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Abstract  

Protecting medical data is a critical priority in the digital era due to the high risk of patient information leakage and misuse. 

Regulations such as HIPAA, GDPR, and Indonesia’s Health Law No. 36 of 2009 mandate strong safeguards, yet technical 
challenges in implementation persist. Differential Privacy (DP) provides a mathematical framework to ensure privacy by 

injecting controlled noise, making it difficult to identify individuals while maintaining data utility. This study evaluates the 

effectiveness of DP on the prescriptions dataset by comparing two widely used mechanisms: Laplace and Gaussian. Four 

sensitive attributes (row_id, subject_id, hadm_id, icustay_id) were analyzed under privacy budgets ε = {0.1, 0.5, 1.0, 5.0}. 
Performance was assessed using Mean Squared Error (MSE) and Root Mean Squared Error (RMSE) to capture the trade-off 

between privacy and accuracy. The results demonstrate that the Laplace mechanism consistently outperforms Gaussian, 

producing lower RMSE values and exhibiting greater stability, particularly at small to moderate ε. Gaussian tends to yield 
high errors at low ε and only approaches Laplace performance at high ε. These findings highlight the critical role of mechanism 

selection and privacy budget in determining the quality of protected medical data. Practically, the study recommends adopting 

the Laplace mechanism with ε = 0.5–1.0 for implementing Differential Privacy in electronic medical record systems. This 

configuration provides an optimal balance between patient privacy protection and data utility for healthcare analytics. 

 Keywords: Differential Privacy, Medical Data Security, Electronic Medical Records, Prescriptions, Patient Privacy 

Abstrak 

Perlindungan data medis menjadi prioritas utama di era digital karena tingginya risiko kebocoran dan penyalahgunaan 
informasi pasien. Regulasi seperti HIPAA, GDPR, dan Undang-Undang Kesehatan No. 36 Tahun 2009 mewajibkan penerapan 
keamanan, namun tantangan teknis dalam implementasi masih besar. Differential Privacy (DP) menawarkan pendekatan 
matematis untuk menjamin privasi dengan menambahkan noise terkontrol sehingga keberadaan individu sulit diidentifikasi 
tanpa mengurangi nilai analisis data. Penelitian ini bertujuan mengevaluasi efektivitas DP pada dataset prescriptions. Data yang 
diuji bersumber dari database rekam medis publik MIMIC-III yang mencakup ribuan catatan resep. Empat atribut sensitif 
(row_id, subject_id, hadm_id, icustay_id) dianalisis menggunakan variasi parameter ε = {0.1, 0.5, 1.0, 5.0}. Evaluasi dilakukan 
menggunakan Mean Squared Error (MSE) dan Root Mean Squared Error (RMSE) untuk menilai trade-off antara privasi dan 
akurasi. Hasil penelitian menunjukkan bahwa Laplace mechanism lebih stabil dibanding Gaussian dengan nilai RMSE 
konsisten lebih rendah, terutama pada ε kecil hingga sedang. Gaussian menghasilkan error tinggi pada ε kecil dan baru 
mendekati Laplace pada ε besar. Kebaruan penelitian ini terletak pada analisis kuantitatif langsung menggunakan RMSE untuk 
membandingkan kinerja mekanisme Laplace dan Gaussian pada atribut-atribut identitas rekam medis, memberikan bukti 
empiris praktis yang melengkapi studi sebelumnya yang seringkali bersifat teoretis atau tinjauan umum. Temuan ini 
menegaskan bahwa pemilihan mekanisme dan parameter ε sangat menentukan kualitas data medis yang diproteksi. Secara 
praktis, penelitian ini merekomendasikan penggunaan Laplace mechanism dengan ε = 0.5–1.0 untuk implementasi Differential 
Privacy pada sistem rekam medis elektronik. Konfigurasi ini memberikan keseimbangan optimal antara perlindungan privasi 
pasien dan utilitas data untuk analisis kesehatan.  

