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Abstract -- Load shedding plays a key part in the avoidance of the power system outage. The
frequency and voltage fluidity leads to the spread of a power system into sub-systems and leads to the
outage as well as the severe breakdown of the system utility. In recent years, Neural networks have
been very victorious in several signal processing and control applications. Recurrent Neural networks
are capable of handling complex and non-linear problems. This paper provides an algorithm for load
shedding using ELMAN Recurrent Neural Networks (RNN). Elman has proposed a partially RNN,
where the feedforward connections are modifiable and the recurrent connections are fixed. The
research is implemented in MATLAB and the performance is tested with a 6 bus system. The results
are compared with the Genetic Algorithm (GA), Combining Genetic Algorithm with Feed Forward
Neural Network (hybrid) and RNN. The proposed method is capable of assigning load releases
needed and more efficient than other methods.
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INTRODUCTION

Power systems are complex multi-
component dynamic systems in which the system
characteristics fluctuate with varying loads and
varying generation schedules [1]. Large disorders
can cause system and voltage instability.
Frequency instability is like a decrease in drastic
frequency can cause the system to experience
total blackouts. One of the strategies to anticipate
possibilities of the drastic decrease in frequency
is released some of the burden borne by the
system. After some loads are released, loads are
borne by plants that are still operating will
decreases, and frequency will be able to return to
normal condition immediately after a balance
occurs between generation and loading. Release
the load must be carried out immediately at the
time of frequency the system began to decline
dramatically. If there is a disturbance in the
system cause the available power cannot serving
loads, for example, caused by existence
generating unit that trips, so to prevent collapse
occurs, the system needs to do load Shedding

Maintaining the power system frequency
within the permissible limits is an important
control task, which in normal conditions is carried
out using load frequency control [2]. However,
when a sudden power deficit occurs as a result of
outage of large generating units or islanding of

some parts of power system, even if the existing
generating units have enough spinning reserve to
supply the demand, their response is not rapid
enough to stop the frequency excursion and
prevent the operation of generating units’
protective relays. The condition may lead to an
outage of some of the generating units.
Consequently, the outage of a generating unit
can worsen the situation and decrease the
frequency to a lower level; therefore, the relays of
other generating units might trip and lead to
power system blackout [3][4].

The process of releasing several loads
with a degrade priority is to maintain the stability
and reliability of the existing system. Load
shedding schemes are needed to maintain power
system stability. It is a common habit for electric
companies to run loads shedding procedure with
adjusting under-frequency relays to decide the
predestinated load in various shedding tread
when the frequency crashes fall from setting
values. The transient stability explores all the
probability the problem of the external equipment
power system has to be carried out to obtain an
expeditious load shedding procedure

Some of the latest methods have been
applied to the issue of load release with the hope
of obtaining efficient load release. The situation is
to maintain a steady state of the power system. A
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computationally easy algorithm has been
progressed. Arya et al. have a novel method
based on the sensitivities of the minimum
eigenvalue of load flow Jacobian [5]. Arya et al.
have differential evolution (DE methods for load
shedding stress stability considerations [6]. Yan
Xu et al. have a reserved approach using
Parallel-Differential Evolution (P-DE) to optimal
load shedding for avoiding voltage collapse [7].
Hamid and Musirin have a fuzzy logic method as
a mastermind that is recommended an algorithm
to uncover the suitable load buses for the goal of
load shedding reckoning multi-contingencies [8].
Hong et al. have Load Shedding considering a
fuzzy load [9]. Rao et al. have proposed a
Genetic algorithm method based on Time priority
for optimizing load shedding [10]. Tang et al.
have method Adaptive load shedding based on
combined frequency and voltage stability [11].

The recurrent neural network method has
been applied to various problems in recent years.
The technique can be split into two primary
categories: full and partially one. Recurrent
neural networks were humbly identified in the late
1980s to learn character sequences. Various
studies have developed this method.

This study presents a recurrent neural
network called an Elman network. The Elman
network is called a simple recurrent network
(SRN) because it is similar to a fully connected
network, but the number and complexity of
interconnections are lower than in an RNN [12]
[13]. The advantage of RNN is a Neural Network
with a feedback facility to its neurons and other
neurons. The information flow from input has
direction plural (multidirectional). The RNN output
does not only depend on the current input but
also depends on the input conditions for the past.
This condition is intended to accommodate past
events included in the computational process and
is important for a quite complicated problem and
the response of the NN output is related to time
variation (time-varying). RNN has a sensitivity to
time with memory conditions past

This research will present optimization load
shedding using the Recurrent Neural Network
(RNN). The results compared with GA and Hybrid
methods from previous studies by [14]. The
hybrid method by [14] is a combined Genetic
Algorithm (GA) and Neural Network (NN). The
neural network by [14] was used Feed Forward
Neural Network (FFNN).

