasis_Multiplatform_untuk_Mata_Pelajaran_Bahasa_Indonesia_dengan_Menggunakan_Pendekatan_Technology_Acceptance_Model_TAM
https://www.researchgate.net/publication/326231108_Rancang_Bangun_Aplikasi_E-Learning_Berbasis_Multiplatform_untuk_Mata_Pelajaran_Bahasa_Indonesia_dengan_Menggunakan_Pendekatan_Technology_Acceptance_Model_TAM
https://www.researchgate.net/publication/326231108_Rancang_Bangun_Aplikasi_E-Learning_Berbasis_Multiplatform_untuk_Mata_Pelajaran_Bahasa_Indonesia_dengan_Menggunakan_Pendekatan_Technology_Acceptance_Model_TAM
https://www.researchgate.net/publication/326231108_Rancang_Bangun_Aplikasi_E-Learning_Berbasis_Multiplatform_untuk_Mata_Pelajaran_Bahasa_Indonesia_dengan_Menggunakan_Pendekatan_Technology_Acceptance_Model_TAM
https://library.unai.edu/index.php?p=show_detail&id=477
https://library.unai.edu/index.php?p=show_detail&id=477
https://www.sciencedirect.com/book/9780124186736/object-oriented-analysis-and-design-for-information-systems
https://www.sciencedirect.com/book/9780124186736/object-oriented-analysis-and-design-for-information-systems
https://books.google.co.id/books?id=eABpzyTcJNIC
https://www.amazon.com/Software-Testing-Craftsmans-Approach-Third/dp/0849374758
https://www.amazon.com/API-Testing-Development-Postman-practical/dp/1800569203
https://www.amazon.com/Python-Artificial-Intelligence-Projects-Beginners-ebook/dp/B07G47PJKB
https://www.amazon.com/Python-Artificial-Intelligence-Projects-Beginners-ebook/dp/B07G47PJKB
https://books.google.co.id/books?id=8Rg5wxGj818C
https://books.google.co.id/books?id=8Rg5wxGj818C

