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ABSTRACT Software Effort Estimation (SEE) is a critical challenge in software project management, dating 

back to the early years of software engineering. Accurate estimation of the effort required for software 

development is essential for project planning, resource allocation, and risk management. Incorrect effort 

estimates can result in poor resource distribution, cost overruns, missed deadlines, and even complete project 

failure. This issue is increasingly urgent today as software systems are deeply embedded in almost every 

product and service, amplifying the need for reliable and accurate predictions. Over the years, several 

methods for SEE have been proposed, ranging from algorithmic models to expert judgment. More recently, 

machine learning (ML) approaches such as Case-Based Reasoning (CBR), Support Vector Machines (SVM), 

Decision Trees (DT), and Neural Networks (NN) have gained attention for their ability to model complex, 

nonlinear relationships inherent in SEE tasks. In this study, we propose a novel approach based on multi-

view learning with NN (MVNN), which leverages multiple views from existing datasets, thus improving 

performance and generalization, particularly when the available data is small and scarce. The effectiveness 

of the MVNN model is validated through empirical comparisons with existing SEE models, demonstrating 

its potential to enhance SEE accuracy and improve prediction reliability. 
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I. INTRODUCTION 

SEE is recognized as one of the earliest and most critical 

challenges in software project management, with its 

conceptual roots dating back to the formative years of software 

engineering [1]. The ability to reliably estimate the effort 

required for successful software development is fundamental 

to effective project planning, resource allocation, and risk 

management. Although the terms effort and cost are often used 

interchangeably in practice, they represent distinct constructs; 

nonetheless, both are integral to ensuring project feasibility 

and delivery. Inaccurate estimation of software effort can 

result in suboptimal resource distribution, leading to cost 

overruns, missed deadlines, and ultimately project failure. 

This issue becomes even more pressing in the current era, 

where software systems underpin a significant portion of 

goods and services, intensifying organizational reliance on 

accurate estimation. Despite its longstanding relevance, SEE 

continues to present considerable difficulties for software 

teams and project managers, necessitating its consideration 

from the earliest stages of project development [2]. 

Consequently, a substantial body of research has emerged 

focusing on the advancement of models, techniques, and 

empirical strategies aimed at enhancing the precision, 

efficiency, and applicability of software effort estimation in 

various development contexts [3]. 

The scope of SEE extends beyond resource allocation; it 

plays a critical role in facilitating communication among both 

internal and external stakeholders concerning planning, 

budgeting, financial oversight, and implementation proposals. 

SEE enables organizations to establish budgets and allocate 

funds effectively while offering insights into the anticipated 

costs of software development [4]. More broadly, the capacity 

to generate realistic effort estimates empowers executives and 

managers to make informed decisions, mitigate risks, and 

identify factors that could contribute to project failure, such as 

complexity, technology constraints, and team requirements. 

Since inaccurate effort estimation often leads to project crises, 

providing an accurate approximation of the resources needed 

to meet project objectives—while ensuring the delivery of 

products and services that fulfil both functional and non-

functional requirements—can significantly reduce the 

likelihood of project failure [1]. 

Measuring software sophistication early in the project 

lifecycle and making accurate estimations is a complex task, 

posing significant challenges for both managerial and 

development roles [5]. Unlike traditional manufacturing, 

software engineering is primarily a human-intensive process. 
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Over the past 50 years, the software industry has undergone 

substantial evolution, with at least four generations of 

programming languages and three major development 

paradigms [1]. This progression has been further complicated 

by the rapid advancement of development technologies, 

constant paradigm shifts, and ongoing changes in methods and 

tools. Moreover, the nature of software development has 

transitioned from being the responsibility of a single 

contractor to distributed projects, where teams are dispersed 

across various companies, time zones, cultures, and even 

continents, further enhancing the intangible and volatile nature 

of software products. 

Over the years, researchers have developed a variety of 

effort estimation methods, with each new approach generally 

exhibiting increased sophistication. These methods are 

extensively covered in the SEE literature and are typically 

categorized into three main groups: algorithmic, non-

algorithmic, and ML methods (see Figure 1). Initially, SEE 

relied on non-algorithmic expert judgment, a straightforward 

approach to generate realistic estimates [6]. The Delphi 

technique and work breakdown structure (WBS) are among 

the most widely used expert judgment methods. In the Delphi 

technique, a meeting is convened with project experts, and 

through discussion and argumentation, a consensus estimate is 

derived. In contrast, the WBS method involves breaking down 

the entire project into smaller sub-projects or tasks, continuing 

until the baseline activities are reached. This hierarchical 

decomposition allows for more accurate effort estimations to 

smaller and more manageable sub-tasks. 

