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ABSTRAK

Tingkat keamanan paparan X-Ray sangat penting karena mempunyai dampak jangkapendek dan
jangka panjang yang sangat mempengaruhi kesehatan pekerja radiasi dan lingkungan sekitarnya.
Pengukuran tingkat keamanan radiasi X-Ray pada umumnya dilakukan dengan cara konvensional,
yaitu mengidentifikasi secara manual data nilai paparan radiasi bagi pekerja dan lingkungan
sekitar dari survey meter, kemudian dijumlahkan secara berkala. Namun hal ini berpotensi
menimbulkan kesalahan dalam penambahan sehingga metode menghasilkan data yang kurang
akurat. Penelitian ini bertujuan untuk mengetahui dosis paparan radiasi X-Ray menggunakan
Random Forest Classification. Data radiasi yang diolah merupakan nilai dosis pengukuran paparan
X-Ray dengan menggunakan survey meter digital (dalam pSv/h) sebanyak 160 data set dan terdiri
dari 87 dosis aman dan 73 dosis tidak aman. Data diklasifikasikan menurut aturan nilai batas dosis
International Atomic Energy Agency (IAEA). Kinerja Random Forest Classification dievaluasi
dengan Naive Bayes dan K-Nearest Neighbor (KNN). Hasil penelitian menunjukkan nilai akurasi
Random Forest Classification sebesar 90%, nilai akurasi Naive Bayes sebesar 85%, dan nilai
akurasi KNN sebesar 86%. Oleh karena itu, nilai kinerja dari Random Forest Classification
sebesar 97% diambil sebagai hasil terbaik. Sebagai rangkuman penelitian ini, Random Forest
Classification berkinerja lebih baik dibandingkan Naive Bayes dan K-Nearest Neighbor (KNN)
lainnya dalam mengidentifikasi tingkat keamanan paparan radiasi X-Ray yang terbukti secara
optimal berdasarkan parameter yang diterapkan.

Kata kunci: dosis radiasi; proteksi radiasi; detektor isian gas; identifikasi; akurasi

ABSTRACT

The safety level of X-ray exposure is very important because it has short-term and long-term
effects that significantly affect the health of radiation workers and the surrounding environment.
Measurements of the safety level of X-ray radiation are generally carried out using conventional
methods, namely manually identifying the radiation exposure value data for workers and the
surrounding environment from a survey meter, then adding up periodically. However, this could
cause errors in the addition so that the method produces less accurate data. This study aims to X-
ray radiation exposure dose using Random Forest Classification. The radiation data processed is
the dose value of X-ray exposure measures using a digital survey meter (in uSv/h) unit of as many
as 160 datasets and consists of 87 safe and 73 unsafe doses. Data are classified according to the
International Atomic Energy Agency (IAEA) dosage limit value rule. The performance of Random
Forest Classification is evaluated with Naive Bayes dan K-Nearest Neighbor (KNN). The result
shows that the Random Forest Classification accuracy value is 90%, the Naive Bayes accuracy
value is 85%, and the KNN accuracy value is 86%. Therefore, the performance value from the
Random Forest Classification of 97% is the best result. As a summary of this study, Random
Forest Classification performed better than other Naive Bayes and K-Nearest Neighbor (KNN) for
identifying the safety level of X-ray radiation exposure as proven with the optimum given the
parameters applied.

Keywords: radiation dose, radiation protection, gas fill detector; identification, accuracy
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1. PENDAHULUAN

Salah satu kegunaan radiasi pengion dalam bidang medis adalah X-Ray. X-Ray
diproduksi dalam tabung dioda vakum (katoda-anoda) yang disuplai ke sumber listrik
tegangan tinggi (dalam kV). Ketika katoda diberi tegangan tinggi, maka memicu
pembentukan elektron pada tingkat energi tertentu. Elektron tersebut melewati jalur bebas
dalam tabung vakum, melepaskan elektron, dan kemudian mengenai anoda (target).
Ketika transfer energi ini terjadi, karakteristik X-Ray terbentuk [1].

