

Artificial Intelligence of Things (AIoT) To Improve Efficiency and Automation in Industrial 4.0

Devi Rahmayanti

Electrical Engineering, Faculty of Engineering and Informatics, Gajayana University
devi@unigamalang.ac.id

ABSTRACT

The integration of Artificial Intelligence (AI) and the Internet of Things (IoT), popularly known as Artificial Intelligence for Everything (AIoT), has become a game-changing technology for industrial use. This research explores how AIoT enhances automation and efficiency in industrial machinery through networked devices, real-time decision-making, and advanced data analytics. Through a thorough analysis of recent studies and academic publications, the paper emphasizes the potential of AIoT in intelligent monitoring systems, process optimization, and predictive maintenance. The findings reveal that AIoT enables industrial machines to operate autonomously by leveraging AI algorithms to analyze data collected from IoT devices. This integration reduces downtime, optimizes resource utilization, and improves overall operational efficiency. Furthermore, the study emphasizes the role of edge computing and cloud-based platforms in facilitating seamless data processing and decision-making in real-time. Key challenges such as data security, system scalability, and implementation cost are also identified, along with potential strategies to address these issues. This research provides valuable insights for industry stakeholders, policy makers, and researchers interested in leveraging AIoT to revolutionize industrial operations and achieve Industry 4.0 goals.

Keywords: Artificial Intelligence, Internet of Thinks, Automation, Industri 4.0

INTRODUCTION

The industrial sector has seen substantial changes as a result of the advancement of information and communication technologies. The Internet of Things (IoT) concept allows data to be transmitted in real time across connected systems and devices. Conversely, Kecerdasan Buatan (AI) offers analytical, predictive, and independent keputusan pengambilan capabilities. Combining IoT and AI, often known as AIoT, is a key component to increasing automation, improving efficiency, and lowering operational costs in the industrial sector.

In order to develop more dependable systems, this study aims to explore the potential applications of AI and IoT integration in industrial operations. The main focus is on increasing operational efficiency, automating the production process, and implementing predictive maintenance to reduce downtime. In general, IoT enables devices like sensors, actuators, and other computer systems to communicate and function

automatically, creating a more efficient and responsive ecosystem with regard to human needs by optimizing the use of internet resources that are constantly in place.

An important technical, social, and economic problem that is developing quickly is the Internet of Things. When Internet connectivity and robust data analysis tools are integrated with consumer goods, durable goods, automobiles and trucks, industrial and utility components, sensors, and other commonplace items, it has the potential to substantially change the way we work, live, and play. The Internet of Things' predicted effects on the economy and the Internet are astonishing (rose et al, 2015).

The phrase "Internet of Things" mostly describes scenarios in which commonplace items, sensors, and objects that aren't often thought of as computers can create, distribute, and use data with minimal help from humans when network connectivity and processing capacity are extended to these devices.

Using computers, sensors, and networks to monitor and control objects has been a concept for many years. The current convergence of several technology market developments, however, is bringing the Internet of Things closer to being a ubiquitous reality. These include the widespread usage of IP-based networking, the rise of cloud computing, miniaturization, computing economics, and the development of data analytics.

The most important technologies are disappearing technologies. In his seminal 1991 paper [Weis 91] published in Scientific American, Mark Weiser's central claim was that "They weave themselves into the fabric of everyday life until they are indistinguishable from it." Both people's daily lives and the working conditions in enterprises have changed significantly since the advent of IT and ITeS technologies. Owing to its numerous applications, this concept is gaining popularity in a range of vertical and horizontal businesses as well as in the everyday lives of regular people.

Lianos et al. (2000) state that large organizations have been the main force behind the development of the Internet of Things [IoT] because they stand to gain a great deal from the predictability and foresight provided by the capacity to track everything through the commodity chains in which they are integrated. According to Ferguson (2002), Because of the ability to code and track items, organizations have been able to boost productivity, reduce errors, prevent theft, and connect complex and flexible organizational systems with the Internet of Things. A technological revolution that embodies the future of computing and communications, the Internet of Things (IoT) is a product of dynamic technical innovation in several key areas, including wireless sensors and nanotechnology. The purpose of tagging is to identify, automate, monitor, and regulate every item.

The uniqueness of various IoT implementations pose new and different security concerns, even though security issues in the context of technology are not new. It must be of the highest priority to address these issues and guarantee security in IoT services and goods.

As IoT devices and associated data services multiply and become more ingrained in our daily lives, users must feel secure knowing they are shielded from security flaws. IoT devices and services with inadequate security could be possible ports of entry for hackers and leave data streams vulnerable to theft.