Figure 1. SEE Methods 

Algorithmic approaches leverage statistical and 

mathematical principles for SEE. Notable examples of 

estimation techniques within this category include 

Constructive Cost Model (COCOMO)-II, Putnam Software 

Life Cycle Management (SLIM), SEER-SEM, and True 

Planning. The primary input for these models is the size of the 

software being estimated, which is typically measured using 

metrics such as function points (FP), source lines of code 

(LOC), or use case points [2]. 

ML techniques have recently demonstrated their 

effectiveness, particularly in estimating the effort required for 

software projects. Among these techniques, Case-Based 

Reasoning (CBR) stands out as one that leverages the history 

of successfully completed projects to predict solutions for new 

cases [3]. CBR is particularly promising for effort estimation 

because it emulates human reasoning by referencing past 

projects that were successfully implemented and using their 

actual effort data to predict the effort required for current 

projects. Recently, Bayes' theorem has garnered significant 

attention as a potential approach for managing estimation 

uncertainty and integrating quantitative data with subjective 

human judgment [1]. In addition to other well-known ML 

algorithms such as SVM, DT, Linear Regression (LR), and K-

Nearest Neighbours (KNN), the growing complexity and 

variability of software projects have driven the adoption of NN 

in SEE [7]. One of the key advantages of using NNs is their 

capacity to model complex, nonlinear relationships that are 

inherent in software projects. Moreover, advancements in NN 

architectures have significantly enhanced the accuracy of 

estimations [8]. Additionally, innovations such as Genetic 

Algorithms (GA), Convolution, and metaheuristic techniques 

integrated with NNs have improved the convergence and 

adaptability during the training phases, leading to more 

accurate software effort estimates. 

Several recent studies [9], [10], [11], [12] highlight the 

challenges associated with assembling and analysing 

empirical software engineering datasets. The SEE research 

community has recognized and prioritized issues such as 

noise, outliers, and missing data, where simple approaches like 

the “majority rule” may not be applicable. A key example of 

this challenge is the treatment of outliers, where common 

practices of exclusion must be approached with caution, as 

extreme estimates may sometimes be the most accurate [1]. 

Removing such values could also distort the dataset 

distribution, which is particularly problematic since many ML 

algorithms assume a normal distribution dataset. Additionally, 

issues such as poor provenance, data inconsistency, and 

commercial sensitivity in software estimation datasets have 

been largely overlooked [13]. These issues complicate the 

accuracy of SEE, especially for NN models, where the 

availability of sufficient, high-quality data is crucial for 

improving model performance. 

When data is scarce and acquiring additional data from 

external sources presents significant challenges, particularly 

due to confidentiality concerns in software projects. It 

becomes essential to maximize the utility of existing datasets. 

Standard ML techniques used in SEE typically rely on a single 

input for training. However, SEE can also be approached using 
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multiple views, where multiple feature vectors are utilized 

[14]. Multi-view learning is an emerging area in ML that 

leverages multiple perspectives or feature sets to enhance 

generalization, commonly referred to as data fusion or data 

integration [15]. The goal of multi-view learning is to model 

each view independently while jointly optimizing all models 

to improve overall generalization performance. A significant 

advantage of this approach is its ability to boost generalization 

by generating multiple views manually to enhance 

performance. Although various multi-view ML methods, such 

as sparse multi-view time SVM [16] and multi-view 

discriminant analysis (DA) [17], have demonstrated 

effectiveness in classification tasks, to the best of our 

knowledge this is the first study applying multi-view learning 

using NN within the SEE domain. 

Based on the problems stated above, we are focussing our 

study to use multiple-views with NN using common datasets 

for SEE to construct a high-quality multi-view NN (MVNN). 

On the issue of outlier, we opted a pre-processing method to 

preserve as much information available by applying scaling to 

reduce the high value impact of the outlier rather than 

eliminating it from the dataset and apply -1 to null values . In 

order to maximize existing datasets, we are using the same 

datasets to generate a different view by using the output of a 

dimensionality reduction algorithm to increase performance 

and generalization of the proposed MVNN. At the end, we will 

validate our findings with an empirical comparison from 

previous studies to show the competitiveness of our proposed 

method. 

The key contributions of this works are as follows: 

1. This study proposes a novel SEE model based on MVNN 

to construct a prediction model that enhance the contribution 

of SEE in software engineering. 