Dampak yang ditimbulkan oleh radiasi X-Ray antara lain kerusakan struktur
molekul, seperti perubahan warna, perubahan kimia, dan kerusakan DNA pada sampel
biologis. Kerusakan ini terjadi bila X-Ray yang dihasilkan mengalami serapan fotolistrik
<30 keV. Tingkat energi ini menghasilkan foton atau fotoelektron, yang mengakibatkan
proses yang dilakukan menjadi terlalu panas. Akibatnya, X-Ray berenergitinggi umumnya
lebih merusak dibandingkan X-Ray berenergi rendah [2]. Efek lain yang ditimbulkan oleh
X-Ray berenergi tinggi adalah dosis yang diterima oleh pasien (benda) dan lingkungan
sekitar [3]. Pengaruh dosis radiasi pada tubuh berbeda-beda menurut jenis dan tingkat
energi yang diserap. Dosis setara diukur dari mikrosievert (uSv) hingga milisievert(mSv)
dan digunakan untuk menentukan risiko terhadap kesehatan pasien. Nilai dosis setara di
atas 200 mSv telah terbukti meningkatkan risiko kanker jika terpapar pada jaringan lunak.
Namun, nilai tersebut masih dalam batas aman terhadap paparan tulang [4].

Nilai batas dosis untuk lingkungan yang tepat menurut Infernational Atomic
Energy Agency (IAEA) tidak lebih dari 1 puSv/h pada jarak 1 m dari sumber radiasi [5].
Ketebalan bahan pelindung mempengaruhi distribusi dosis di lingkungan sekitar sumber
X-Ray. Standar yang dianjurkan untuk pekerja adalah 10 pSv/h, sedangkan untuk
lingkungan sekitar 0,5 puSv/h. Nilai dosis ekivalen ini diperoleh dari variasi faktor
pemaparan tabung X-Ray [6]. Paparan radiasi dan dosis efektif mempunyai satuan yang
sama dengan dosis serapan. Dosis paparan radiasi atau nilai batas dosis ekuivalennya bagi
pengguna masyarakat berbeda dengan yang dianjurkan bagi pekerja radiasi. Pada
penelitian ini, nilai batas standar dosis ekuivalen untuk pengguna masyarakat pada kulit
adalah 50 mSv/tahun atau sama dengan 5,707 uSv/h [7]. Dosis pada sumber radiasi
mempengaruhi kualitas gambar yang dihasilkan, yang dikenal dengan aktivitas
pengendalian kualitas gambar. Beberapa parameter yang digunakan untuk menentukan
kualitas gambar X-Ray meliputi tingkat terpasang, keseragaman, akurasi, resolusi dan
resolusi spasial [8].

Penentuan besarnya paparan radiasi dari sumbernya dapat dilakukan secara
kuantitatif dengan menggunakan sistem deteksi [9]. Identifikasi dosis radiasi pada X-Ray
hendaknya membantu tenaga kesehatan dalam menggunakan sumber radiasi pengion
khususnya X-Ray, serta lebih memperhatikan tingkat keamanan ruang rontgen agar tidak
membahayakan lingkungan dan penggunanya. Penelitian ini juga dapat membantu
menetapkan protokol keselamatan standar untuk ruang rontgen [10]. Evaluasi paparan
dosis radiasi internal dan eksternal sangat penting mengingat dampak serius yang dialami
pekerja radiasi dan lingkungan sekitar akibat paparan radiasi X-Ray. Selain dampak
stokastik yang akan dialami manusia, dampak yang lebih serius juga akan terjadi pada
lingkungan sekitar, misalnya pada ekosistem sekitar [11]. Telah dilakukan penelitian
untuk mengevaluasi paparan radiasi internal terhadap radiasi X-Ray yang bersumber dari
CT-Scan yang meningkatkan peningkatan proses metabolisme tubuh secara signifikan
sehingga dapat menyebabkan kanker terutama pada anak-anak [12]. Penelitian mengukur
dosis radiasi X-Ray menggunakan detektor radiasi dengan menilai sumber dan efeknya
menyebutkan adanya ketidaksesuaian antara dosis serapan yang diperoleh dengan
jaringan tubuh sebagai objek (target). Hal ini disebabkan oleh ketidakakuratan dalam
proses penilaian dan hasilnya disebut kesalahan estimasi dosis [13]. Selain pemantauan
radiasi secara berkala terhadap pekerja radiasi, tingkat keakuratan hasil paparan juga
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dapat diukur menggunakan survey meter yang terkalibrasi dengan baik. Bahan yang
digunakan pada survey meter juga mempengaruhi keakuratan data yang diperoleh, namun
hal ini dapat diminimalisir dengan mengetahui data yang diperoleh dari hasil paparan
menggunakan machine learning [14].

