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ABSTRAK 
 

Tingkat keamanan paparan X-Ray sangat penting karena mempunyai dampak jangka pendek dan 

jangka panjang yang sangat mempengaruhi kesehatan pekerja radiasi dan lingkungan sekitarnya. 

Pengukuran tingkat keamanan radiasi X-Ray pada umumnya dilakukan dengan cara konvensional, 

yaitu mengidentifikasi secara manual data nilai paparan radiasi bagi pekerja dan lingkungan 

sekitar dari survey meter, kemudian dijumlahkan secara berkala. Namun hal ini berpotensi 

menimbulkan kesalahan dalam penambahan sehingga metode menghasilkan data yang kurang 

akurat. Penelitian ini bertujuan untuk mengetahui dosis paparan radiasi X-Ray menggunakan 
Random Forest Classification. Data radiasi yang diolah merupakan nilai dosis pengukuran paparan 

X-Ray dengan menggunakan survey meter digital (dalam µSv/h) sebanyak 160 data set dan terdiri 

dari 87 dosis aman dan 73 dosis tidak aman. Data diklasifikasikan menurut aturan nilai batas dosis 

International Atomic Energy Agency (IAEA). Kinerja Random Forest Classification dievaluasi 

dengan Naïve Bayes dan K-Nearest Neighbor (KNN). Hasil penelitian menunjukkan nilai akurasi 

Random Forest Classification sebesar 90%, nilai akurasi Naïve Bayes sebesar 85%, dan nilai 

akurasi KNN sebesar 86%. Oleh karena itu, nilai kinerja dari Random Forest Classification 

sebesar 97% diambil sebagai hasil terbaik. Sebagai rangkuman penelitian ini, Random Forest 

Classification berkinerja lebih baik dibandingkan Naïve Bayes dan K-Nearest Neighbor (KNN) 

lainnya dalam mengidentifikasi tingkat keamanan paparan radiasi X-Ray yang terbukti secara 
optimal berdasarkan parameter yang diterapkan. 

 

Kata kunci: dosis radiasi; proteksi radiasi; detektor isian gas; identifikasi; akurasi  

 

ABSTRACT 
 

The safety level of X-ray exposure is very important because it has short-term and long-term 

effects that significantly affect the health of radiation workers and the surrounding environment. 
Measurements of the safety level of X-ray radiation are generally carried out using conventional 

methods, namely manually identifying the radiation exposure value data for workers and the 

surrounding environment from a survey meter, then adding up periodically. However, this could 

cause errors in the addition so that the method produces less accurate data. This study aims to X-

ray radiation exposure dose using Random Forest Classification. The radiation data processed is 

the dose value of X-ray exposure measures using a digital survey meter (in µSv/h) unit of as many 

as 160 datasets and consists of 87 safe and 73 unsafe doses. Data are classified according to the 

International Atomic Energy Agency (IAEA) dosage limit value rule. The performance of Random 

Forest Classification is evaluated with Naïve Bayes dan K-Nearest Neighbor (KNN). The result 

shows that the Random Forest Classification accuracy value is 90%, the Naïve Bayes accuracy 

value is 85%, and the KNN accuracy value is 86%. Therefore, the performance value from the 

Random Forest Classification of 97% is the best result. As a summary of this study, Random 
Forest Classification performed better than other Naïve Bayes and K-Nearest Neighbor (KNN) for 

identifying the safety level of X-ray radiation exposure as proven with the optimum given the 

parameters applied.   

 

Keywords: radiation dose; radiation protection; gas fill detector; identification; accuracy 
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1. PENDAHULUAN  

Salah satu kegunaan radiasi pengion dalam bidang medis adalah X-Ray. X-Ray 

diproduksi dalam tabung dioda vakum (katoda-anoda) yang disuplai ke sumber listrik 
tegangan tinggi (dalam kV). Ketika katoda diberi tegangan tinggi, maka memicu 

pembentukan elektron pada tingkat energi tertentu. Elektron tersebut melewati jalur bebas 

dalam tabung vakum, melepaskan elektron, dan kemudian mengenai anoda (target). 

