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The compression of hyperspectral images (HSIs) has recently become a very
attractive issue for remote sensing applications because of their volumetric
data. An efficient method for hyperspectral image compression is presented.
The proposed algorithm, based on Discrete Wavelet Transform and
CANDECOM/PARAFAC (DWT-CP), exploits both the spectral and the
spatial information in the images. The core idea behind our proposed
technique is to apply CP on the DWT coefficients of spectral bands of HSIs.
We use DWT to effectively separate HSIs into different sub-images and CP
to efficiently compact the energy of sub-images. We evaluate the effect of
the proposed method on real HSIs and also compare the results with the well-
known compression methods. The obtained results show a better
performance when comparing with the existing method PCA with JPEG
2000 and 3D SPECK.
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1. INTRODUCTION

Hyperspectral images are used in different practical applications such as the detection of the earth’s
surface, soil type analysis, agriculture and forest monitoring, environmental studies and so on [1].

There are two types of redundancy in the HSIs i.e. spatial and spectral redundancies. However, the
spectral correlation (band redundancy) is generally but not always stronger than spatial correlation [2].
Several compression methods have recently been proposed which can be classified into two main types as
lossless and lossy compression methods. Lossless compression can only provide limited compression ratios,
and the maximum achievable order is around three times (3:1) [3]. This ratio is not a reasonable value in
many practical applications, especially in remote sensing.

Traditional compression algorithms for HSIs have only considered the spectral value in a feature
space whose dimensions were spectral bands. Then, dimension reduction was often applied (by means of
Principal Component Analysis (PCA) or Independent Component Analysis (ICA) [4]. However, they did not
consider the spatial correlation when focusing on the spectral decorelation.

Therefore, 3D wavelet-based techniques such as Set Partitioning in Hierarchical Tress (SPHIT)
algorithm and and Set Partitioned Embedded block (SPECK) for hyperspectral image compression have been
proposed to exploit a joint consideration of the spatial and spectral correlations [5]. It has been shown in [5]
that 3D-SPECK is better than 3D-SPIHT to achieve an efficient compression. In [6], a PCA-based method in
conjunction with JPEG2000 for compressing HSIs was introduced. The results reveal that the performance of
the method is superior to that of the spectral DWT, and the best PCA performance occurs when a reduced
number of PCs are retained and encoded. Another compression algorithm based on JPEG2000 for HSIs was
proposed in [7]. The algorithm can be applied for lossy and near-lossless compression applications in one
single tool. It was also shown that the proposed scheme has a negligible effect on the results of selected
applications (e.g., hard classification, spectral unmixing, and anomaly detection). In [8] a new lossy-to-
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lossless coder based on 3D Tarp-based Coding with classification for Embedding (TCE) coupled with the
reversible integer-valued Karhunen-Loéve Transform (KLT) was introduced. The proposed method closely
matches the lossy performance of JPEG2000 and outperformed JPEG2000 at lossless compression. An HSIs
compression method based on band-of interest BOI-preserving- based was proposed in [9]. Some bands of
HSIs are more important in the specific applications, and BOI selection methods can be chosen according to
application requirements. BOI and non-BOI bands are respectively compressed with low distortion and high
distortion. In [10] the impact of lossy compression on spectral unmixing and supervised classification using
Support Vector Machine (SVM) was investigated. It was shown that for certain compression techniques, a
higher compression ratio (CR) may lead to more accurate classification results. A new group and region
based parallel compression method for hyperspectral imagery was proposed in [11].

Some compression methods currently consider HSIs as 3D data. Those compression methods are
called a third-order tensor: two spatial dimensions and one spectral dimension. They try to take into account
the spatial and spectral correlation of HSIs simultaneously and not alternatively as is the case for the above
techniques [13]. Several tensor decompositions have been introduced in [14]. One of the most popular tensor
decompositions is the Canonical decomposition (CP), which has been used for the compression of HSIs. CP
allows the selection of any values for each dimension of the core tensor, which will be defined as /;X J,X J;
in the next section and helps to obtain a higher compression ratio.

Figure 1. Third-dimension modeling of HSIs.