2. We proposed a novel way to generate a different view of 

the datasets by utilizing a dimensionality reduction algorithm 

to produce the same datasets in a different latent space.  

3. Finally, to verify the performance of the proposed method, 

we conducted experiments on various SEE dataset with 

existing SEE models. 

This paper follows the following structure. Section 1 gives 

introduction on the problem domain. Section 2 provides 

literature overview of the relevant SEE work. The presentation 

of our research methodology and experimental setups follow 

in section 3. The experimental results are presented in Section 

4 along with the threats to internal, external, construct of our 

study and conclusions are covered in Section 5. 

 
II. THEORETICAL FRAMEWORK 

In this section we briefly introduced theoretical review 

which underline our proposed MVNN method and related 

works on SEE from previous studies. 

A. MULTI-VIEW NEURAL NETWORK 

With the growing volume and diversity of data in recent 

years, the interest in multi-modal and heterogeneous 

representations has surged, driven by the desire to enhance 

learning performance. MVNN have emerged as an effective 

approach for integrating multiple data representations into a 

unified predictive model [18]. MVNNs refer to NN 

architectures that incorporate multiple feature representations 

(views) from the same data instance to enhance learning 

performance, leveraging both redundant and complementary 

information across all modalities [15]. A key challenge lies in 

effectively representing and summarizing multimodal data to 

fully exploit the complementarity and redundancy of the 

multiple modalities in the dataset [19]. One straightforward 

approach to addressing multiple modalities is early fusion, 

which involves concatenating features from individual 

modalities immediately after extraction, resulting in joint 

representations or unimodal data [20]. This approach aligns 

well with NN, which excel at handling such unified 

representations and have become a popular method in various 

tasks. While several ML algorithms, such as kernel-based 

SVM are used for multi-view classification problems, NN 

have demonstrated exceptional performance in tasks such as 

face recognition, object detection, and classification with 

MVNNs [15]. The superior performance of NN-based joint 

representations, coupled with the ability to pre-train models in 

an unsupervised manner, has further fuelled their popularity. 

However, their performance is highly dependent on the 

availability of large amounts of training data. Despite their 

many advantages, one limitation of NN is their inability to 

effectively handle missing data, although strategies exist to 

mitigate this issue [21]. 

B. SOFTWARE EFFORT ESTIMATION DATASETS 

SEE plays a pivotal role in software project management, 

enabling accurate estimation of the effort required for a 

successful software project completion including project 

planning, budgeting, and execution of the project. Various 

datasets have emerged as valuable resources for researchers 

and practitioners in this field, specifically targeting the 

challenge of estimating the effort required for software 

development. These datasets typically consist of historical 

data from previous software projects, encompassing various 

project attributes, such as size, complexity, effort, and other 

relevant factors which are used for training and evaluation of 

SEE models. In the SEE domain, several publicly available 

datasets have been widely used for model training and testing. 

Notable examples include the COCOMO datasets, such as 

COCOMO-81, COCOMO NASA-V1, and COCOMO 

NASA-V2, which provide a detailed record of software 

development effort based on various attributes like lines of 

code, function points, and other software metrics. Other 

commonly used datasets include Desharnais, China, and 

Maxwell, which offer a diverse set of project data to evaluate 

the performance of estimation models. The challenge in SEE 

datasets lies not only in the availability of accurate data but 

also in addressing common issues such as missing values, 

noise, and outliers. Furthermore, the rapidly evolving nature 
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of software development practices and technologies means 

that datasets must be continuously updated to reflect current 

trends and methodologies. In this context, datasets with a 

diverse range of software projects and environments are 

crucial for the generalization of SEE models across various 

domains. A comprehensive understanding of the available 

datasets is vital, as highlighted by [22], who identified 12 

publicly accessible datasets including Albrecht, COCOMO-

81, and COCOMO NASA-V2 among others. They 

specifically extracted the China and Maxwell datasets due to 

their structural quality and content suitability for machine 

learning applications in estimating software effort.  

In this study, several SEE datasets were used to validate our 

proposed method and compared with results from previous 

studies. A summary description of the datasets used can be 

seen in Table I. 
TABLE I 

ESS DATASETS 

Dataset Records Attri-

butes 

Effort Size (Unit 

measurement) 

Desharnais 81 11 Person-
hours 

Function point 

China 499 18 Person-

hours 

Function points 

COCOMO 

NASA-V1 

60 16 Person-

months  

LOC 

COCOMO 
NASA-V2 

93 22 Person-
months  

LOC 

COCOMO-81  63 17 Person-

months 

LOC 

 

C. K-FOLD CROSS-VALIDATION 

K-fold cross-validation is an effective technique for 

assessing the performance of ML models. This method 

involves partitioning the dataset into K subsets or folds. A 

model is trained K times, each time using K-1 folds for 

training and the remaining fold for validation. This process 

allows for a robust evaluation of the model’s performance, as 

it mitigates issues related to overfitting and provides a better 

estimate of model generalizability [23]. The choice of K can 

significantly impact the effectiveness of cross-validation. 