METHOD

An Elman RNN is a network with an initial
configuration based on a regular feedforward
neural network. As is well-known, in an FFNN,
the information moves in only one direction,

forward, from the input nodes, through the hidden
nodes, and to the output nodes without cycles or
loops. The main difference between the FFNN
and the Elman network, because the latter has a
layer called the context layer. The neurons in the
context layer, called context neurons, hold a copy
of the outputs that are given by the neurons of
the hidden layer to the output layer. It means that
in the following computing step, information that
was given as an output by the hidden layer is
used as new input information for this layer.

The condition is intended to accommodate
past events included in the computing process.
This is important for fairly complex problems, and
NN output responses are related to time-varying
so that NN has a time sensitivity with past
conditions memory. The Structure of Recurrent
Neural Network shown in Figure 1. The j and k
signs present from j and k neurons, each neuron
from the input corresponds to weight Wj. The
Layers 1 output matches the Wji. Whereas O is
related to W.

Layer 1
0,1)=0,a~1) (2)
Pi(1) _ —P;(1)
0,0= F(P,) =055 ©)
e’ +e '’
Layer 2
k
B0=20,(0)-W, +b “@
i=1
O, (1)=PF.(1) ®)

The error function is defined:

n

1

ﬂo=520un—qaw (6)
k=1

Which xk(t) is output system and n is output

neuron. Weight Wj and weight Wk can be

adjusted by using the steepest descent algorithm.
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Figure 1. Schematic Representation of The Recurrent Neural Network [15]
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Figure 2. Flowchart of RNN for the proposed approach.

This study adjusted quantitative methods sequence. The step of this research is explained
with historical data to estimate control values. in Figure 2.
Processing and analyzing data are taken from
time to time. Data is taken and analyzed in
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Related Work

A previous study conducted by [13], the
load shedding tested with 6 bus systems was
obtained using a GA and Hybrid method. The
result can be seen in Table 1, Table 2 and Table
3.

The performance of the proposed hybrid
method is compared with the base case and GA
results. The performance comparison of six bus
systems, the minimum eigenvalue and the
sensitivity of eigenvalues are compared.

Table 1. Comparison Methods in Minimum Eigenvalue and sensitivity of minimum eigenvalue of the
six-bus system [14]

The minimum

Sensitivity eigenvalue

Sensitivity eigenvalue

Bus number elger;\t/anlg:an:glrllggg bus calculated by GA calculated by Hybrid
3 0.1849 0.2221 0.2138
4 0.0041 0.0075 0.0069
5 0.1441 0.1698 0.0946
6 0.0741 0.0145 0.0723

Table 2. Comparison Methods in Bus voltage of 6-bus system before and after load shed [14]

Voltage after

Voltage after Voltage after load shed

Bus number Normal bus  generation change load shed by GA by a hybrid method
(pu) (pu) (pu)
1 1.087 1.0870 1.0870 1.0870
2 1.608 1.6600 1.6600 1.6600
3 0.812 0.9331 0.9659 0.9936
4 0.835 0.9585 0.9933 1.0241
5 0.805 1.1169 1.1100 1.1422
6 0.799 0.9400 0.9658 0.9970

Table 3. Comparison Methods in Real power of load before and after load shed for IEEE 6 bus system

[14]
Load shed by hybrid

Bus number Normal load Load shed by GA method

(pu) (pu)
(pu)
3 0.897 0.8291 0.8321
4 0 0 0

5 0.555 0.5334 0.5398

6 0.793 0.6336 0.6473
RESULTS AND DISCUSSION Neural Network

The bus and line data of 6 bus systems Layer

are referred to in [9]. The system consists of 2
generator buses and four load buses. The buses
3, 4, 5 and 6 are load buses. Data research was
used to conduct NN training. Table 4 is the
parameter used using RNN. Figure 3 is RNN
training using data six bus system

Table 4. Parameter proposed Recurrent Neural
Network

Syntax Parameter
Number of Hidden Layer 5
Transfer Function for Hyperbolic Tangent Sigmoid
Hidden Layer Transfer Function (tansig)
Transfer Function for Linear Transfer Function
Output Layer (purelin)
Gradient Descent with
Momentum (learngdm)

Weight /Bias Function

Epoch 1000
Learning Rate 0.1
Momentum 0.2

Algorithms

Training: Eayesian Regulation

Performance:  Sum Squared Error

Progress

Epoch: ol 24 iterations 1000
Time: 0:00:00

Performance: 7.69 0.000996 1.00e-09
Gradient: 1.00 01:4 1.00e-10
Mu: 1.00e +05 1.00e+10 1.00e+10
Validation Checks: 0 Q 6

MNum Parameters: 41.0 0847 Nah
Sum Squared Param: 774 0.00744 MaM

Figure 3. Plot Training of RNN
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The neural network training has five hidden
layers, and the Hyperbolic Tangent Sigmoid
function transfer. The learning rate is used 0.1
with 0.2 momentum. Figure 3 shows the results
that completed in 24 iterations of the 1000 epoch
limit. The training performance results are
0.000996 with a 0.124 gradient.