We propose a new HSIs compression algorithm based on discrete wavelet transform (DWT) and
CP. Applying 2DWT to each spectral band will take care of first stage compression by using the (9/7)
biorthogonal wavelet. Next, CP is applied to the four wavelet sub-images of the HSIs in order to achieve
more CR. Finally, adaptive arithmetic coding (AAC) is used for coding the elements of the core tensors.

We compare the proposed method with the best known techniques, such as the 3D-SPECK
algorithm [5], and both PCA and JPEG2000 [6]. Our experimental results over the two most used HSIs
(AVIRIS datasets: Cuprite and Moffett Field) demonstrate and confirm the effectiveness of our algorithm in
providing a much smaller MSE for the desired set of CRs, especially when the CR is selected higher than
160, in this case the performance of the proposed algorithm is significantly better than the other techniques.
The proposed method also increases the pixel-based supervised classification accuracy.

2. 3D REPRESENTATION OF HYPERSPECTRAL IMAGES '

HSIs are the images generated by the imaging spectrometer by collecting image data simultaneously
in hundreds of spectral bands or frequencies (e.g. 5—10 nm spectral width) that reach a nearly contiguous
spectral record. The large amount of bands increases the complexity and time of processing. HSIs can be
represented as a third dimensional data X € RA1* 12X 13 a5 shown in Figure 1.

Unlike natural images, HSIs have two types of correlation simultaneously, which are the spatial
correlation within images and the spectral correlation between spectral bands. The spectral correlation is
generally stronger than spatial correlation. The average correlation coefficient between two spectral bands of
3D-data cube can be measured as follows:
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Foriz=1tol3=1

cov (X (:,:,i3), X(,:,ig+ 1))
Jvar(X G,:,03), JvarX(,:,iz + 1))

p(iz) =

I3-1

End  P= 550000 (1)

In most HSIs datasets, such as AVIRIS data cube, the value of is higher than 0.90 which means that
the spectral correlation among bands is very high.

Exploiting both of spectral and spatial correlations is the key for the success of a compression
algorithm. In this paper, a hybrid scheme based on DWT and CP for compression of HSIs is introduced.
DWT and CP are briefly introduced in the next sections.

2.2. Discrete Wavelet Transform (DWT)

The DWT has successfully been used in many image processing applications including noise
reduction, edge detection, and compression [15]. Indeed, the DWT is an efficient decomposition of signals
into lower resolution and details. From the the deterministic image processing point of view, DWT may be
viewed as successive low-pass and high-pass filtering of the discrete time-domain signal. At each level, the
high pass filter produces detailed information (horizontal (H), vertical (V) and diagonal (D) information),
while the low pass filter associated with scaling function produces the approximate (A) information. We
apply a two dimensional DWT to each band of HSIs. If each image band has rows and columns, then after
applying the 2DWT, we obtain four sub-band images (A, H, V, D), each having I, /2 rows and I, /2 columns.
The A sub-band images have the highest energy among all the coefficients of the other sub-band images.

The 2DWT of function f(x,y) with of size I; and I, can be shown as

1

Woplis, i) = 7= T30 2o £ (0 V)01, 1, (57) @
kee oo o2y _ _1 L=1yI-1 k

WGt i) = 7= By Tl fe)ef | (6) 3)

k ={H,D,V} “4)

Pini, (6, ¥) = @(x —iy,y — i3)
= Y hy(m = 2i)V2 9 (2x —m)
X Tnhy, (n—2i) V2 9(2x —n) (5)

W (ny) = 2 @x — iy, 2y — i)
= 25 %, hy (m — 2i )VZ (27 1x —m)
X Tnhy (n—2i)V2(2/tix —n) (6)
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Figure 2. New decomposition scheme for HSIs.

Table 1. 9/7 Biorthogonal Wavelet Filter

N hy[n] hy[n]
0 0.7885 0.8527
+] 0.4181 0.3774
+2 -0.04069 -0.111
+3 -0.06454 -0.02385
+4 0.03783

@ is called scaling function. The W,,(i, i;) coefficients define an approximation of (x,y) . The Wy, (j, iy, i)
coefficients add horizontal, vertical and diagonal details. Normally i; = i, = 2/ is selected and so that
j=012,...,] —1[16]. The h(p and hware called wavelet filters. For the choice of wavelet filtering, the
(9/7) biorthogonal wavelet which is used in JPEG2000, is selected in order to improve the compression ratio
[17]. Filter coefficients of (9/7) biorthogonal wavelet are shown in Table 1 [18], [19].