The purpose of this manuscript is to assist researchers, practitioners, students, and professionals in the business. Reviewing the essential elements and technical aspects of artificial intelligence (AI), which are essential for Industry 4.0, comes first. Secondly, this article highlights the important developments and different obstacles that make AI possible for Industry 4.0. Important AI applications for Industry 4.0 are listed and discussed in the study's conclusion. In the new production order, stakeholders need to know what kind of automation platform they need, and a thorough review-based study shows that AI has several benefits. This system also looks for correlations in order to predict errors and prevent them. Thus, artificial intelligence technology is progressively achieving some of the objectives of industry 4.0.

LITERATUR REVIEW

The idea behind the Internet of Things (IoT) is to connect various physical objects to the internet so that data may be collected and analyzed without requiring constant contact between people or computers. The Internet of Things, or IoT, is a contentious issue in the fields of technology, engineering, and politics. It has been covered by both the mainstream media and specialized outlets. This technology is implemented in a wide range of networked devices, systems, and sensors that use improvements in computational power, electronics downsizing, and network connectivity to provide previously unattainable new capabilities. In numerous conferences, papers, and news pieces, the possible consequences of the "IoT revolution" are examined and argued. These include concerns about technology interoperability, security, and privacy as well as new business models and market opportunities.

With sensors, software, and other technologies installed, the Internet of Things (IoT) is a network of linked items that can gather and share data online. Without the need for human involvement, this ecosystem makes automation, decision-making, and real-time monitoring possible. Industrial operations, healthcare, smart cities, and agriculture are just a few of the areas where IoT improves efficiency and offers actionable insights by fusing the digital and physical worlds.

Although security concerns are not new in the context of technology, many IoT implementations provide special and new security challenges due to their characteristics. It is imperative that these issues be resolved and that IoT services and products be secure. As IoT devices and related data services multiply and become more ingrained in our daily lives, users must feel secure knowing they are safe from security flaws. IoT services and

devices with inadequate security could be possible ports of entry for hackers and leave data streams vulnerable to theft.

The current combination of AI with IoT technologies has resulted in the "Artificial Intelligence of Things" (AIoT) infrastructure. Big data analytics, Internet of Things operations, and human-machine interactions are just a few of the areas that this integration aims to enhance. The manufacturing sector can profit greatly from AIoT-based solutions. These solutions increase safety precautions, decrease waste, and boost efficiency.

Manufacturers may accomplish Industry 4.0 objectives and boost productivity through automation, process optimization, and better decision-making by leveraging AIoT. Furthermore, manufacturing organizations are increasingly implementing AI and IoT-based solutions. These technologies make it possible to identify and stop equipment flaws early on, which results in the creation of high-quality goods. Manufacturers can further optimize their operations by cutting expenses, increasing production, decreasing waste, and improving efficiency. Currently, a primary focus for academic academics and business professionals is the development of highly advanced and effective AIoT-based solutions specifically designed for sustainable manufacturing.

In order to better utilize natural resources and reduce adverse environmental effects, industrial sectors are integrating digital technology to turn traditional production into profitable and sustainable manufacturing processes. Digitizing the industry and using new technologies like artificial intelligence (AI) and the Internet of Things can help achieve Industry 4.0 goals (Malek et al, 2020). The implementation of these cutting-edge technologies in industrial manufacturing can lower overall energy consumption, adverse environmental consequences, and production costs while simultaneously improving worker safety, machine efficiency, product quality, and predictive maintenance (Cavalcante, 2019). There is also growing concern about the effects of industrial operations on the environment and air pollution. Intelligent production resource and process scheduling is improved by AI and IoT-based solutions, which progressively lowers energy and pollutant usage. Furthermore, after evaluating the data, the Artificial Intelligence of Things (AIoT) infrastructure, which blends AI and IoT, can quickly calculate the quantity of air pollutants and make the best decision. Employee safety is also increased in industrial businesses when intelligent systems are implemented (Gupta et al, 2016).

To meet the Vision Zero goal of no fatalities or serious injuries resulting from the digitization of the automobile industry, Bosch1, a major supplier to the automotive industry, uses AI and IoT in autonomous driving and safety systems for cars and trucks. This helps to achieve sustainable manufacturing goals. These illustrations show how these new technologies are being used to change the world. This article discusses the difficulties and potential avenues for further research while providing an overview of AIoT for sustainable manufacturing and cutting-edge research.