Penelitian yang dilakukan untuk mengetahui tingkat keamanan paparan radiasi X-
Ray masih menggunakan cara konvensional yaitu secara manual dengan pemantauan
berkala menggunakan sistem dosimetri. Pengumpulan data dilakukan untuk memperoleh
hasil yang aman dan tidak aman berdasarkan analisis selanjutnya. Hal ini sangat
merepotkan, dan tingkat efektivitasnya perlu ditingkatkan [15]. Teknik lain untuk
mengidentifikasi keakuratan hasil deteksi paparan radiasi adalah dengan menggunakan
Convolutional Neural Network (CNN) yang memerlukan pengambilan gambar X-Ray
dengan resolusi yang baik. Proses ini menyulitkan operator dalam memilih data awalyaitu
klasifikasi komposisi ketajaman gambar [16].

Tabel 1. Tabel perbandingan teknik identifikasi data dosis radiasi

Kumpulan Data REF Teknik Identifikasi Membatasi
[6] Nilai dosis  Simulasi Monte Carlo - Alat ukur yang mahal
radiasi - Perlu beberapa metode

lanjutan untuk mendapatkan
hasil akhir (analisis data)

[14] Nilai dosis - . - Membatasi kegunaan database
radiasi Secara manual, nilai dO.SIS secara  keseluruhan  masa
paparan harian )
dikumpulkan menggunakan hidup.
TLD kemudian dirata- - Perlu lebih banyak
ratakan setiap tahunnya penyimpanan
menggunakan  Landauer - Radiasi hamburan tinggi
Database
[15] Gambar X-Ray Perhitungan Dosis PCXMC - Pekerja tetap diperbolehkan
Fitur fusi mendapatkan dosis berlebih
- Perlu modalitas tinggi untuk
menginstal perangkat lunak
[16] Gambar HOG - Perlu modalitas tinggi untuk
rontgen dada CNN menginstal perangkat lunak

- Perlu beberapa metode
lanjutan sebelum gambar X-
Ray dapat diidentifikasi

Penelitian ini bertujuan untuk mengidentifikasi data dosis paparan radiasi X-Ray
menggunakan Random Forest Classification, yang dibandingkan dengan Naive Bayes dan
K Nearest Neighbor (KNN) untuk keakuratan data. Dengan cara ini akan diperoleh
identifikasi tingkat keamanan radiasi yang paling akurat. Penelitian ini bertujuan untuk
membangun sistem identifikasi data dosis paparan radiasi X-Ray dengan akurasi tinggi.
Jadi, meningkatkan kinerja dan akurasi dari data pengukuran paparan radiasi X-Ray
dalam kalibrasi atau Quality Assurance (QA).

Tabel 1 menunjukkan bahwa sebagian besar dari mereka mempunyai teknik
identifikasi yang perlu lebih banyak dan tingkat akurasinya rendah. Oleh karena itu
diperlukan suatu sistem untuk mengidentifikasi data tersebut agar hasil paparan radiasi X-
Ray lebih akurat dan efektif. Penelitian ini membangun sistem untuk mengidentifikasi
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tingkat keamanan klasifikasi dosis radiasi X-Ray menggunakan Random Forests. Hal ini
diberikan agar efektif dan mendapatkan akurasi yang tinggi. Proses klasifikasi pelaporan
data dosis radiasi X-Ray bisa lebih efisien karena tidak lagi digunakan secara manual.
Keakuratan data diperoleh dengan melakukan pemeriksaan menggunakan radiasi pengion
untuk meminimalkan dampak buruk jangka panjang. Pemilihan faktor paparan dapat
dilakukan secara optimal sehingga dosis paparan radiasi yang diterima pekerja radiasi dan
lingkungan sekitar mudah dikendalikan seminimal mungkin.

2. METODE

Data yang digunakan dalam penelitian ini diperoleh dari pengujian dosis radiasi X-
Ray berdasarkan parameter potensial tabung (kV), arus tabung (mA), dan waktu
pemaparan (s) sumber X-Ray dalam satuan Sv/h menggunakan meteran survei digital.
Dengan mengetahui nilai kuantitatif pada dosis ekuivalen maka tingkat keamanan hasil
paparan radiasi dari aktivitas. Cara ini dapat membantu pekerja radiasi, lingkungan
sekitar sumber radiasi, dalam melaksanakan kegiatan proteksi radiasi. Oleh karena itu,
data yang akurat diperoleh dengan melakukan pemeriksaan menggunakan radiasi pengion
untuk meminimalkan efek buruk jangka panjang. Selain itu diperoleh parameter
penentuan potensial tabung optimal (kV), arus tabung (mA), dan waktu pemaparan (s).
sumber X-Ray tertentu juga akan diketahui. Proses identifikasi data dosis radiasi
ditunjukkan pada Gambar 1.