Kata kunci: Differential Privacy, Data Medis, Rekam Medis Elektronik, Laplace Mechanism, Gaussian Mechanism 

1. Pendahuluan  

Perkembangan teknologi informasi di era digital telah 
memberikan dampak besar terhadap berbagai sektor, 
termasuk bidang kesehatan. Salah satu implementasi 

penting adalah penggunaan Rekam Medis Elektronik 
(RME) yang menyimpan informasi pasien dalam 
bentuk digital untuk mendukung diagnosis, perawatan, 
serta penelitian Kesehatan [1], [2]. Meskipun 
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bermanfaat, RME sangat rentan terhadap ancaman 
kebocoran data dan penyalahgunaan, yang dapat 
membahayakan privasi pasien [3]. 

Berbagai regulasi telah ditetapkan untuk menjaga 
keamanan data medis, seperti Health Insurance 
Portability and Accountability Act (HIPAA) di 
Amerika Serikat, General Data Protection Regulation 
(GDPR) di Uni Eropa, serta Undang-Undang No. 36 
Tahun 2009 tentang Kesehatan di Indonesia [4], [5], [6]. 
Regulasi tersebut menekankan pentingnya menjaga 
kerahasiaan, integritas, dan ketersediaan data medis. 
Namun, perlindungan data berbasis anonimisasi 
tradisional terbukti masih rentan terhadap serangan 
rekonstruksi dan linkage attack, yang dapat 
mengidentifikasi individu dari data yang telah dihapus 
identitasnya [7], [8]. 

Differential Privacy (DP) muncul sebagai pendekatan 
baru yang mampu memberikan jaminan matematis 
terhadap privasi individu dengan menambahkan noise 
terkontrol pada data atau hasil analisis [9], [10]. 
Beberapa penelitian telah mengevaluasi penerapan 
[11], [12] DP di sektor kesehatan, namun mayoritas 
menggunakan dataset simulasi atau MIMIC-III. Belum 
banyak penelitian yang secara spesifik mengevaluasi 
DP pada dataset prescriptions yang berisi informasi 
obat dan resep medis [13], [14]. Pemilihan dataset ini 
didasarkan pada justifikasi ilmiah bahwa data resep 
memiliki tingkat sensitivitas yang sangat tinggi; data ini 
tidak hanya mencatat ID pasien, tetapi secara 
longitudinal mengaitkan individu tersebut dengan 
kondisi medis spesifik seringkali bersifat rahasia, 
kronis, atau terkait kesehatan mental melalui obat yang 
diresepkan. Padahal, dataset ini sangat krusial untuk 
dianalisis guna mengidentifikasi pola pengobatan 
pasien [15], [16]. 

Berdasarkan permasalahan tersebut, penelitian ini 
dilakukan untuk mengevaluasi efektivitas Laplace 
Mechanism dan Gaussian Mechanism dalam menjaga 
privasi data prescriptions dengan variasi parameter ε. 
Penelitian ini juga mengukur trade-off antara privasi 
dan akurasi data menggunakan metrik RMSE dan MSE. 
Hasil penelitian diharapkan dapat memberikan 
rekomendasi parameter optimal dalam penerapan 
Differential Privacy pada sistem RME. Secara khusus 
bagi konteks Indonesia, yang sedang gencar melakukan 
transformasi digital kesehatan nasional (misalnya 
melalui platform SATUSEHAT), temuan ini dapat 
memperkaya implementasi DP dengan memberikan 
acuan teknis berbasis bukti empiris. Dengan demikian, 
penelitian ini berkontribusi menjembatani kebutuhan 
analisis data kesehatan publik dengan kewajiban 
perlindungan privasi pasien yang diamanatkan dalam 
UU No. 36 Tahun 2009 [6], sehingga privasi pasien 
tetap terlindungi tanpa mengorbankan kegunaan data. 