Artificial intelligence (AI) is one of the factors driving the latest developments in Industry 4.0. The goal of the collaborative interaction between people and robotics is to assist industries in concentrating on improving productivity, reducing operating costs, and producing more uniform products. Smart industries' hyperconnected manufacturing processes depend on several pieces of equipment that exchange data with each other via AI automation systems that can collect and comprehend a wide range of data. Modern manufacturing could undergo a transformation thanks to intelligent automation technology.

AI gives humans the right information to make decisions and warn them of potential issues. Because they want to integrate them into their equipment, industries will utilize AI to process data from connected machines and Internet of Things (IoT) devices. It enables companies to fully oversee all of their end-to-end processes and operations. This paper, which is based on a literature review, attempts to briefly discuss the critical role that AI plays in the effective implementation of Industry 4.0.

AIoT technology is used by manufacturing businesses to create virtual representations that mimic actual attributes of factories, products, or other entities. This is real-time information obtained using cameras, sensors, and other data collection methods. Combining interactive and physical settings enables proactive issue solving, data analysis, and plant tracking. The procedure of detecting production line defects becomes increasingly sophisticated in manufacturing. A computerized device that integrates deep neural networks may be able to detect a wide range of surface imperfections, such as fractures, scratches, leaks, and more. Data scientists use methods such as instance segmentation, object identification, and image recognition to train visual inspection systems to detect flaws in accordance with their objective.

According to Mazurek and Malagocka (2019), machine learning algorithms can forecast future energy demand by examining historical data on energy consumption. In order to predict energy usage, the widely used machine learning approach focuses on sequential data observations. AI can enable self-monitoring systems to minimize downtime, optimize resource utilization, and predict faults. It can help decision-makers in testing scenarios, increase asset efficiency, and prevent system breakdowns. Businesses would benefit from seeing how well their products function in their industrial setting and in real time by the workers. According to Bortolini (2017), the product concept will be transformed into possible real-world items using the data gathered from the simulated environment.

RESEARCH METHOD

This article is a research based on various research papers, blogs, and other research platforms with the objectives of describing AI technology for Industry 4.0, including its nature and features, its potential, the difficulties in putting the idea into practice, and the key uses of AI for Industry 4.0.

Artificial intelligence

The field of artificial intelligence (AI) in computer science aims to create devices or systems that can mimic human intelligence. AI makes it possible for hardware and software to carry out operations like learning, language comprehension, pattern recognition, decision-making, and problem-solving that often call on human cognitive abilities. We all know that Industry 4.0 includes a lot of technologies that allow robots and software to see, comprehend, act, and learn from human behavior. By increasing industrial production processes' efficiency, this technology can reduce operating costs and enhance the quality of the final product. A fully networked production process with numerous machines that can communicate with each other is called a "smart factory." As part of a digital transformation, manufacturers are using AI and ML to manage and use their data sets to enhance quality control, standardization, and maintenance.

Industry 4.0 routine manufacturing services can benefit from a variety of artificial intelligence (AI) applications (Ibrahim and Hassan, 2019; Chi-Hsien and Nagasawa, 2019; Zhang and Lu, 2021). Our job is accelerated by AI, which uses less human effort to provide more accurate outcomes. By utilizing digital technologies, AI enhances Industry 4.0's intelligence and production. Artificial intelligence-enabled computer systems can see, hear, learn, and access new platforms to increase their function.

The human-like intellect that computers exhibit is referred to as artificial intelligence (AI), such as natural intelligence, which aids in the resolution of a variety of issues. Similar to human intelligence, artificial intelligence (AI) has a big impact on industrial sectors that can do a variety of activities. In order to estimate product demand in terms of time, place, and socioeconomic dynamics, artificial intelligence (AI) technology will be used in the industrial supply chain. These algorithms will take into consideration weather patterns and macroeconomic cycles (Tung, 2019; Xu, 2021). AI is also very good at predictive control of equipment with sensors to monitor working conditions and tooling efficiency. This technology has the potential to mitigate numerous internal issues facing the sector, such as a lack of skilled workers, challenging decision-making, deployment challenges, and an abundance of data. AI has the potential to fundamentally change how firms operate in industrial settings. Since mass manufacturing became a reality, artificial intelligence and robotics have been increasingly prevalent in industrial production. In addition to doing repetitive tasks, robots will develop the development model, increase proficiency, develop automation techniques, remove human mistake, and provide better quality assurance. Businesses may utilize AI to obtain advanced research to examine the outcomes of their many components. Analyzing AI databases can enhance a facility's overall productivity and quality of output. Intelligent robots or other devices can monitor parameters and spot anomalies thanks to it. Prior to being transmitted to other computers, the enormous data flow is recognized, compiled,

and assessed via a cloud-based network. It makes it easier to level an ecosystem at the internet of things (IoT) scale and aids in managing a major flood. Since AI entered the entertainment sector, programmers and broadcasters have been able to select which shows to recommend to individual viewers based on their viewing preferences. The analysis of user behavior is done by machine learning algorithms, which become increasingly sophisticated over time to determine user wants as well (Cioffi et al, 2020; Radanliev et al, 2021).