Ketika transfer energi ini terjadi, karakteristik X-Ray terbentuk [1]. 

Dampak yang ditimbulkan oleh radiasi X-Ray antara lain kerusakan struktur 
molekul, seperti perubahan warna, perubahan kimia, dan kerusakan DNA pada sampel 

biologis. Kerusakan ini terjadi bila X-Ray yang dihasilkan mengalami serapan fotolistrik 

<30 keV. Tingkat energi ini menghasilkan foton atau fotoelektron, yang mengakibatkan 
proses yang dilakukan menjadi terlalu panas. Akibatnya, X-Ray berenergi tinggi umumnya 

lebih merusak dibandingkan X-Ray berenergi rendah [2]. Efek lain yang ditimbulkan oleh 

X-Ray berenergi tinggi adalah dosis yang diterima oleh pasien (benda) dan lingkungan 

sekitar [3]. Pengaruh dosis radiasi pada tubuh berbeda-beda menurut jenis dan tingkat 
energi yang diserap. Dosis setara diukur dari mikrosievert (µSv) hingga milisievert (mSv) 

dan digunakan untuk menentukan risiko terhadap kesehatan pasien. Nilai dosis setara di 

atas 200 mSv telah terbukti meningkatkan risiko kanker jika terpapar pada jaringan lunak. 

Namun, nilai tersebut masih dalam batas aman terhadap paparan tulang [4]. 

Nilai batas dosis untuk lingkungan yang tepat menurut International Atomic 
Energy Agency (IAEA) tidak lebih dari 1 µSv/h pada jarak 1 m dari sumber radiasi [5]. 

Ketebalan bahan pelindung mempengaruhi distribusi dosis di lingkungan sekitar sumber 

X-Ray. Standar yang dianjurkan untuk pekerja adalah 10 µSv/h, sedangkan untuk 
lingkungan sekitar 0,5 µSv/h. Nilai dosis ekivalen ini diperoleh dari variasi faktor 

pemaparan tabung X-Ray [6]. Paparan radiasi dan dosis efektif mempunyai satuan yang 

sama dengan dosis serapan. Dosis paparan radiasi atau nilai batas dosis ekuivalennya bagi 

pengguna masyarakat berbeda dengan yang dianjurkan bagi pekerja radiasi. Pada 
penelitian ini, nilai batas standar dosis ekuivalen untuk pengguna masyarakat pada kulit 

adalah 50 mSv/tahun atau sama dengan 5,707 µSv/h [7]. Dosis pada sumber radiasi 

mempengaruhi kualitas gambar yang dihasilkan, yang dikenal dengan aktivitas 
pengendalian kualitas gambar. Beberapa parameter yang digunakan untuk menentukan 

kualitas gambar X-Ray meliputi tingkat terpasang, keseragaman, akurasi, resolusi dan 

resolusi spasial [8]. 

Penentuan besarnya paparan radiasi dari sumbernya dapat dilakukan secara 

kuantitatif dengan menggunakan sistem deteksi [9]. Identifikasi dosis radiasi pada X-Ray 
hendaknya membantu tenaga kesehatan dalam menggunakan sumber radiasi pengion 

khususnya X-Ray, serta lebih memperhatikan tingkat keamanan ruang rontgen agar tidak 

membahayakan lingkungan dan penggunanya. Penelitian ini juga dapat membantu 
menetapkan protokol keselamatan standar untuk ruang rontgen [10]. Evaluasi paparan 

dosis radiasi internal dan eksternal sangat penting mengingat dampak serius yang dialami 

pekerja radiasi dan lingkungan sekitar akibat paparan radiasi X-Ray. Selain dampak 

stokastik yang akan dialami manusia, dampak yang lebih serius juga akan terjadi pada 
lingkungan sekitar, misalnya pada ekosistem sekitar [11]. Telah dilakukan penelitian 

untuk mengevaluasi paparan radiasi internal terhadap radiasi X-Ray yang bersumber dari 