2. Metode Penelitian 

Diagram alir penelitian ditunjukkan pada Gambar 1. 
Tahap awal adalah preprocessing dataset prescriptions 
dengan mengambil sampling 1.014 data, kemudian 
lanjut pada penerapan noise dengan Laplace atau 
Gaussian mechanism sesuai variasi ε. Lalu untuk tahap 
selanjutnya adalah alur validasi, yaitu perhitungan 
RMSE/MSE, dan terakhir analisis hasil komprehensif 
dalam bentuk tabel serta visualisasi grafik (line plot, 
bar, dan boxplot) untuk menarik kesimpulan. 

Penelitian ini menggunakan dataset prescriptions yang 
berisi informasi resep medis dengan atribut numerik 
dan identitas pasien, antara lain row_id, subject_id, 
hadm_id, dan icustay_id. Keempat atribut ini dipilih 
karena mengandung informasi sensitif yang dapat 
berpotensi menimbulkan pelanggaran privasi apabila 
tidak dilindungi [9], [10]. Dataset diproses dalam 
format CSV dan dianalisis menggunakan Python 
(NumPy, Pandas, Matplotlib). 

Differential Privacy menyediakan jaminan formal 
bahwa keluaran analisis tidak akan berubah secara 
signifikan meskipun data individu tertentu ditambahkan 
atau dihapus dari dataset [20], [23]. 

Definisi formal DP seperti terlihat pada Rumus 1: Pr [ܵ ߳ (1ܦ)ܯ]  ≤ ݁ఢ  ∙ Pr  (1)             [ܵ߳(2ܦ)ܯ] 

untuk semua dataset D1,D2 yang berbeda hanya pada 
satu entri, semua himpunan keluaran S⊆Range(M), dan 
mekanisme acak M. Parameter ϵ (epsilon) menentukan 
tingkat privasi: semakin kecil nilai ϵ, semakin tinggi 
privasi yang diberikan, namun dengan konsekuensi 
penurunan akurasi [22]. 

Penelitian ini membandingkan dua mekanisme paling 
umum dalam DP: 

Pada Laplace Mechanism, noise ditambahkan ke data 
menggunakan distribusi Laplace dengan skala seperti 
terlihat pada Rumus 2: ܾ = ∆௙ఢ                 (2) 

Δf adalah sensitivitas fungsi. Mekanisme ini lebih stabil 
dan banyak digunakan dalam aplikasi tabular [1], [9]. 

Pada Gaussian Mechanism, noise diambil dari distribusi 
Gaussian dengan varians seperti terlihat pada Rumus 3: 2ߪ = 2 In(1.25/δ) . ∆௙2ఢ2                (3) 

δ adalah parameter tambahan yang mengatur 
probabilitas kegagalan. Gaussian lebih sering 
digunakan dalam pembelajaran mesin berbasis gradient 
descent [2], [3], tetapi performanya dapat menurun 
drastis pada ε kecil. 

Eksperimen dilakukan dengan variasi parameter 
ϵ\epsilonϵ = {0.1, 0.5, 1.0, 5.0}. Nilai ε kecil (0.1) 
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mewakili kondisi privasi tinggi namun akurasi rendah, 
sedangkan nilai ε besar (5.0) mewakili privasi rendah 
dengan akurasi tinggi. Nilai sedang (0.5 dan 1.0) dipilih 
karena dianggap realistis dalam praktik medis [11], 
[17]. 

Untuk mengukur trade-off privasi–akurasi, penelitian 
ini menggunakan dua metrik error utama: 

Mean Squared Error (MSE) seperti terlihat pada Rumus 
ܧܵܯ :4 =  1௡ ∑ ௜ݕ) − 2௡௜=1(1ݕ̂               (4) 

Root Mean Squared Error (RMSE) seperti terlihat pada 
Rumus 5: ܴܧܵܯ =  (5)                ܧܵܯ√ 

Kedua metrik ini dipilih karena mampu 
merepresentasikan seberapa jauh data hasil proteksi 
berbeda dari data asli. MSE mengukur rata-rata error 
kuadrat, sedangkan RMSE memberikan nilai error 
dalam skala yang sama dengan data asli, sehingga lebih 
mudah diinterpretasikan [12], [19]. 