Industry 4.0 And AI for Industry

"Industry 4.0" refers to the use of advanced manufacturing technologies and information in a variety of industries. The digital revolution in the industry is often described using this phrase. It is a word used to describe artificial intelligence worldwide. cyber, ML, cloud, IoT, etc. These can be analyzed and enhanced smartly in the industrial operations. It is capable of promptly assessing the data gathered during the production process. New processes that can continuously adjust to changes in output are produced as a result of this assessment. Additionally, many processes are now more connected and efficient thanks to this industrial revolution. Industry 4.0, the digital revolution in the industrial sector, alters our utilization of AI and ML applications (Cioffi et al, 2020).

Decentralized and autonomous computer operation in the event of exceptions, interferences, or overlapping goals that call for outside feedback is one of Industry 4.0's main goals. Their clever factories are now better thanks to AI, which also lowers maintenance expenses. Due to developments in industrial cybersecurity solutions, corporate network surveillance may also frequently promptly handle hacker threats. Industry 4.0 offers the most recent advancements in automation and data sharing in industrial technology. With efficient data storage, AI can predict their future productivity with speed. As the number of data sets fed into the machines increases, more patterns are discovered, understood, and linked to the generating company's interests. (Haleem and Javaid, 2019; Dudukalov et al., 2021) This automation makes it easier to anticipate issues, track them, and accurately forecast errors and workloads.

Networked factories that are closely connected to the supply chain, design team, manufacturing line, and quality control must be ready for Industry 4.0. These factories will be smart engines that use artificial intelligence (AI) to give insightful data. In order to take advantage of the many potential that Industry 4.0 offers, producers need to create a system that takes into account the entire production process, which calls for collaboration throughout the supply chain cycle. These days, asset control, supply chain management, and resource management are the primary domains where AI, ML, and IoT are employed. Accurate asset tracking, stock utilization, and supply chain visibility can all be enhanced by combining these innovative technologies. Predictive maintenance can be improved by applying ML techniques including quality optimization, machine intelligence-powered procedures, and algorithms (Kunst et al., 2019; Javaid and Haleem, 2020). AI may be quickly applied to factory floor operational load monitoring, increasing

the effectiveness of production planning. When producers combine machine learning with overall equipment efficacy, they may increase output, asset workloads, and preventative maintenance.

Artificial Intelligence's Technological Aspects and Qualities for Industry 4.0

Figure 1 shows the many technological AI enablers that satisfy the requirements while implementing this concept in Industry 4.0 culture. There are four unique features: Platform, data, analytics, and operational technology (van Geest et al., 2021; Chen and Li, 2019). In order to make Industry 4.0 more useful and effective, these enablers help the AI practice to become more accurate, precise, fast, optimized, and secure.

Figure 1. AI features and technologies for Industry 4.0.

Source: Javaid et al, 2022

AI is having a huge impact on the way manufacturing systems are developed. Manufacturers can mitigate equipment failures before they have a major impact because AI can detect them in real time. Robots are better able to understand the vast amounts of empirical data across the entire production process. Output processes are affected by

hundreds of variables, and are difficult to examine in a human context, with AI models being able to effectively predict the impact of these aspects. Machines can mimic human behavior in other domains, such as language or emotions. AI can also improve the quality control of industrial systems and detect defects in manufactured components.

Using machine learning methods, generative programming simulates the design process of an engineer. Every possible result that the designers could describe when they enter design parameters into the design program is produced by the software. Designers can quickly produce thousands of different designs for a single component using this method. To stay competitive in the market, businesses must adapt to the fluctuating price of raw resources. Quality assurance is the process of keeping a process or product as consistent as possible. It improves the assembly line's capacity to follow guidelines and algorithms that result in the best finished products. AI systems can recognize deviations from the norm because the majority of machine viewing technology defects are obvious. If users' expectations are not met by the final product, AI systems will notify them so they can take appropriate action (Kebisek et al, 2020).