Metode yang digunakan untuk mengidentifikasi dosis paparan radiasi pada sumber
X-Ray terdiri dari pembuatan sistem pendeteksi radiasi X-Ray dan melakukan pemaparan
oleh sumber X-Ray dengan berbagai parameter tegangan dan arus sumber.

Variasi tersebut bertujuan untuk menentukan tingkat perlindungan yang harus
dimiliki masyarakat di sekitar sumber X-Ray. Parameter ini ditetapkan untuk mengetahui
tingkat perlindungan yang harus dimiliki orang-orang di sekitar sumber X-Ray agar
diperoleh parameter yang paling optimal [17]. Setelah data dari variasi faktor paparan
dikumpulkan, pencarian titik aman dan tidak aman pun dilakukan. Nilai batas dosis
ekuivalen diperoleh dari banyaknya dosis yang diserap oleh organ di sekitarnya dengan
menggunakan alat detektor [18]. Identifikasi dosis radiasi X-Ray dapat dilakukan dengan
menggunakan berbagai metode kecerdasan buatan. Data dosis radiasi yang diperoleh
melalui sistem (dalam pSv/h) kemudian dipisahkan menjadi dua bagian yaitu aman dan
tidak aman.

Selain hanya menggunakan satu metode, perbandingan juga dapat dilakukan
dengan menggunakan beberapa metode untuk mendapatkan akurasi yang tinggi. Pada
penelitian ini dilakukan perbandingan terhadap tiga hasil pencarian untuk mendapatkan
tingkat akurasi yang berbeda.
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Gambar 1. Proses identifikasi dosis radiasi
3. HASIL DAN PEMBAHASAN

3.1. Faktor Paparan

Dosis radiasi yang terpapar pada pekerja harus dijaga serendah mungkin
(ALARA), dan salah satu cara untuk memastikannya adalah dengan memberikan
parameter faktor paparan yang optimal. Pada X-Ray bergerak, dosis yang diperoleh jauh
lebih tinggi karena penggunaan parameter arus tabung yang tinggi dan jarak pemeriksaan
yang pendek.

Pada penelitian sebelumnya, dosis paparan radiasi dipengaruhi oleh arus tabung
dan jarak paparan dari sumber [19]. Pemberian waktu paparan yang lama juga
mempengaruhi dosis paparan radiasi yang diterima pekerja dan lingkungan sekitar.
Semakin lama waktu pemaparan maka semakin tinggi pula dosis yang diterima [20], [21].

Faktor paparan yang digunakan pada penelitian ini adalah variasi potensial tabung
X-Ray 50 kV, 60 kV, 70 kV dan 80 kV. Untuk setiap variasi potensial tabung juga
diberikan variasi arus tabung sebesar 16 mA, 32 mA, 63 mA dan 100 mA serta waktu
pemaparan yang berbeda sebesar 0,1 s; 0,16 detik; 0,2 detik; 0,32 detik; 0,4 detik; 0,5
detik; 0,63 detik; 0,8 detik; 1,0 detik dan 2,0 detik disetel. Variasi parameter yang
digunakan disesuaikan dengan spesifikasi mobile X-Ray (MEDNIF tipe SF-100BY)
dengan jarak ke sumber X-Ray 50 meter. Secara matematis hubungan antara faktor
paparan dengan dosis paparan radiasi yang diterima diberikan oleh Persamaan (1) [21],
[22]:

P mAs (kv)?

D(mR) = =
(1)

Keterangan:
D : Dosis paparan dalam mR
P : Faktor mesin X-Ray (P = 15)
mA : arus tabung
kv : potensial tabung
R : jarak dari sumber (dalam cm)

konversi dosis paparan dari mR ke pSv adalah 1 mR sama dengan 87 pSv.
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3.2. Proses Identifikasi

Dalam penelitian ini menggunakan validasi silang dengan lipatan = 5. Validasi
silang merupakan prosedur yang paling banyak digunakan untuk melakukan evaluasi
kinerja prediktif dari suatu model. Validasi silang dapat memperkirakan hingga
generalisasi dalam suatu metode pemodelan [23]. Jumlah semua data akan terpisah
menjadi lima bagian yang sama.