Diagram alir penelitian ditunjukkan pada Gambar 1. 
Tahap awal adalah preprocessing dataset prescriptions, 
kemudian penerapan noise dengan Laplace atau 
Gaussian mechanism sesuai variasi ε, dilanjutkan 
dengan perhitungan RMSE/MSE, dan terakhir analisis 
hasil dalam bentuk tabel serta visualisasi grafik. 

 

Gambar 1. Alur Penelitian 

3.  Hasil dan Pembahasan 

3.1. Hasil Eksperimen 

Penelitian ini mengevaluasi penerapan Differential 
Privacy (DP) pada dataset prescriptions dengan dua 
mekanisme, yaitu Laplace dan Gaussian, menggunakan 
variasi parameter ε = {0.1, 0.5, 1.0, 5.0}. Empat atribut 
sensitif (row_id, subject_id, hadm_id, icustay_id) 
dianalisis karena berpotensi mengungkap identitas 
pasien. 

Evaluasi dilakukan dengan menghitung Mean Squared 
Error (MSE) dan Root Mean Squared Error (RMSE) 
sebagai ukuran perbedaan antara data asli dengan data 
hasil privatisasi. 

Laplace Mechanism: ε = 0.1 → RMSE ≈ 13–14 (noise 

tinggi, akurasi rendah); ε = 0.5 → RMSE turun menjadi 
2–3, menandakan keseimbangan privasi–akurasi; ε = 
1.0 → RMSE ≈ 1.4, akurasi tinggi dengan privasi masih 

terjaga; ε = 5.0 → RMSE ≈ 0.2, data hampir identik 
dengan aslinya (privasi lemah). 

Gaussian Mechanism: ε = 0.1 → RMSE ≈ 46–50, 

distorsi data sangat tinggi; ε = 0.5 → RMSE ≈ 9–10, 

masih jauh lebih besar dari Laplace; ε = 1.0 → RMSE 
≈ 5.0; ε = 5.0 → RMSE ≈ 1.0, mirip dengan Laplace. 

Tabel 1. RMSE per Kolom dengan Laplace Mechanism 

Kolom ε=0.1 ε=0.5 ε=1.0 ε=5.0 

hadm_id 13.20 2.87 1.45 0.29 

icustay_id 13.30 3.11 1.45 0.29 

row_id 14.82 2.75 1.43 0.28 

subject_id 13.91 2.77 1.37 0.28 

Tabel 1 menampilkan nilai RMSE hasil penerapan 
Laplace Mechanism pada empat kolom sensitif. 
Terlihat bahwa pada ε = 0.1, semua kolom 
menghasilkan RMSE tinggi (≈ 13–15), menunjukkan 
noise besar dan akurasi rendah. Namun, ketika ε 
dinaikkan menjadi 0.5, nilai RMSE turun drastis (≈ 2.7–
3.1), dan semakin stabil pada ε = 1.0 (≈ 1.4). Pada ε = 
5.0, RMSE hampir mendekati nol (≈ 0.28–0.29), yang 
menandakan data hampir identik dengan kondisi asli. 
Pola ini konsisten di semua kolom (row_id, subject_id, 
hadm_id, icustay_id), menunjukkan bahwa Laplace 
memberikan hasil yang stabil dan seimbang di seluruh 
atribut. 