The inverse 2D-DWT is given by,

FC0y) == B, By W (i, 12) 04,0, (5 )
+ \/% Yk=(HDV} Zﬁéﬁ Yo, Xiy Wy (i1, i) ¥ 1,5, (6,9) 7

In lossy compression, we can ignore the detailed sub-bands (for example H, V and D) or preserve
only important detailed information. In order to achieve a higher compression ratio, we can still decompose
the images in more than one level.

B. Nonnegative Tensor Decomposition

In this section a brief review of the tensor model is presented. Important notations are shown in
Table 2.

The third-order TD tensor is described as a decomposition of a given third order tensor Y €
R11X12X13 into an unknown core tensor G € R 1 X2 X1 multiplied by a set of three unknown component

matrices where A™ = a§"’, agn). ......... a](:) € RIn¥/n (n=1,2,3), represent common factors [20].
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Table 2. Notations of Tensor Decomposition

Notation Description

R" n-dimensional real vector space

Y Third order Tensor

y® n-mode matricization of tensor Y
A® n-mode matrix in tucker model

° Outer product

Xa n-mode product of a tensor by matrix
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Figure 3. Fibers of the 3-order tensor
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Figure 4. Slices of a 3-order tensor

2
_E_
T
+

aj Az an

Figure 5. CP decompositionof a 3 way array

The CP decomposition factorizes a tensor into a sum of component rank-one tensors. For example, given a
third-order tensor X ~ R”/*K we wish to write it as

R
X ~ Zarob,ocr
r=1
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(IxJy)

= A(l) A(Z)T +
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Figure 6. Third order Tensor Decomposition
Ji J2 I3
Y= Z Z Z 9j1jaia a(l)o a(z)o a(3) + E
Jj1=1j2-1j3—
=G x; AV x, A<2> x3 A® + E
=Gx{A}+E=Y+E ®)

Here tensor is an estimation of tensor, and it depends on the values, which are the dimensions of the
core tensor, and tensor denotes the estimation error. Most algorithms for the Nonnegative Tensor
Decomposition (NTD) model are based on Alternative Least Square (ALS) minimization of the squared
Euclidean distance used as a global cost function subject to nonnegative constraints, that is:

Dp(Y1G{4}) = % Yy — Y12 9)

Here the objective is to find the optimal component matrices A™ € R >Jn and the core tensor G €
RIhXIXI3

Almost all the existing algorithms for Tensor decompositions [12] require certain processing based
on the full tensor during the estimation. The real-world data often contain millions of elements. Full data
processing (such as the inverse computation) is therefore impractical. We use the Hierarchical Nonnegative
Tensor Decomposition algorithm in proposed method.

3. PROPOSED COMPRESSION ALGORITHM

The compression is performed using four steps. In the first step, 2DWT is applied to each spectral
band of the HSIs in order to obtain 4 sub-images (approximate, diagonal, vertical and horizontal) for each
spectral band (see Figure 2). In the second step, the CP algorithm is applied to the four tensors. For each
tensor, the size of the core tensor G, i.e. (Jy, J,, J3), was selected manually. The approximate tensor has the
lowest frequency components containing most of the wavelet coefficient energy, so the values of (J1a, Jaa,
J;4) were set higher than those of other tensors. The values of (J,p, Jop, J3p) for the diagonal tensor, which
contains the diagonal information, were also set higher than the (Jiy, Jou, J3n) and (Jyv, Jov, J3v) values of
horizontal and vertical tensors.

3.1. Computing CP Decomposition.

As mentioned previously, there is no finite algorithm for determining the rank of a tensor [143,
101]; consequently, the first issue that arises in computing a CP decomposition is how to choose the number
of rank-one components. Most procedures fit multiple CP decompositions with different numbers of
components until one is “good.” Ideally, if the data are noise-free and we have a procedure for calculating CP
with a given number of components, then we can do that computation for R = 1, 2, 3, . . . components and
stop at the first value of R that gives a fit of 100%.