Pelajaran ini menggunakan 160 data set dari data dosis paparan radiasi X-Ray,
sehingga masing-masing bagian terdiri dari 32 data secara acak. Jika bagian kelima
adalah A, B, C, D, dan E, maka pengujian data dilakukan sesuai Tabel 2 [24]. Pada Tabel
2 terdapat 5 langkah validasi silang data. Langkahnya sebagai berikut:

Split 1: pelatihan menggunakan A, B, C, D dan pengujian menggunakan E, diperoleh
ketelitian = a

Split 2: pelatihan menggunakan A, B, C, E dan pengujian menggunakan D, diperoleh
ketelitian =b

Split 3: pelatihan menggunakan A, B, D, E dan pengujian menggunakan C, diperoleh
ketelitian = c

Split 4: pelatihan menggunakan A, C, D, E dan pengujian menggunakan B, diperoleh
ketelitian = d

Split 5: pelatihan menggunakan B, C, D, E dan pengujian menggunakan A, diperoleh
ketelitian = e

Jadi rata-rata keakuratan data dapat dilihat pada Persamaan (2) [25]:

a+b+c+d+e
¢ )
Data hasil pemodelan menggunakan cross validation kemudian dilakukan
identifikasi menggunakan Random Forest Classification, Naive Bayes, dan KNN. Metode

Random Forest Classification digunakan untuk membangun pohon keputusan dengan
mengambil data secara acak [26].

Tabel 2. Proses data validasi silang

A B C D E
Pisahkan 1 32 data 32 data 32 data 32 data 32 data
Pisahkan 2 32 data 32 data 32 data 32 data 32 data
Pisahkan 3 32 data 32 data 32 data 32 data 32 data
Pisahkan 4 32 data 32 data 32 data 32 data 32 data
Pisahkan 5 32 data 32 data 32 data 32 data 32 data

Dengan menggunakan beberapa variasi parameter faktor paparan, diperoleh 160
data dengan 87 milik. Data dosis aman (nilai ¥ 5,707 uSv/h) dan sisanya 73 data dosis
tidak aman (nilai § 5,707 pSv/h). Data tersebut kemudian diidentifikasi menggunakan
metode Random Forest Classification. Data dipisahkan menjadi dua kategori: data uji dan
data pelatihan. Total 160 data set dibagi menjadi 75% data pengujian dan 25% data
pelatihan (masing-masing 120 dan 40 sampel). Proses ini menghasilkan kumpulan sampel
pelatihan. Himpunan ini kemudian diuji menggunakan data pengujian acak dalam sebuah
matriks. Hal ini, pada gilirannya, menghasilkan data pengujian yang dikenal sebagai
pohon Kklasifikasi. Pada penelitian ini terdapat 100 pohon pengklasifikasi yang
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menghasilkan nilai Random Forest. Penjumlahan beberapa pohon klasifikasi memberikan
nilai akurasi, sensitivitas (TPR), spesifisitas (TNR) dan False Positive Rate (FPR) [27].

Proses klasifikasi di Random Forest dimulai dengan membagi 160 data sampel (87
data aman dan 73 data tidak aman) menjadi 1000 sampel acak. Dari setiap sampel acak
diperoleh 1000 pohon keputusan dan kemudian diperoleh 1000 data prediksi. Setelah data
prediksi terbentuk kemudian dilakukan pemungutan suara prediksi ke setiap kelas.
Selanjutnya, gabungkan hasil suara dari setiap kelas dan dapatkan suara mayoritas untuk
semua. Pemungutan suara mayoritas adalah yang terbanyak hasil prediksi. Proses
klasifikasi data Random Forest pada penelitian ini, dapat ditunjukkan pada Gambar 2.