Artificial Intelligence's Major Contributions to Industry 4.0

The successful introduction of robotics and driverless cars demonstrates how AI and ML can work together. Each development phase's results can be continuously assessed with the use of sensors and machine learning. Adapting supply to demand is one of the most prevalent issues in the sector. Energy consumption can be optimized by the incorporation of machine learning. AI technologies can also be used to enhance customer service. Many chatbots on e-commerce websites, for instance, are AI-powered and made to react rapidly to a range of commonly asked customer questions. Intelligent plucking devices and advanced tractors become more common in the agricultural sector. In the financial industry, one important use of AI is fraud detection (Chun et al., 2018; Haleem et al., 2019; Leng et al., 2021).

The robot can precisely identify little air bubbles and find the gas leak with the use of artificial intelligence. Together with data gathered from the whole production chain, it rapidly identifies production lines and issue spots while drastically lowering labor costs and detection errors. In an Industry 4.0 context, sensors are integrated into all hardware components to facilitate machine-to-machine communication. Additionally, the seamless integration of people, equipment, and resources is made possible by machine learning (ML) in cloud computing and data-physical systems. As a result, all components of the manufacturing process—including factories, buildings, production lines, and cars—can be closely related.

Implementation of AI in Industry 4.0

The main obstacles in successfully integrating AI methods for the advancement of Industry 4.0 are more influenced by factors related to data quality, variation between machines, cybersecurity, and operations. Figure 2 shows the various difficulties that may

arise in implementing AI in Industry 4.0. Diagnostic aspects, system analysis, and assurance related to operational schemes, variability, control, capability, and automation of machine variations, data completeness, reliability, error-free, all of which are interrelated.

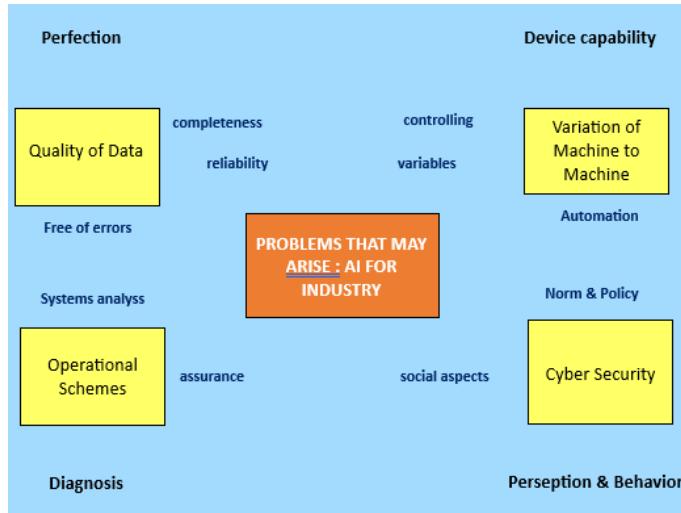


Figure 2. Various Difficulties That May Arise on Implementing AI in Industry 4.0

AI is capable of performing manufacturing activities, quality control, equipment maintenance prediction, design time efficiency, and increasing business productivity. Businesses can use predictive maintenance to assess whether a machine needs a very serious repair, or preventive maintenance. AI can improve the manufacturing process by combining sensor data, computers, and humans. AI uses automation platforms to collect and examine all types of data, including images and so on. AI is used in manufacturing to integrate automated frameworks to handle various activities. In addition, AI encourages employees to do other work on the same computer at the same time, reducing human interaction. In the near future, manufacturers can use AI to notify employees about project issues. The industrial sector's future depends on AI programming today. According to Terziyan et al. (2018), manufacturers will embrace and use AI technologies that transform manufacturing.

Today, conventional manufacturers can start actively implementing Machine Learning models to reduce company costs. New advances in AI, especially machine learning, have created new opportunities for further optimization. AI is able to reduce the frequency of errors in the manufacturing industry and reduce dependence on human resources, especially in hazardous jobs that are side by side with occupational safety risks. As robots replace humans in routine and dangerous jobs, the incidence of workplace injuries will decrease. As AI takes over industrial facilities and automates tedious and routine human labor, workers may concentrate on more complicated and

creative tasks. This is one of the benefits of developing innovation and business through the use of AI (Pereira et al, 2020)

On another occasion, Lafferty (2019) said that currently, factory automation and artificial intelligence are advancing at a rapid pace. A new generation of computing resources is emerging as a result of advances in sensor technology and deep learning algorithms. Machines can now understand language and learn, collect and analyze data, identify models, learn and adapt through primary intelligence, and more thanks to artificial intelligence (AI). AI is also quite good at decoding and understanding natural language. This will make it simpler for managers and employees to interact with applications. By reducing inventory costs, artificial intelligence has the potential to greatly enhance the industrial sector. The productive sector must be ready for integrated manufacturing facilities, which have highly structured product lines and quality control systems.