CT-Scan yang meningkatkan peningkatan proses metabolisme tubuh secara signifikan 
sehingga dapat menyebabkan kanker terutama pada anak-anak [12]. Penelitian mengukur 

dosis radiasi X-Ray menggunakan detektor radiasi dengan menilai sumber dan efeknya 

menyebutkan adanya ketidaksesuaian antara dosis serapan yang diperoleh dengan 
jaringan tubuh sebagai objek (target). Hal ini disebabkan oleh ketidakakuratan dalam 

proses penilaian dan hasilnya disebut kesalahan estimasi dosis [13]. Selain pemantauan 

radiasi secara berkala terhadap pekerja radiasi, tingkat keakuratan hasil paparan juga 
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dapat diukur menggunakan survey meter yang terkalibrasi dengan baik. Bahan yang 

digunakan pada survey meter juga mempengaruhi keakuratan data yang diperoleh, namun 
hal ini dapat diminimalisir dengan mengetahui data yang diperoleh dari hasil paparan 

menggunakan machine learning         [14]. 

Penelitian yang dilakukan untuk mengetahui tingkat keamanan paparan radiasi X-

Ray masih menggunakan cara konvensional yaitu secara manual dengan pemantauan 

berkala menggunakan sistem dosimetri. Pengumpulan data dilakukan untuk memperoleh 

hasil yang aman dan tidak aman berdasarkan analisis selanjutnya. Hal ini sangat 
merepotkan, dan tingkat efektivitasnya perlu ditingkatkan [15]. Teknik lain untuk 

mengidentifikasi keakuratan hasil deteksi paparan radiasi adalah dengan menggunakan 

Convolutional Neural Network (CNN) yang memerlukan pengambilan gambar X-Ray 
dengan resolusi yang baik. Proses ini menyulitkan operator dalam memilih data awal yaitu 

klasifikasi komposisi ketajaman gambar [16]. 

Tabel 1. Tabel perbandingan teknik identifikasi data dosis radiasi 

Kumpulan Data REF Teknik Identifikasi Membatasi 

[6] Nilai dosis 

radiasi 

Simulasi Monte Carlo 

 

- Alat ukur yang mahal 

- Perlu beberapa metode 

lanjutan untuk mendapatkan 

hasil akhir (analisis data) 

[14] Nilai dosis 

radiasi 
Secara manual, nilai dosis 

paparan harian 

dikumpulkan menggunakan 

TLD kemudian dirata-

ratakan setiap tahunnya 

menggunakan Landauer 

Database 

 

- Membatasi kegunaan database 

secara keseluruhan masa 

hidup. 

- Perlu lebih banyak 

penyimpanan 

- Radiasi hamburan tinggi 

[15] Gambar X-Ray Perhitungan Dosis PCXMC 

Fitur fusi 

 

- Pekerja tetap diperbolehkan 

mendapatkan dosis berlebih 

- Perlu modalitas tinggi untuk 

menginstal perangkat lunak 

[16] Gambar 

rontgen dada 

HOG 

CNN 

- Perlu modalitas tinggi untuk 

menginstal perangkat lunak 

- Perlu beberapa metode 

lanjutan sebelum gambar X-

Ray dapat diidentifikasi 

Penelitian ini bertujuan untuk mengidentifikasi data dosis paparan radiasi X-Ray 

menggunakan Random Forest Classification, yang dibandingkan dengan Naïve Bayes dan 

K Nearest Neighbor (KNN) untuk keakuratan data. Dengan cara ini akan diperoleh 

identifikasi tingkat keamanan radiasi yang paling akurat. Penelitian ini bertujuan untuk 
membangun sistem identifikasi data dosis paparan radiasi X-Ray dengan akurasi tinggi. 

Jadi, meningkatkan kinerja dan akurasi dari data pengukuran paparan radiasi X-Ray 

dalam kalibrasi atau Quality Assurance (QA).  