The proposed RNN algorithm has stable
voltage stability and a minimum load shedding

value. Table 5 shows the eigenvalue sensitivity
ratio of each method. The Sensitivity eigenvalue
can be seen in Figure 4. Next, the results are
measured using Mean absolute percentage error
(MAPE). The MAPE is a measure of how
accurate a forecast system. Table 6 shows a
comparison of calculations from MAPE and is
illustrated in Figure 5.

Table 5. Sensitivity eigenvalue calculated for IEEE 6 bus system.

The minimum
eigenvalue for load
bus at normal load

Bus number

Sensitivity eigenvalue
calculated by GA

Sensitivity eigenvalue
calculated by Hybrid

Sensitivity eigenvalue
calculated by RNN

3 0.1849 0.2221 0.2138 0.1831
4 0.0041 0.0075 0.0069 0.0041
5 0.1441 0.1698 0.0946 0.0829
6 0.0741 0.0145 0.0723 0.0267
0.25
0.2
0.15
0.1
0.05
0 —
3 4 5 6
® Minimum eigenvalue for load bus at normal load
Sensitivity eigenvalue calculated by GA
Sensitivity eigenvalue calculated by Hybrid
Sensitivity eigenvalue calculated by RNN
Figure 4. Data of Sensitivity eigenvalue
Table 6. MAPE Of Sensitivity eigenvalue calculated for the IEEE 6 bus system.
Bus number MAPE Hybrid MAPE GA MAPE RNN
3 15.63007031 20.11898323  0.973499189
4 68.29268293 82.92682927 0
5 34.35114504 17.83483692 42.47050659
6 2429149798 80.43184885 63.96761134
Table 7. Data of Load Shed for the IEEE 6 bus system.
Bus number Normal load Load shed by GA Load shed by a hybrid Load shed by RNN
(pu) (pu) method method
(pu) (pu)
3 0.897 0.8291 0.8321 0.897
4 0 0 0 0.0037
5 0.555 0.5334 0.5398 0.5695
6 0.793 0.6336 0.6473 0.8003
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Figure 5. Graph MAPE Of Sensitivity eigenvalue calculated for the IEEE 6 bus system

Table 8. Data of Voltage after generation change for IEEE 6 bus system

Voltage after load Voltage after load
Voltage after Voltage after .
. shed by a hybrid shed by RNN
Bus number  Normal bus generation load shed by GA
change (pu) (pu) method method
(pu) (pu)
1 1.087 1.087 1.087 1.087 1.087
2 1.68 1.66 1.66 1.66 1.6659
3 0.812 0.9331 0.9659 0.9936 0.9252
4 0.835 0.9585 0.9933 1.0241 0.9519
5 0.805 1.1169 1.1 1.1422 1.1183
6 0.799 0.94 0.9658 0.997 0.9324

s \/Oltage dfter generation change (pu)

16 == == Voltage =ter load shed by GA (pu)

Voltage after load shed by hybrid method
(pu)

= = # » \/oitage after ioad shed by RNN method
{pu)

Voltage

0.8

Bus Number

Figure 6. Graph Comparison of Data of Voltage after generation change for IEEE 6 bus system
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Table 7 shows calculations of bus voltage, real
power, and load values. The results on the 6 bus
system show that the RNN algorithm is superior
to voltage stability and the lowest load shedding
value. Figure 6 shows a comparison before and
after load shedding. Generally, the proposed
method has a better average than other methods.

CONCLUSION

The performance of the proposed method
is measured and applied using 6 bus systems.
The proposed RNN method is compared to GA
and the Hybrid Method that has been done
before that is used as a combination of
backpropagations neural network and GA. Data
obtained the average error value of load
shedding using the RNN method is 1.76%. The
result is better than other methods. There is
10.55% using the hybrid method and 11.99%
using the GA method.

The average error value of the voltage
obtained using the RNN method is 0.47%. This
result is better than other methods. There are
3,609% using the hybrid method and 1,751%
using the GA method. A comparison in this study
shows that the proposed RNN has superiority at
minimum voltage deviations and load shedding.
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