While 10-fold cross-validation is a common choice in the 

literature, studies suggest that the optimal K could vary 

depending on the dataset and the modelling context. For 

instance, Okfalisa et al. argue that although 10-fold is 

standard, there’s no one-size-fits-all solution, and K can be 

adjusted based on the dataset size and specific requirements 

[24]. Furthermore, increasing K might reduce bias but could 

also lead to higher variance in model performance estimates 

[25]. 

D. MIN-MAX SCALER 

The Min-Max scaler adjusts the scale of an attribute by 

shifting its values along the x-axis, ensuring that the 

transformed attribute’s values fall within the interval of (0, 1) 

[26], according to this formula: 

                                 끫륦scaled =
끫륦 − 끫륦min끫륦 max − 끫륦min                        (1) 

In (1), the scaling factor is determined by the attribute’s 

range, while the translational term is set as its minimum value. 

This approach guarantees that the attribute’s values are 

transformed to a minimum of zero and a maximum of one 

which is the ideal value for NN input. 

E. ISOMETRIC FEATURE MAPPING 

Isometric Feature Mapping (Isomap) is a widely used 

technique for non-linear dimensionality reduction technique to 

overcome high dimensionality in a dataset compare to 

Principal Component Analysis (PCA) which excels on linear 

dataset. The most distinct feature of Isomap lies in its 

versatility tested across various applications, ranging from 

image processing, fault prediction in electromechanical 

systems, and anomaly detection in hyperspectral imagery [27]. 

Introduced in 2000 by Tenenbaum et al. [28] as an 

improvement of multidimensional scaling (MDS) by 

replacing geodesic distances rather than Euclidean distances, 

this improvement allows Isomap to capture the true manifold 

structure of the dataset [29]. Beside the advantages, Isomap 

performs sub optimally when processing data that 

encompasses multiple clusters or manifold structures, but  this 

drawback has spurred the development of modifications, 

including extensions from the original Isomap such as 

FastIsomap and Landmark Isomap, aimed at enhancing 

computational efficiency and the ability to handle more 

complex datasets effectively [30]. 

F. EVALUATION MEASURES 

Evaluation measures typically reflect the performance of 

ML predictive result. In this paper, there are five main 

measures to validate the effectiveness of the proposed model: 

mean absolute error (MAE), mean square error (MSE), mean 

magnitude relative error (MMRE), root mean square error 

(RMSE), R-squared (R2) and median magnitude relative error 

(MdMRE) as shown in (2) until (7) respectively.  

 

MAE =
1௡∑ ௜ݕ| − �పݕ |௡௜=1            (2) 

 

MSE =
1௡∑ ௜ݕ) − ప�)2௡௜=1ݕ         (3) 

 

MMRE =
1௡∑ |௬೔−௬ഢ�|௬೔௡௜=1           (4) 

 

RMSE = �1௡∑ ௜ݕ) − ప�)2௡௜=1ݕ   (5) 

 ܴ2 = 1− ∑ (௬೔−௬ഢ�)2೙೔=1∑ (௬೔−௬�)2೙೔=1             (6) 

 

MdMRE = median �|௬೔−௬ഢ�|௬೔ � (7) 
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III. PREVIOUS RESEARCH 

Numerous studies have been conducted over time to 

enhance the efficacy of SEE, particularly in predicting effort 

estimation early in the software development lifecycle 

(SDLC). Researchers have explored various techniques, 

including ML, NN, and hybrid methods, which integrate 

multiple approaches to develop the most effective SEE 

models. One notable study by [3] combined CBR with GA to 

optimize key CBR parameters, such as feature selection (FS), 

feature weighting, similarity measures, and the number of 

nearest neighbours (k). The results demonstrated the 

effectiveness of GA in producing an accurate SEE model. 