Tabel 1 menunjukkan bahwa sebagian besar dari mereka mempunyai teknik 

identifikasi yang perlu lebih banyak dan tingkat akurasinya rendah. Oleh karena itu 
diperlukan suatu sistem untuk mengidentifikasi data tersebut agar hasil paparan radiasi X-

Ray lebih akurat dan efektif. Penelitian ini membangun sistem untuk mengidentifikasi 
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tingkat keamanan klasifikasi dosis radiasi X-Ray menggunakan Random Forests. Hal ini 

diberikan agar efektif dan mendapatkan akurasi yang tinggi. Proses klasifikasi pelaporan 
data dosis radiasi X-Ray bisa lebih efisien karena tidak lagi digunakan secara manual. 

Keakuratan data diperoleh dengan melakukan pemeriksaan menggunakan radiasi pengion 

untuk meminimalkan dampak buruk jangka panjang. Pemilihan faktor paparan dapat 

dilakukan secara optimal sehingga dosis paparan radiasi yang diterima pekerja radiasi dan 
lingkungan sekitar mudah dikendalikan seminimal mungkin.  

2. METODE 

Data yang digunakan dalam penelitian ini diperoleh dari pengujian dosis radiasi X-

Ray berdasarkan parameter potensial tabung (kV), arus tabung (mA), dan waktu 
pemaparan (s) sumber X-Ray dalam satuan Sv/h menggunakan meteran survei digital. 

Dengan mengetahui nilai kuantitatif pada dosis ekuivalen maka tingkat keamanan hasil 

paparan radiasi dari aktivitas. Cara ini dapat membantu pekerja radiasi, lingkungan 
sekitar sumber radiasi, dalam melaksanakan kegiatan proteksi radiasi. Oleh karena itu, 

data yang akurat diperoleh dengan melakukan pemeriksaan menggunakan radiasi pengion 

untuk meminimalkan efek buruk jangka panjang. Selain itu diperoleh parameter 
penentuan potensial tabung optimal (kV), arus tabung (mA), dan waktu pemaparan (s). 

sumber X-Ray tertentu juga akan diketahui. Proses identifikasi data dosis radiasi 

ditunjukkan pada Gambar 1. 

Metode yang digunakan untuk mengidentifikasi dosis paparan radiasi pada sumber 

X-Ray terdiri dari pembuatan sistem pendeteksi radiasi X-Ray dan melakukan pemaparan 

oleh sumber X-Ray dengan berbagai parameter tegangan dan arus sumber. 

Variasi tersebut bertujuan untuk menentukan tingkat perlindungan yang harus 
dimiliki masyarakat di sekitar sumber X-Ray. Parameter ini ditetapkan untuk mengetahui 

tingkat perlindungan yang harus dimiliki orang-orang di sekitar sumber X-Ray agar 

diperoleh parameter yang paling optimal [17]. Setelah data dari variasi faktor paparan 

dikumpulkan, pencarian titik aman dan tidak aman pun dilakukan. Nilai batas dosis 
ekuivalen diperoleh dari banyaknya dosis yang diserap oleh organ di sekitarnya dengan 

menggunakan alat detektor [18]. Identifikasi dosis radiasi X-Ray dapat dilakukan dengan 

menggunakan berbagai metode kecerdasan buatan. Data dosis radiasi yang diperoleh 
melalui sistem (dalam µSv/h) kemudian dipisahkan menjadi dua bagian yaitu aman dan 

tidak aman. 

Selain hanya menggunakan satu metode, perbandingan juga dapat dilakukan 

dengan menggunakan beberapa metode untuk mendapatkan akurasi yang tinggi. Pada 

penelitian ini dilakukan perbandingan terhadap tiga hasil pencarian untuk mendapatkan 
tingkat akurasi yang berbeda. 
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Gambar 1. Proses identifikasi dosis radiasi 

3. HASIL DAN PEMBAHASAN 

3.1. Faktor Paparan 

Dosis radiasi yang terpapar pada pekerja harus dijaga serendah mungkin 

(ALARA), dan salah satu cara untuk memastikannya adalah dengan memberikan 
parameter faktor paparan yang optimal. Pada X-Ray bergerak, dosis yang diperoleh jauh 

lebih tinggi karena penggunaan parameter arus tabung yang tinggi dan jarak pemeriksaan 

yang pendek. 