Assuming the number of components is fixed, there are many algorithms to compute a CP
decomposition. Here we focus on what is today the “workhorse” algorithm for CP: the alternating least
squares (ALS) method proposed in the original papers by Carroll and Chang [38] and Harshman. For ease of
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presentation, we only derive the method in the third-order case, but the full algorithm is presented for an N-
way tensor in Figure 3

CR in this step can be considered as the ratio between the total number of bits in the original input data,
and the number of bits must be transmitted and is shown as

CR = (11 xIy xI3 )

1 I
B =§1 X J1a +%x]2A + I3 % J34 + J1aX J2a % ]34

I I
+E X Jip + 735120 + I3 x J3p + JipX Jop X J3p

L I,
+E X Jiv +7x]2V + I3 x Jay + JivX Joax Jav

i i
+;1 x]1H+%x]2H+13 X Jag + JinX Jon X Jau (10)

In the third step, the 4 core tensors G and 12 matrices should be transmitted.

Most elements of the core tensors G (especially diagonal, vertical and horizontal core tensors) are
nearly zero. The bitplane coding procedure is used to transmit the elements of these core tensors G . The
bitplane coding includes two passes: the significant pass and the refinement. First, we define a significant
map of a given threshold T and the element g;, ;, j,.Suppose |g;, j, j, represents the absolute value of the
core tensor element at the location (jy, j;, j3) and s;, ;, ;, represents the significant state for the threshold T
(where T is an integer power of 2).

1 T < gl <2T
Sjsjajz = {0 - |gh]2]2| 6 w (11)
For s; j,j, =1, the g; ;, ;, is considered as the significant element. The significant element must
be encoded and removed from the core tensor, and the insignificant elements are preserved for the next
bitplane. After that, the significant threshold is divided in half, and the process is repeated for the next pass.
This process is repeated until the energy of the encoded elements equal to or higher than 99.5% of that of the
original core tensor. The selected elements and their positions must be transferred. There are many possible
approaches for coding a significant map. Most wavelet-based coders use adaptive arithmetic coding (AAC)
for lossless entropy coding. We also use AAC for coding the significant element. Arithmetic coding is a
variable-length lossless coding. Arithmetic coding does not require the transmission of codebook and so
achieves a higher compression than Huffman coding. Arithmetic coding essentially amounts to computing
the cumulative distribution function (CDF) of the probability of a sequence of symbols and then representing
the resulting numerical value in a binary code.

The columns of matrices A™) are called a}:) in the proposed algorithm, which are normalized

vectors. The absolute value of a}:) elements are in the range [0, 1], and they are very close to each other.

Therefore, in order to transfer the 12 matricesA™), a uniform quantization is used. In the fifth step, the
transmitted data are decoded. Finally in the sixth step, the inverse of 2DWT is applied to reconstruct the
images.

3.2. Proposed Algorithm (DWT-CP)

3.2.1. Proposed Algorithm for Coder

Input: Original HSIs X (the size [1x I,x I3)

1-Apply DWT to each spectral band to obtain 4 sub-images (approximate, diagonal, vertical and horizontal
tensors).

2-Apply CP algorithm to the four tensors individually. Each tensor has the size of (I, /2 x I,/2 x I5)

Input: Data tensor Y: (/; x I X - - - X [Iy), rank R,
Unfolding rulel =[1}, L, . . ., ly] where Im = [Im(1), . . ., Im(Km)]

Output: A€ R”, N matrices A" €R"™*
Begin

Stage 1:
lg. UD, ..., u™|| = TD(yyy, min(l, R))

An Optimal HSI Image Compression using DWT and CP (D. Narmadha)
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Stage 2:
|4 BD, ....,B™| = cPD(g,R)
form=12,....MdoB™ « ympm
form=12,....Mdo
forr=12,..,Rdo
Im Im
||g, a£ 1), ....,ag "")” = TD(reshape(bﬁm), [Ilm(l), ""Ilm(Km)])’ 1)
A= Mg
End CP

4-Quantize A™ € Rm*Jn  and encode core tensor G € R 't X 12X 13 Using AAC

3.2.2. Proposed Algorithm for Decoder

5-Decode the elements ¥ =G x {A}

6-Calculate the inverse 2DWT to reconstruct images.
Output: Reconstructed images X.