Pada Tabel 2, memperlihatkan nilai RMSE dari 
Gaussian Mechanism. Pada ε = 0.1, RMSE sangat 
tinggi (≈ 47–49), hampir empat kali lipat lebih buruk 
dibanding Laplace. Meskipun RMSE menurun saat ε 
meningkat menjadi 0.5 (≈ 9–10) dan 1.0 (≈ 4.6–5.1), 
nilainya tetap jauh lebih besar dibandingkan Laplace. 
Baru pada ε = 5.0, kedua mekanisme menunjukkan hasil 
yang hampir serupa (RMSE ≈ 0.95).  
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Tabel 2. RMSE per Kolom dengan Laplace Mechanism 

Kolom ε=0.1 ε=0.5 ε=1.0 ε=5.0 

hadm_id 47.81 9.41 4.61 0.95 

icustay_id 47.51 9.91 4.85 0.95 

row_id 49.18 9.60 4.94 0.96 

subject_id 48.54 9.91 5.10 0.97 

Pola pada Tabel 1 ini menunjukkan bahwa Gaussian 
cenderung menghasilkan distorsi lebih besar pada ε 
kecil hingga sedang, sehingga mengurangi utilitas data 
prescriptions. 

Grafik pada Gambar 1 memperlihatkan hubungan 
antara nilai ε (epsilon) dengan RMSE pada mekanisme 
Laplace: Semakin kecil ε (0.1) → RMSE tinggi → data 
semakin “berisik” (privasi kuat, akurasi rendah); 
Semakin besar ε (5.0) → RMSE rendah → data mirip 
aslinya (privasi lemah, akurasi tinggi); Semua atribut 
(row_id, subject_id, hadm_id, icustay_id) 
menunjukkan pola serupa. 

 

Gambar 1. Trade-off privasi dan akurasi pada Laplace Mechanism 

Hal ini menunjukkan hubungan antara nilai ε dengan 
RMSE pada Laplace Mechanism. Terlihat bahwa 

semakin besar ε, semakin rendah error, menandakan 
akurasi meningkat namun privasi menurun. 

 

Gambar 2. Trade-off privasi dan akurasi pada Laplace Mechanism 

Grafik pada Gambar 2 memperlihatkan perbandingan 
Laplace vs Gaussian Mechanism pada dataset 
prescriptions: Laplace (garis solid, lingkaran) → RMSE 
lebih rendah di ε kecil hingga sedang → lebih seimbang 
antara privasi dan akurasi; Gaussian (garis putus-putus, 
kotak) → RMSE jauh lebih tinggi pada ε kecil → lebih 
kuat menjaga privasi, tapi data menjadi sangat tidak 

akurat; Pada ε besar (5.0) → kedua mekanisme hampir 
sama, error sangat rendah. 

Perbedaan kinerja kedua mekanisme divisualisasikan 
pada Gambar 2, yang menegaskan bahwa Laplace 
consistently outperform Gaussian pada ε rendah hingga 
sedang. 
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3.2. Ringkasan Perbandingan Laplace vs Gaussian 

Tabel 3 menampilkan rata-rata RMSE dari masing-
masing mekanisme untuk tiap nilai ε: 

Tabel 3. Perbandingan Rata-rata RMSE Laplace vs Gaussian 

ε 
(Epsilon) 

Laplace (Average 

RMSE) 

Gaussian (Average 

RMSE) 

0.1 13.78 48.42 

0.5 2.86 9.63 

1.0 1.43 4.97 

5.0 0.27 0.98 

Tabel 3 memperlihatkan bahwa Laplace consistently 
outperform Gaussian pada nilai ε rendah hingga sedang. 
Pada ε = 0.1, perbedaan rata-rata RMSE antara Laplace 
(13.78) dan Gaussian (48.42) sangat signifikan. Hal ini 
menunjukkan bahwa Gaussian menambahkan noise 

jauh lebih besar, sehingga mengurangi utilitas data 
secara drastis. 

Pada ε = 0.5 dan ε = 1.0, Laplace kembali menunjukkan 
performa lebih baik dengan rata-rata RMSE masing-
masing 2.86 dan 1.43, jauh lebih rendah dibanding 
Gaussian sebesar 9.63 dan 4.97. Hal ini membuktikan 
bahwa Laplace lebih stabil dan seimbang dalam 
menjaga privasi sekaligus mempertahankan akurasi 
data prescriptions. 