Pada penelitian sebelumnya, dosis paparan radiasi dipengaruhi oleh arus tabung 

dan jarak paparan dari sumber [19]. Pemberian waktu paparan yang lama juga 
mempengaruhi dosis paparan radiasi yang diterima pekerja dan lingkungan sekitar. 

Semakin lama waktu pemaparan maka semakin tinggi pula dosis yang diterima [20], [21]. 

Faktor paparan yang digunakan pada penelitian ini adalah variasi potensial tabung 

X-Ray 50 kV, 60 kV, 70 kV dan 80 kV. Untuk setiap variasi potensial tabung juga 

diberikan variasi arus tabung sebesar 16 mA, 32 mA, 63 mA dan 100 mA serta waktu 
pemaparan yang berbeda sebesar 0,1 s; 0,16 detik; 0,2 detik; 0,32 detik; 0,4 detik; 0,5 

detik; 0,63 detik; 0,8 detik; 1,0 detik dan 2,0 detik disetel. Variasi parameter yang 

digunakan disesuaikan dengan spesifikasi mobile X-Ray (MEDNIF tipe SF-100BY) 
dengan jarak ke sumber X-Ray 50 meter. Secara matematis hubungan antara faktor 

paparan dengan dosis paparan radiasi yang diterima diberikan oleh Persamaan (1) [21], 

[22]: 

                                                       (1) 

Keterangan: 

D : Dosis paparan dalam mR 
P : Faktor mesin X-Ray (P = 15) 

mA : arus tabung 

kV : potensial tabung 
R : jarak dari sumber (dalam cm) 

konversi dosis paparan dari mR ke µSv adalah 1 mR sama dengan 87 µSv. 

Sistem deteksi paparan 

sinar-X (dosis radiasi

Faktor paparan sumber 

radiasi sinar X

Data dosis sinar X

Memisahkan

Klasifikasi data dosis 

radiasi

Parameter 

aman

Parameter tidak 

aman
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3.2. Proses Identifikasi 

Dalam penelitian ini menggunakan validasi silang dengan lipatan = 5. Validasi 

silang merupakan prosedur yang paling banyak digunakan untuk melakukan evaluasi 
kinerja prediktif dari suatu model. Validasi silang dapat memperkirakan hingga 

generalisasi dalam suatu metode pemodelan [23]. Jumlah semua data akan terpisah 

menjadi lima bagian yang sama. 

Pelajaran ini menggunakan 160 data set dari data dosis paparan radiasi X-Ray, 

sehingga masing-masing bagian terdiri dari 32 data secara acak. Jika bagian kelima 
adalah A, B, C, D, dan E, maka pengujian data dilakukan sesuai Tabel 2 [24]. Pada Tabel 

2 terdapat 5 langkah validasi silang data. Langkahnya sebagai berikut: 

Split 1: pelatihan menggunakan A, B, C, D dan pengujian menggunakan E, diperoleh 

ketelitian = a 

Split 2: pelatihan menggunakan A, B, C, E dan pengujian menggunakan D, diperoleh 
ketelitian = b 

Split 3: pelatihan menggunakan A, B, D, E dan pengujian menggunakan C, diperoleh 

ketelitian = c 
Split 4: pelatihan menggunakan A, C, D, E dan pengujian menggunakan B, diperoleh 

ketelitian = d 

Split 5: pelatihan menggunakan B, C, D, E dan pengujian menggunakan A, diperoleh 

ketelitian = e 
Jadi rata-rata keakuratan data dapat dilihat pada Persamaan (2) [25]: 

    (2) 

Data hasil pemodelan menggunakan cross validation kemudian dilakukan 

identifikasi menggunakan Random Forest Classification, Naïve Bayes, dan KNN. Metode 

Random Forest Classification digunakan untuk membangun pohon keputusan dengan 

mengambil data secara acak [26]. 