RESULT

AI improves businesses' analytical capabilities by generating precise forecasts and optimizing resource utilization, which reduces expenses. The application of AI and ML in manufacturing has a lot of promise. Artificial neural networks are a very effective learning platform for applications like predictive quality analysis and manufacturing process modeling. AI is being used to improve income estimates by identifying defects and cutting waste. Additionally, AI gives market managers options for modernizing business models in response to shifts in the manufacturing industry. Defects can be found in real time with this technique. The problem can be fixed instantly if the same flaw appears in several goods.

This aids companies in forecasting demand, ordering supplies, and scheduling production lines far in advance. This means that estimations of the supply chain can vary depending on a number of variables that are very difficult for humans to manage. This sensitive technology reduces waste from errors without human intervention and further guarantees the production of high-quality products with outstanding performance, which will save a great deal of time and money. For laborious in-process testing and quality monitoring, AI will assist speed up processes and increase accuracy rather than relying on humans. Production procedures, efficiency, safety, logistics, manufacturing, and facility maintenance are all labor-intensive, manual operations.

The use of AI in industry certainly helps companies in estimating demand, inventory, and scheduling production lines well in advance (planned). Supply chain estimates can change based on various factors that are very difficult for humans to control, so this technology reduces waste due to errors without human intervention and further ensures the production of superior products with extraordinary performance, this technology will save a lot of time and cost efficiency. AI can help speed up processes and increase accuracy as a substitute for human dependence in labor-intensive processes

and quality monitoring. AioT can handle manual, labor-intensive processes in production engineering, efficiency, safety, facility maintenance, logistics, and manufacturing.

Through rapid feedback loops, artificial intelligence (AI) enables manufacturing companies to address unplanned downtime, low yields, and low productivity. The application of AI in supply chain management is growing rapidly. This technology is becoming popular during distribution chain management operations. Speech recognition, computer vision, natural language processing, machine learning, and robots are some of the more sophisticated supply chain management techniques. Logistics and warehousing operations can be made more efficient with AI tools and software. Additionally, fleet operations can be effectively managed and observed with AI-enabled tools and software (Carvajal, 2019).

Avishay et al (2019) and Neumann (2021) explained that AI systems can quickly alert manufacturing teams to changing production flaws that could lead to issues with product quality. Early resolution of these issues can maintain a high level of consistency. Additionally, it enables suppliers to collect data on their market performance and commodity usage. Supply chains for manufacturing can be improved by using AI algorithms to predict demand trends. Inspection tools with AI capabilities have automated fault-detection processes. The production's smart equipment fault detection tools monitor the equipment's performance and state.

CONCLUSION

AI is implemented in Industry 4.0 to help companies undergo significant changes. AI creates changes in productivity and new business models. AI's ability to control predictive repair costs reduces inefficient material usage, labor costs, inventory, and maintenance. Rapid supply chain management is made possible by this technology thanks to efficient stock management and a well-regulated, coordinated output flow.

Manufacturers can use artificial intelligence (AI) in the manufacturing process to create Industry 4.0 in running their businesses effectively. Through continuous industrial optimization, this technique improves quality management, standardization, and maintenance. To improve automation strategies and platforms, several companies are increasingly looking to integrate AI into their manufacturing processes. Intelligent development and digital design enable manufacturing organizations to create customized products without sacrificing productivity.

In the upcoming years, the use of AI in Industry 4.0 is one of the developments that will drastically alter the market. Being able to combine high-quality goods makes artificial intelligence one of the best examples of new technology in production. Furthermore, AI is the most advanced and cutting-edge technology that integrates data, machines, and sensor device operations to improve overall operations. Sensors collect data, which is then sent via the internet to cloud servers to be analyzed using machine

learning and artificial intelligence algorithms. After that, the data is sent back to service terminals or autonomous robots to complete the workflow. As a result, the industry improves consumer input, production, quality control, shipping logistics, and user knowledge.

To support new business models and monetization in the widespread usage of AI and ML frameworks, digital data must be upgraded and made interoperable in the modern day. Businesses must understand their level of digitalization and Industry 4.0 readiness in order to make informed decisions. For this reason, a number of indices have been created in the assessment of Industry 4.0 performance. Continuous improvement in product quality is enabled by improved quality control and realistic viewpoints. Safety and performance are improved by better collaboration with human machines. AI enables risk analysis and helps companies find malfunctions. with real-time reporting, preventing downtime and increasing overall efficiency.