Pada ε besar (5.0), perbedaan antara kedua mekanisme 
relatif kecil karena noise yang ditambahkan minimal. 
Kondisi ini menegaskan bahwa semakin besar ε, 
semakin lemah privasi namun semakin tinggi akurasi 
data. 

 

Gambar 3. Perbandingan RMSE per kolom sensitif pada ε = 0.5 dan ε = 1.0 

Gambar 3 menampilkan perbandingan RMSE pada 
empat atribut sensitif (row_id, subject_id, hadm_id, 
icustay_id) antara Laplace dan Gaussian mechanism, 
khusus pada nilai ε = 0.5 dan ε = 1.0. Terlihat bahwa 
pada kedua nilai ε, Laplace consistently menghasilkan 
error yang lebih rendah dibandingkan Gaussian di 
semua kolom. Perbedaan paling mencolok terlihat pada 
ε = 0.5, di mana Gaussian menunjukkan RMSE tiga 
hingga empat kali lebih besar dibanding Laplace. Hal 
ini menguatkan bahwa pada privasi tingkat sedang, 
Laplace mampu menjaga akurasi data lebih baik 
dibanding Gaussian. Seperti ditunjukkan pada Gambar 
3, Laplace menghasilkan RMSE yang lebih rendah 
secara konsisten di semua kolom, terutama pada ε = 0.5. 
Hal ini menegaskan stabilitas Laplace mechanism 
dibandingkan Gaussian dalam konteks data 
prescriptions. 

Gambar 4 menyajikan tren rata-rata RMSE untuk kedua 
mekanisme seiring perubahan nilai ε. Grafik 
memperlihatkan bahwa ketika ε semakin besar (privasi 
berkurang), RMSE menurun pada kedua mekanisme. 
Namun, kurva Laplace cenderung lebih stabil dan 
konsisten, sedangkan Gaussian mengalami lonjakan 

error pada ε kecil. Dengan demikian, Laplace 
menawarkan trade-off privasi–akurasi yang lebih 
seimbang, khususnya pada rentang ε = 0.5–1.0 yang 
dianggap relevan untuk aplikasi praktis.  Berdasarkan 
Gambar 4, tren rata-rata RMSE menunjukkan bahwa 
Laplace lebih stabil dibanding Gaussian. Pada nilai ε 
kecil, perbedaan kedua mekanisme sangat signifikan, 
sementara pada ε besar keduanya cenderung konvergen. 

Gambar 5 menampilkan distribusi nilai RMSE untuk 
Laplace dan Gaussian mechanism. Boxplot 
memperlihatkan bahwa distribusi error Laplace lebih 
sempit, menandakan stabilitas hasil dengan variasi yang 
rendah. Sebaliknya, Gaussian menunjukkan sebaran 
error yang lebih lebar, terutama pada ε kecil, yang 
mencerminkan variabilitas tinggi dan hasil yang kurang 
dapat diprediksi. Visualisasi ini memperkuat temuan 
bahwa Laplace lebih unggul dari sisi konsistensi 
performa.  Seperti terlihat pada Gambar 5, distribusi 
RMSE pada Laplace lebih sempit dibandingkan 
Gaussian, menunjukkan bahwa Laplace menghasilkan 
performa yang lebih stabil. Sebaliknya, Gaussian 
cenderung fluktuatif dengan variasi error yang lebih 
tinggi. 
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Gambar 4. Rata-rata RMSE terhadap variasi epsilon (Laplace vs Gaussian) 

 

Gambar 5. Distribusi RMSE Laplace vs Gaussian (Boxplot) 