160 data of X-Ray
radiation doses
I

* . * Rand 1
Random sample data|| Random sample 2 an (;l;)lozamp a
v v v v
Decision Tree 1 Decision Tree 2 Decision 1000
v v v v
Prediction | Predicition 2 Predicition 1000
T T T T
v

Majority Voting

Result of Random
Forest

Gambar 2. Proses klasifikasi data random forest

Beberapa istilah yang digunakan dalam pengujian hasil data dosis paparan radiasi
antara lain True Positive (TP), True Negative (TN), False Positive (FP) dan False
Negative (FN). Istilah ini digunakan dalam akurasi, sensitivitas (TPR), spesifisitas (TNR)
dan angka positif palsu (FPR). TP merupakan kondisi aktual (aktual) dan hasil prediksi
untuk mengidentifikasi dosis paparan radiasi yang “aman”. TN diperoleh kondisi aktual
(aktual) dan hasil prediksi untuk mengidentifikasi dosis paparan radiasi yang “tidak
aman”. FP diperoleh jika kondisi “tidak aman” namun hasil deteksi “aman”, sedangkan
nilai FN diperoleh bila kondisi aktual (aktual) “aman” namun diketahui hasil (prediksi)
“tidak aman” [19], [21], [28]. Akurasi diperoleh dengan menggunakan Persamaan (3)
[29]:

TP+TN

Accuracy = —— 0,0 < Accuracy < 1,0
TP4+TN+FP+FN E

3)
Selain itu, pengujian juga digunakan untuk menentukan sensitivitas, yaitu matriks

standar untuk mengidentifikasi jumlah data dosis radiasi dalam kumpulan data yang tidak
seimbang. Sensitivitas dihitung menggunakan Persamaan (4) [30]:

Sensitivity = TR
“4)

Validitas data yang diidentifikasi dapat ditentukan dengan menggunakan
spesifisitas (TNR) seperti yang diberikan pada Persamaan (5). Kekhususan mengacu pada
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kuantifikasi kemampuan metode dalam mengklasifikasikan data dengan benar sehingga
memungkinkan memperoleh hasil yang sesuai [31].

TN
TN+FP

Spesificity =
)

Fall out atau false positive rate dapat ditentukan dengan menggunakan rasio FP
dibagi jumlah FP dan TN, seperti yang diberikan pada Persamaan (6) [32]:

FP
FP+TN

False Positive Rate =
(6)

Dan kemudian menentukan hasil Confusion Matrix. Gambar 3 merupakan
Confusion Matrix secara umum berdasarkan pengelompokan data dosis paparan radiasi
X-Ray yang aman dan tidak aman. Confusion Matrix berfungsi untuk memetakan
pengelompokan antara data aktual dan data prediksi [33]. Berdasarkan hasil Confusion
Matrix diperoleh kurva Receiver Operation Characteristic (ROC).

Actual
Safe Unsafe
‘fﬁ True
»2 | Positive

Prediction

L
s True
5 Negative

Gambar 3. Confusion matrix secara umum

3.3. Analisis Kinerja

Setelah mendapatkan data dari Confusion Matrix, buatlah kurva karakteristik
operasi penerima (ROC). Hubungan antara skor tingkat FP dan tingkat TP mewakili
kurva ini. Validasi hasil pengukuran menggunakan kurva ROC dan Confusion Matrix
untuk mendapatkan skor tertinggi. Kurva ROC menggambarkan kinerja klasifikasi tanpa
distribusi kelas atau kesalahan [34]. Daerah di bawah kurva disebut Area Under Curve
(AUC) berdasarkan bentuk kurvanya.

Under field memiliki skor antara 0% dan 100%. Namun yang menarik untuk
dihitung adalah skornya di atas 50%. Area bagian bawahnya tinggi, sehingga akan

membaik [35]. Interpretasi nilai Area Under Receiver Operating Characteristic (AUC)
adalah diberikan pada Tabel 3 [36].
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Rentang AUC
>50,0 % - 60,0 % Sangat lemah
>60,0 % - 70,0 % Lemah
>70,0 % - 80,0 % Adil
>80,0 % - 90,0 % Bagus

>90,0 % - 100,0 %

Sangat bagus

Classification Classification
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Gambar 4. Kurva ROC dari ketiga metode

Hasil Confusion Matrix data dosis paparan radiasi X-Ray menggunakan Random
Forest Classification dapat dilihat pada Gambar 4 (a). Berdasarkan keseluruhan data
berjumlah 160 data, 87 data dosis aman dan 73 data dosis tidak aman. Setelah dilakukan
perhitungan data, berdasarkan Confusion Matrix 2x2 diperoleh TP sebanyak 79 data, FN
sebanyak 8 data, FP sebanyak 7 data, dan TN sebanyak 66 data.

Hasil Confusion Matrix data dosis paparan radiasi X-Ray menggunakan Naive
Bayes dapat ditunjukkan pada Gambar 4 (b). Berdasarkan keseluruhan data berjumlah
160 data, 87 data dosis aman dan 73 data dosis tidak aman. Setelah dilakukan perhitungan
data, berdasarkan Confusion Matrix 2x2 diperoleh TP sebanyak 84 data, FN sebanyak 3
data, FP sebanyak 21 data, dan TN sebanyak 52 data.