Combining artificial intelligence (AI) and the Internet of Things (IoT), the goal of AIoT is to create intelligent systems that can automatically assess and make decisions based on data collected from a range of connected devices. This connection improves system responsiveness and efficiency by enabling IoT devices to collect, distribute, and analyze data quickly.

AIoT integrates the cognitive analysis of AI with the data collection capabilities of IoT to build more responsive and efficient systems. AIoT has the potential to revolutionize a number of industries with its real-time data processing and automated operations, from homes to large enterprises.

REFERENCES

Avishay, D., Pavlov, V., Pavlova, G., Petrov, B., & Dimitrov, N. 2019. Industry 4.0-Robots with Distributed Mobility and Elements of AI. *Global Journal of Computer Science and Technology: D Neural & Artificial Intelligence*, 19(1).

Bortolini, M., Ferrari, E., Gamberi, M., Pilati, F., & Faccio, M. 2017. Assembly System Design in the Industry 4.0 era: a General Framework. *Ifac-Paperonline*, 50(1), 5700-5705.

Carvajal Soto, J. A., Tavakolizadeh, F., & Gyulai, D. 2019. An Online Machine Learning Framework for Early Detection of Product Failures in an Industry 4.0 Context. *International Journal of Computer Integrated Manufacturing*, 32(4-5), 452-465.

Cavalcante, I.M., Frazzon, E.M., Forcellini, F.A., Ivanov, D. 2019. A Supervised Machine Learning Approach to Data-Driven Simulation of Resilient Supplier Selection in Digital Manufacturing, *International Journal of Information Management*, Volume 49, Pages 86-97, ISSN 0268-4012, <https://doi.org/10.1016/j.ijinfomgt.2019.03.004>

Chen, Y., & Li, Y. 2019. Intelligent Autonomous Pollination for Future Farming-a Micro Air Vehicle Conceptual Framework With Artificial Intelligence and Human-in-the-loop. *IEEE Access*, 7, 119706-119717.

Chi-Hsien, K., & Nagasawa, S. 2019. Applying Machine Learning to Market Analysis: Knowing your Luxury Consumer. *Journal of Management Analytics*, 6(4), 404-419.

Chun, K. W., Kim, H., & Lee, K. 2019. A Study on Research Trends of Technologies for Industry 4.0; 3D Printing, Artificial Intelligence, Big Data, Cloud Computing, and Internet of Things. *Advanced Multimedia and Ubiquitous Engineering: MUE/FutureTech 2018* 12 (pp. 397-403). Springer Singapore.

Cioffi, R., Travaglioni, M., Piscitelli, G., Petrillo, A., & De Felice, F. 2020. Artificial Intelligence and Machine Learning Applications in Smart Production: Progress, Trends, and Directions. *Sustainability*, 12(2), 492.

Dudukalov, E. V., Munister, V. D., Zolkin, A. L., Losev, A. N., & Knishov, A. V. 2021. The Use of Artificial Intelligence and Information Technology for Measurements in Mechanical Engineering and in Process Automation Systems in Industry 4.0. In *Journal of physics: Conference series* (Vol. 1889, No. 5, p. 052011). IOP Publishing.

Ferguson, G. T. 2002. Have your Objects Call My Objects. *Harvard business review*, 80(6), 138-144.

Gupta K., Laubscher, R.F., Davim, J.P., Jain, N.k. 2016. Recent Developments in Sustainable Manufacturing of Gears: a Review, *Journal of Cleaner Production, Volume 112*, Part 4, Pages 3320-3330, ISSN 0959-6526, <https://doi.org/10.1016/j.jclepro.2015.09.133>

Haleem, A., Javaid, M., Singh, R. P., & Suman, R. 2021. Applications of Artificial Intelligence (AI) for cardiology during COVID-19 Pandemic. *Sustainable Operations and Computers*, 2, 71-78.

Ibrahim, W. M. R. W., & Hassan, R. 2019. Recruitment Trends in the Era of Industry 4.0 Using Artificial Intelligence: Pro and Cons. *Asian Journal of Research in Business and Management*, 1(1), 16-21.

Javaid, M., & Haleem, A. 2020. Critical Components of Industry 5.0 Towards a Successful Adoption in the Field of Manufacturing. *Journal of Industrial Integration and Management*, 5(03), 327-348.