4. COMPUTATIONAL COMPLEXITY

In the following, we analyze the complexity of the algorithm. We considered an -tap filter bank and
denoted L, as the number of wavelet decomposition levels in the spatial band. The complexity of applying
2DWT to the tensor X with the size of I;x I,x I3 is O(8NI;I, I3 (1-272Lb) / 6). In the proposed algorithm
we are using the (9/7) wavelet and also one level of decomposition, so the complexity of our algorithm is
OOL1, I3/7).

After applying 2DWT, each tensor (approximate, diagonal, vertical and horizontal tensors) has the
size of (I;/2)X (I,/2)X I;. The max complexity of the TD is of order O(J413), where I, is the average
number of pixels of the approximate tensor, and ], is the average of the dimensions of the approximate core
tensor G.

Table I1I. SNR(dB) VALUES FOR, DWT-CP, PCA+JPEG2000, 3D- SPECK

Method 005 0.1 o.zBpppb 0.5 1.0

Cuprite

DWT-CP 49.9 52.9 53 54.9 58.8

DWT-TD 495 521 526 542 58.1

PCA+JPEG 2000 43.1 453 48.2 50.5 54.2

3D SPECK 34.7 37.1 40.8 46.6 50.1

Moffett Field

DWT-CP 42.6 43.9 48.1 52.5 559

DWT-TD 40.1 43.7 47.8 51.3 55.3

PCA+JPEG 2000 34.7 39.3 43.6 472 51

3D SPECK 243 28.2 323 39.6 45.1
=3 CG+2+1Dy) (12)
Ja= % (JiatJ2atT34) (13)

Therefore, the total complexity of the proposed algorithm (DWT-CP) is of order 4 x O(J,13)+0(91, 1, I5/7).
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5.  EXPERIMENTAL RESULTS

5.1. Compression Results

To measure the perceptual quality of images, the signal-to-noise ratio (SNR) can be well used. It
actually estimates the quality of the reconstructed images X in comparison with the original ones X . The
SNR in dB is defined as

_ x| )
SNR;5 = 10 logqg (—IIK- XIIZ (14)

st \\\

A
0 0.2 04 0.6 08 1 1.2 14 1.6
Rate (bppph)

Figure 7. Classification accuracy of DWT-CP using SVM (RBF Kernel).

Where [[X — £|*= 25, 2, S, (e — Rip)

Two popular AVIRIS datasets (Cuprite and Moffett) are used in our experiments. 2 These 16-bit
radiance datasets have been cropped spatially to a size of 512 x 512 and composed of 224 spectral bands.

First, we apply the proposed algorithm (DWT-CP) to these images. Next, we compare the SNRs
achieved by the proposed algorithm with those obtained from the well-known techniques, i.e. 3D-SPECK
algorithm [5], combined PCA+JPEG2000 [6] on a set of HSIs. Table III shows the SNR versus different
bpppb for the Cuprite and Moffett HSIs. In our experiments, DWT-CP has significantly improved SNR at
high CRs (small bpppbs) especially when the CR is higher than 160 or bpppb is lower than 0.1.

0.035
e D\\/T-CP
0.03 seees PCAF¥IPEG200
0.025 —tes
Eo.oz T
G T — et
N \ u.’
\ 'o
0.005 = L
0 N

02 04 06 08 1 12 14 16 18

Rate(bpppb)
Figure 8. SAD (Rad) versus bpppb for, DWT-CP and JPEG2000.
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6. CONCLUSION
In this paper, we introduced a new method for HSIs compression using DWT and CP. This is
carried out by reducing the size of 3D tensors computed from four wavelet sub-images of the spectral bands
of HSIs. The performance of the proposed algorithm on AVIRIS datasets yields the following results:
1) DWT-CP achieves higher SNR in comparison with two state-of-art algorithms (3D-SPECK algorithm
and combined PCA+JPEG2000) especially at bpppb lower than 0.1.
2) The proposed algorithm achieves a better pixel-based SVM classification accuracy.
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