Hasil Confusion Matrix data dosis paparan radiasi X-Ray menggunakan KNN
dapat ditampilkan pada 160 data, 87 data dosis aman dan 73 data dosis tidak aman.
Setelah dilakukan perhitungan data, berdasarkan Confusion Matrix 2x2 diperoleh TP
sebanyak 81 data, FN sebanyak 6 data, FP sebanyak 16 data, dan TN sebanyak 57 data.
Hasil dari Random Forest Classification telah dibandingkan dengan Naive Bayes dan
KNN. Tabel 3 merupakan hasil perbandingan dari ketiga metode.

ROC Curve
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Gambar 5. Kurva hubungan antara FP rate dan TP rate
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3.4. Hasil Analisis Kinerja

Hubungan nilai sensitivitas dan spesifisitas yang diperoleh kurva ROC
menghasilkan nilai AUC. Gambar 5 merupakan kurva ROC, FP rate merupakan nilai
spesifisitas dan TP rate merupakan nilai sensitivitas. Itu menunjukkan kinerja metode
yang digunakan. Analisis kinerja suatu metode machine learning dikatakan lebih baik
jika nilai AUC mendekati 100% [28], [39].

Berdasarkan kurva ROC pada Gambar 5, pada titik False Positive Rate yang sama,
kurva Random Forest berada pada titik True Positive Rate yang paling tinggi
dibandingkan dengan kurva Naive Bayes dan KNN. Dengan demikian, metode Random
Forest dapat bekerja lebih baik dalam mengklasifikasikan fitur. Hasil tersebut juga
diperkuat dengan menghitung nilai akurasi menggunakan Persamaan 3.

Dengan hasil akurasi tertinggi adalah metode random forest dan dapat dilihat pada
Tabel 4

Tabel 4. Proses data validasi silang

Teknik Sensitivitas Spesifisitas Analisis Akurasi Tingkat
Identifikasi Kinerja Positif Palsu
Klasifikasi 91% 90% 9% 90% 97%
Random

Forest

Bayes Naif 93% 78% 22% 86% 85%

KNN 96% 71% 29% 85% 94%

Tabel 4 menunjukkan bahwa metode yang diusulkan memiliki kinerja lebih baik
dalam mengidentifikasi kondisi aman dan tidak aman. Metode yang diusulkan mencapai
klasifikasi tertinggi dalam spesifisitas, akurasi dan analisis kinerja dibandingkan metode
lain dalam kondisi dan data yang sama. Selain itu, metode yang diusulkan juga memiliki
tingkat positif palsu yang lebih rendah, yang menunjukkan bahwa metode yang diusulkan
memiliki kemungkinan lebih rendah dalam mengidentifikasi kasus negatif sebagai kasus
positif dalam data. Berdasarkan hasil tersebut, metode Random Forest Classification
dapat bekerja lebih baik dalam mengidentifikasi paparan radiasi X-Ray dibandingkan
metode lainnya. Namun, metode yang diusulkan memiliki klasifikasi terendah dalam
mengidentifikasi kasus positif dengan benar dibandingkan metode lainnya

4. KESIMPULAN

Mengukur tingkat paparan radiasi X-Ray sangatlah penting. Radiasi X-Ray dapat
merusak struktur molekul. Oleh karena itu, pengukuran tingkat paparan radiasi X-Ray
diperlukan untuk mencegah paparan berlebih pada tubuh manusia. Klasifikasi hutan
secara acak diusulkan untuk mengukur dan menentukan tingkat keterpaparan dalam
penelitian ini. Hasilnya menunjukkan bahwa metode yang diusulkan memiliki kinerja
lebih baik dibandingkan metode lainnya, dengan spesifisitas 90%, akurasi 90%, dan
analisis kinerja 97%. Selain itu, hasil yang diusulkan memiliki tingkat positif palsu yang
lebih rendah yaitu sebesar 9%, yang menunjukkan kemungkinan lebih rendah untuk
mengidentifikasi kasus negatif sebagai kasus positif dalam data. Di masa depan, kami
menyarankan untuk menambah jumlah kumpulan data dan mengembangkan metode
klasifikasi untuk meningkatkan kinerja.
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