Javaid, M., Haleem, A., Singh, R. P., & Suman, R. 2022. Artificial Intelligence Applications for Industry 4.0: A Lterature-Based Study. *Journal of Industrial Integration and Management*, 7(01), 83-111.

Kebisek, M., Tanuska, P., Spendla, L., Kotianova, J., & Strelec, P. 2020. Artificial Intelligence Platform Proposal for Paint Structure Quality Prediction Within the Industry 4.0 Concept. *IFAC-PapersOnLine*, 53(2), 11168-11174.

Kunst, R., Avila, L., Binotto, A., Pignaton, E., Bampi, S., & Rochol, J. 2019. Improving Devices Communication in Industry 4.0 Wireless Networks. *Engineering Applications of Artificial Intelligence*, 83, 1-12.

Lafferty, C. 2019. Sustainable Industry 4.0: Product Decision-Making Information Systems, Data-Driven Innovation, and Smart Industrial Value Creation. *Journal of Self-Governance and Management Economics*, 7(2), 19-24.

Leng, J., Ruan, G., Song, Y., Liu, Q., Fu, Y., Ding, K., & Chen, X. 2021. A Loosely-Coupled Deep Reinforcement Learning Approach for OrderAcceptance Decision of Mass-Individualized Printed Circuit Board Manufacturing in Industry 4.0. *Journal of cleaner production*, 280, 124405.

Lianos, M. and Douglas, M. 2000 Dangerization and the End of Deviance: The Institutional Environment. *British Journal of Criminology*, 40, 261-278. <http://dx.doi.org/10.1093/bjc/40.2.261>

Madakam, S., Ramaswamy, R., Tripathi, S. 2015. Internet of Things (IoT): A Literature Review. *Journal of Computer and Communications*, 3(5), 164-173.

Malek, J., Desai, T. N., 2020. A systematic Literature Review to Map Literature Focus of Sustainable Manufacturing. *Journal of Cleaner Production*, Volume 256, ISSN 0959-6526, <https://doi.org/10.1016/j.jclepro.2020.120345>.

Mazurek, G., & Małagocka, K. 2019. Perception of Privacy and Data Protection in the Context of the Development of Artificial Intelligence. *Journal of Management Analytics*, 6(4), 344-364.

Neumann, W. P., Winkelhaus, S., Grosse, E. H., & Glock, C. H. 2021. Industry 4.0 and the Human Factor – A Systems Framework and Analysis Methodology for Successful Development. *International journal of production economics*, 233, 107992.

Pereira, A. G., Lima, T. M., & Santos, F. C. 2020. Industry 4.0 and Society 5.0: Opportunities and Threats. *International Journal of Recent Technology and Engineering*, 8(5), 3305-3308.

Radanliev, P., De Roure, D., Nicolescu, R., Huth, M., & Santos, O. 2022. Digital Twins: Artificial Intelligence and the IoT Cyber-Physical Systems in Industry 4.0. *International Journal of Intelligent Robotics and Applications*, 6(1), 171-185.

Rose, K., Eldridge, S., & Chapin, L. (2015). The Internet of Things: An overview. *The internet society (ISOC)*, 80(15), 1-53.

Terziyan, V., Gryshko, S., & Golovianko, M. 2018. Patented Intelligence: Cloning Human Decision Models for Industry 4.0. *Journal of manufacturing systems*, 48, 204-217.

Tung, K. 2019. AI, the Internet of Legal Things, and Lawyers. *Journal of Management Analytics*, 6(4), 390-403.

Van Geest, M., Tekinerdogan, B., & Catal, C. (2021). Design of a Reference Architecture for Developing Smart Warehouses in Industry 4.0. *Computers in industry*, 124, 103343.

Xia, F., Yang, L. T., Wang, L., & Vinel, A. (2012). Internet of Things. *International journal of communication systems*, 25(9), 1101.

Xu, L. D. 2021. Special Issue on System Research on Artificial Intelligence. *Systems Research & Behavioral Science*, 38(1).

Yang, C.T., Chen, H.W., Chang, E.J., Kristiani, E., Nguyen, K.L.P., Chang, J.S. 2021. Current Advances and Future Challenges of AIoT Applications in Particulate Matters (PM) Monitoring and Control. *Journal of Hazardous Materials*. Volume 419, ISSN 0304-3894, <https://doi.org/10.1016/j.jhazmat.2021.126442>.

Zhang, C., & Lu, Y. 2021. Study on Artificial Intelligence: The State of the Art and Future Prospects. *Journal of Industrial Information Integration*, 23, 100224.