Tabel 2. Proses data validasi silang 

 A B C D E 

Pisahkan 1 32 data 32 data 32 data 32 data 32 data 

Pisahkan 2 32 data 32 data 32 data 32 data 32 data 

Pisahkan 3 32 data 32 data 32 data 32 data 32 data 

Pisahkan 4 32 data 32 data 32 data 32 data 32 data 

Pisahkan 5 32 data 32 data 32 data 32 data 32 data 

Dengan menggunakan beberapa variasi parameter faktor paparan, diperoleh 160 

data dengan 87 milik. Data dosis aman (nilai ÿ 5,707 µSv/h) dan sisanya 73 data dosis 

tidak aman (nilai ÿ 5,707 µSv/h). Data tersebut kemudian diidentifikasi menggunakan 
metode Random Forest Classification. Data dipisahkan menjadi dua kategori: data uji dan 

data pelatihan. Total 160 data set dibagi menjadi 75% data pengujian dan 25% data 

pelatihan (masing-masing 120 dan 40 sampel). Proses ini menghasilkan kumpulan sampel 
pelatihan. Himpunan ini kemudian diuji menggunakan data pengujian acak dalam sebuah 

matriks. Hal ini, pada gilirannya, menghasilkan data pengujian yang dikenal sebagai 

pohon klasifikasi. Pada penelitian ini terdapat 100 pohon pengklasifikasi yang 
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menghasilkan nilai Random Forest. Penjumlahan beberapa pohon klasifikasi memberikan 

nilai akurasi, sensitivitas (TPR), spesifisitas (TNR) dan False Positive Rate (FPR) [27]. 

Proses klasifikasi di Random Forest dimulai dengan membagi 160 data sampel (87 

data aman dan 73 data tidak aman) menjadi 1000 sampel acak. Dari setiap sampel acak 
diperoleh 1000 pohon keputusan dan kemudian diperoleh 1000 data prediksi. Setelah data 

prediksi terbentuk kemudian dilakukan pemungutan suara prediksi ke setiap kelas. 

Selanjutnya, gabungkan hasil suara dari setiap kelas dan dapatkan suara mayoritas untuk 

semua. Pemungutan suara mayoritas adalah yang terbanyak hasil prediksi. Proses 

klasifikasi data Random Forest pada penelitian ini, dapat ditunjukkan pada Gambar 2. 

 
Gambar 2. Proses klasifikasi data random forest 

Beberapa istilah yang digunakan dalam pengujian hasil data dosis paparan radiasi 
antara lain True Positive (TP), True Negative (TN), False Positive (FP) dan False 

Negative (FN). Istilah ini digunakan dalam akurasi, sensitivitas (TPR), spesifisitas (TNR) 

dan angka positif palsu (FPR). TP merupakan kondisi aktual (aktual) dan hasil prediksi 

untuk mengidentifikasi dosis paparan radiasi yang “aman”. TN diperoleh kondisi aktual 
(aktual) dan hasil prediksi untuk mengidentifikasi dosis paparan radiasi yang “tidak 

aman”. FP diperoleh jika kondisi “tidak aman” namun hasil deteksi “aman”, sedangkan 

nilai FN diperoleh bila kondisi aktual (aktual) “aman” namun diketahui hasil (prediksi) 
“tidak aman” [19], [21], [28]. Akurasi diperoleh dengan menggunakan Persamaan (3) 

[29]: 

  (3) 

Selain itu, pengujian juga digunakan untuk menentukan sensitivitas, yaitu matriks 

standar untuk mengidentifikasi jumlah data dosis radiasi dalam kumpulan data yang tidak 

seimbang. Sensitivitas dihitung menggunakan Persamaan (4) [30]: 

    (4) 

Validitas data yang diidentifikasi dapat ditentukan dengan menggunakan 
spesifisitas (TNR) seperti yang diberikan pada Persamaan (5). Kekhususan mengacu pada 
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kuantifikasi kemampuan metode dalam mengklasifikasikan data dengan benar sehingga 

memungkinkan memperoleh hasil yang sesuai [31]. 