3. 2 Pembahasan 

Perbandingan Laplace dan Gaussian mechanism 
menegaskan bahwa pemilihan mekanisme DP harus 
disesuaikan dengan konteks aplikasi. Temuan bahwa 
Laplace mechanism secara signifikan lebih stabil untuk 
kueri ID tabular (subject_id, hadm_id) sejalan dengan 
tinjauan literatur yang menekankan perlunya kalibrasi 
noise yang cermat dalam analisis data medis. Penelitian 
ini memperluas temuan teoretis fundamental Dwork et 
al dengan memberikan bukti empiris kuantitatif pada 
data resep medis yang spesifik. Pada sistem rekam 
medis elektronik (RME), di mana data prescriptions 
harus tetap akurat untuk kepentingan klinis, Laplace 
mechanism dengan ε sedang (0.5–1.0) adalah pilihan 
yang paling rasional. Gaussian mechanism, meskipun 
menawarkan jaminan privasi (ε,δ) -DP, terbukti kurang 
praktis pada ε kecil karena error yang dihasilkan terlalu 
tinggi dan mengurangi utilitas data secara drastis. 

Hasil ini memiliki implikasi kebijakan dan integrasi 
sistem RME yang kuat. Regulasi seperti HIPAA, 

GDPR, maupun UU Kesehatan Indonesia menekankan 
pentingnya perlindungan data pasien. Akan tetapi, 
regulasi ini seringkali bersifat high-level dan tidak 
memberikan arahan teknis implementasi, sehingga 
menciptakan kesenjangan antara mandat hukum dan 
eksekusi teknis. Penelitian ini berkontribusi 
menjembatani kesenjangan tersebut. Bagi pembuat 
kebijakan di Indonesia, temuan ini dapat menjadi dasar 
ilmiah untuk menyusun Standar Prosedur Operasional 
(SPO) teknis terkait privasi data pada platform digital 
kesehatan nasional (seperti SATUSEHAT). Secara 
praktis untuk integrasi RME, rekomendasi ε = 0.5–1.0 
dengan Laplace mechanism dapat diterjemahkan 
menjadi 'konfigurasi default' (default configuration) 
bagi pengembang sistem. Ini membuktikan bahwa DP 
bukanlah konsep yang murni teoretis, melainkan dapat 
diterapkan secara praktis dengan trade-off yang terukur 
untuk melindungi data resep pasien tanpa 
menghancurkan nilai analitisnya untuk analisis 
kesehatan publik. 

Dari sisi metodologi penelitian ini terbatas pada 
evaluasi tabular data prescriptions dengan metrik 
RMSE/MSE. Arah penelitian lanjutan terbuka lebar, 
mencakup penerapan DP pada deep learning medis 
melalui DP-SGD dan integrasinya dengan federated 
learning untuk kolaborasi aman antar-rumah sakit. 
Selain itu, penting untuk mengeksplorasi mekanisme 
hybrid yang lebih optimal dan melakukan validasi 
menggunakan dataset medis lokal Indonesia untuk 
meningkatkan relevansi kontekstual. Evaluasi di masa 
depan juga harus diperluas melampaui RMSE/MSE 
dengan menggunakan multi-metrik yang lebih 
komprehensif, seperti utility loss atau akurasi model 
prediktif, untuk mendapatkan gambaran dampak privasi 
yang lebih utuh. 
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4.  Kesimpulan 

Penelitian ini menemukan bahwa Laplace mechanism 
secara konsisten lebih unggul daripada Gaussian 
mechanism untuk proteksi data resep medis, dengan 
menunjukkan stabilitas dan error (RMSE) yang jauh 
lebih rendah, terutama pada nilai ε kecil hingga sedang. 
Implikasi praktis utamanya adalah rekomendasi 
penggunaan Laplace mechanism dengan ε = 0.5–1.0 
sebagai konfigurasi optimal pada sistem rekam medis 
elektronik (RME) untuk menyeimbangkan privasi 
pasien dan utilitas data. Arah penelitian selanjutnya 
mencakup eksplorasi mekanisme hybrid, integrasi DP 
dengan federated learning untuk kolaborasi antar-
rumah sakit, serta validasi menggunakan dataset medis 
lokal Indonesia. 
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