    (5) 

Fall out atau false positive rate dapat ditentukan dengan menggunakan rasio FP 

dibagi jumlah FP dan TN, seperti yang diberikan pada Persamaan (6) [32]: 

   (6) 

Dan kemudian menentukan hasil Confusion Matrix. Gambar 3 merupakan 
Confusion Matrix secara umum berdasarkan pengelompokan data dosis paparan radiasi 

X-Ray yang aman dan tidak aman. Confusion Matrix berfungsi untuk memetakan 

pengelompokan antara data aktual dan data prediksi [33]. Berdasarkan hasil Confusion 

Matrix diperoleh kurva Receiver Operation Characteristic (ROC). 

 
Gambar 3. Confusion matrix secara umum 

3.3. Analisis Kinerja 

Setelah mendapatkan data dari Confusion Matrix, buatlah kurva karakteristik 

operasi penerima (ROC). Hubungan antara skor tingkat FP dan tingkat TP mewakili 
kurva ini. Validasi hasil pengukuran menggunakan kurva ROC dan Confusion Matrix 

untuk mendapatkan skor tertinggi. Kurva ROC menggambarkan kinerja klasifikasi tanpa 

distribusi kelas atau kesalahan [34]. Daerah di bawah kurva disebut Area Under Curve 

(AUC) berdasarkan bentuk kurvanya.  

Under field memiliki skor antara 0% dan 100%. Namun yang menarik untuk 
dihitung adalah skornya di atas 50%. Area bagian bawahnya tinggi, sehingga akan 

membaik [35]. Interpretasi nilai Area Under Receiver Operating Characteristic (AUC) 

adalah diberikan pada Tabel 3 [36]. 
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Tabel 3. Proses data validasi silang 

Rentang AUC 

>50,0 % - 60,0 % 

>60,0 % - 70,0 % 

>70,0 % - 80,0 % 

>80,0 % - 90,0 % 

>90,0 % - 100,0 % 

Sangat lemah 

Lemah 

Adil 

Bagus 

Sangat bagus 

 

 

Gambar 4. Kurva ROC dari ketiga metode 

Hasil Confusion Matrix data dosis paparan radiasi X-Ray menggunakan Random 
Forest Classification dapat dilihat pada Gambar 4 (a). Berdasarkan keseluruhan data 

berjumlah 160 data, 87 data dosis aman dan 73 data dosis tidak aman. Setelah dilakukan 

perhitungan data, berdasarkan Confusion Matrix 2x2 diperoleh TP sebanyak 79 data, FN 

sebanyak 8 data, FP sebanyak 7 data, dan TN sebanyak 66 data. 

Hasil Confusion Matrix data dosis paparan radiasi X-Ray menggunakan Naïve 
Bayes dapat ditunjukkan pada Gambar 4 (b). Berdasarkan keseluruhan data berjumlah 

160 data, 87 data dosis aman dan 73 data dosis tidak aman. Setelah dilakukan perhitungan 

data, berdasarkan Confusion Matrix 2x2 diperoleh TP sebanyak 84 data, FN sebanyak 3 

data, FP sebanyak 21 data, dan TN sebanyak 52 data. 

Hasil Confusion Matrix data dosis paparan radiasi X-Ray menggunakan KNN 
dapat ditampilkan pada 160 data, 87 data dosis aman dan 73 data dosis tidak aman. 

Setelah dilakukan perhitungan data, berdasarkan Confusion Matrix 2x2 diperoleh TP 

sebanyak 81 data, FN sebanyak 6 data, FP sebanyak 16 data, dan TN sebanyak 57 data. 
Hasil dari Random Forest Classification telah dibandingkan dengan Naïve Bayes dan 

KNN. Tabel 3 merupakan hasil perbandingan dari ketiga metode. 

 

Gambar 5. Kurva hubungan antara FP rate dan TP rate 



JTe (Teknika):  8 (2), pp 1-13  

 

© Ningtias, Diah Rahayu, et. al, 2023 

 

10 

 

3.4. Hasil Analisis Kinerja 

Hubungan nilai sensitivitas dan spesifisitas yang diperoleh kurva ROC 

menghasilkan nilai AUC. Gambar 5 merupakan kurva ROC, FP rate merupakan nilai 
spesifisitas dan TP rate merupakan nilai sensitivitas. Itu menunjukkan kinerja metode 

yang digunakan. Analisis kinerja suatu metode machine learning dikatakan lebih baik 

jika nilai AUC mendekati 100% [28], [39]. 

Berdasarkan kurva ROC pada Gambar 5, pada titik False Positive Rate yang sama, 

kurva Random Forest berada pada titik True Positive Rate yang paling tinggi 
dibandingkan dengan kurva Naïve Bayes dan KNN. Dengan demikian, metode Random 

Forest dapat bekerja lebih baik dalam mengklasifikasikan fitur. Hasil tersebut juga 

diperkuat dengan menghitung nilai akurasi menggunakan Persamaan 3. 

Dengan hasil akurasi tertinggi adalah metode random forest dan dapat dilihat pada 

Tabel 4 

Tabel 4. Proses data validasi silang 

Teknik 

Identifikasi 

Sensitivitas Spesifisitas Analisis 

Kinerja 

Akurasi Tingkat 

Positif Palsu 

Klasifikasi 

Random 

Forest 

91% 90% 9% 90% 97% 

Bayes Naif 93% 78% 22% 86% 85% 

KNN 96% 71% 29% 85% 94% 

Tabel 4 menunjukkan bahwa metode yang diusulkan memiliki kinerja lebih baik 

dalam mengidentifikasi kondisi aman dan tidak aman. Metode yang diusulkan mencapai 
klasifikasi tertinggi dalam spesifisitas, akurasi dan analisis kinerja dibandingkan metode 

lain dalam kondisi dan data yang sama. Selain itu, metode yang diusulkan juga memiliki 

tingkat positif palsu yang lebih rendah, yang menunjukkan bahwa metode yang diusulkan 

memiliki kemungkinan lebih rendah dalam mengidentifikasi kasus negatif sebagai kasus 
positif dalam data. Berdasarkan hasil tersebut, metode Random Forest Classification 

dapat bekerja lebih baik dalam mengidentifikasi paparan radiasi X-Ray dibandingkan 

metode lainnya. Namun, metode yang diusulkan memiliki klasifikasi terendah dalam 

mengidentifikasi kasus positif dengan benar dibandingkan metode lainnya 

4. KESIMPULAN 

Mengukur tingkat paparan radiasi X-Ray sangatlah penting. Radiasi X-Ray dapat 

merusak struktur molekul. Oleh karena itu, pengukuran tingkat paparan radiasi X-Ray 
diperlukan untuk mencegah paparan berlebih pada tubuh manusia. Klasifikasi hutan 

secara acak diusulkan untuk mengukur dan menentukan tingkat keterpaparan dalam 

penelitian ini. Hasilnya menunjukkan bahwa metode yang diusulkan memiliki kinerja 
lebih baik dibandingkan metode lainnya, dengan spesifisitas 90%, akurasi 90%, dan 

analisis kinerja 97%. Selain itu, hasil yang diusulkan memiliki tingkat positif palsu yang 

lebih rendah yaitu sebesar 9%, yang menunjukkan kemungkinan lebih rendah untuk 

mengidentifikasi kasus negatif sebagai kasus positif dalam data. Di masa depan, kami 
menyarankan untuk menambah jumlah kumpulan data dan mengembangkan metode 

klasifikasi untuk meningkatkan kinerja. 
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