Another study proposed by [31], focused on applying CBR 

with a bisecting k-medoids clustering algorithm to better 

understand datasets and identify the most relevant cases for 

effort estimation. This approach involved removing unrelated 

projects to find the best k analogies for each new project 

requiring estimation. Empirical experiments on different 

datasets indicated that the optimal k value depends on the 

specific characteristics of the dataset. In the study of [32], the 

authors explored SEE estimation based on analogies utilizing 

distance similarity measures such as Euclidean, Manhattan, 

and Minkowski. Their results showed that the Manhattan 

similarity measure yielded the highest accuracy, with a 50% 

MMRE, 28% MdMRE, and 48% prediction accuracy 

(PRED). In a study by [33], SEE model named DEAPS was 

proposed, which is based on the differential evolution 

algorithm using the Desharnais dataset. The model employed 

the Euclidean distance similarity measure to reduce the set of 

historical projects to a subset of similar projects, followed by 

the application of the differential evolution algorithm to refine 

and retrieve the best solutions. The results of this model 

showed significant improvements in analogy-based effort 

SEE. 

In the field of ML, a study by [34] compare the performance 

of Random Forest (RF), SVM, DeepNet, and NN. Their 

findings concluded that RF outperformed the other methods 

when applied to the Desharnais, Maxwell, China, and 

Albrecht datasets. Rahman et al. [2], compared three SEE 

forecasting algorithms: DT, Support Vector Regression 

(SVR), and KNN. They processed and analysed the datasets, 

applying the proposed algorithms and evaluating the models 

based on three criteria: MAE, MSE, and R². The study 

demonstrated that DT outperformed the other algorithms. 

Alhazmi et al. [35] employed bagged learning with base 

learners such as LR, SMOReg, NN, RF, REPTree, and M5 

rule for SEE. They also implemented FS algorithm to assess 

the impact of the BestFit FS algorithm and GA, using the 

China dataset for evaluation. The results revealed that the M5 

packing rule with GA as FS achieved an average relative error 

size of 10%, making it more effective than the other 

algorithms. Varshini et al. [6] presented both single and 

combined techniques which included combinations of 

individual methods. They used RF, SVM, DT, stacking with 

SVM, and stacking with RF and conducted experiments on the 

Albrecht, China, Desharnais, Kemmerer, Kitchenham, 

Maxwell, and COCOMO-81 datasets. The models were 

evaluated using MAE, RMSE, and R², with the results 

showing the superiority of RF over other models, including 

ML algorithms and clustering techniques. Zakaria et al. [36] 

introduced a model based on SVM and LR for SEE, 

implemented through an application called SOFREST 

estimator. They applied RF, regression tree, LR, and SVM to 

the COCOMO Nasa-V1, COCOMO Nasa-V2, and 

COCOMO-81 datasets. The models were evaluated using 

multiple criteria, including MSE, RMSE, MAE, MdMRE, 

min–max accuracy, correlation accuracy, and P-value with the 

results demonstrating the superiority of the targeted 

algorithms across the datasets. 

Fadhil et al. [37] introduced a model based on the Dolphin 

Swarm Algorithm (DSA) and the hybrid Bat Algorithm 

(DolBat) to enhance cost estimation models. The DSA is 

particularly effective for optimization tasks, requiring fewer 

individuals and fitness function calls while utilizing 

echolocation to more efficiently find optimal solutions. This 

study was conducted using the COCOMO NASA-V1 and 

NASA-V2 datasets. The model's performance was evaluated 

using the MMRE metric and was compared with other 

algorithms, such as GA. Vo Van et al. [38] proposed a model 

to assess the impact of data aggregation on SEE, aiming to 

identify the most effective aggregation method. This model, 

called Effort Estimation Using Machine Learning Applied to 

Clusters (EEAC), was evaluated using multiple metrics, 

including Mean Absolute Percentage Error (MAPE), RMSE, 

MAE, Mean Balance Relative Error (MBRE), and Mean 

Inverted Balance Relative Error (MIBRE). The experimental 

results demonstrated that estimation accuracy achieved 

through clustering consistently outperformed accuracy 

without clustering, for both Function Point Analysis (FPA) 

and the EEAC methods. 

The application of NN is also widespread in SEE research. 

Sharma et al. [39] proposed four distinct methods for SEE 

prediction: Localized Neighbourhood Mutual Information-

based NN (LNI-NN), Fuzzy-based NN (NFL), Adaptive GA-

based NN (AGANN), and GEHO-based Neural Fuzzy 

Network (GEHO-NN). These models were applied to five 

datasets: COCOMO-81, COCOMO NASA-V1, COCOMO 

NASA-V2, China, and Desharnais, and evaluated using four 

prediction metrics: MMRE, RMSE, MdMRE, and PRED. 

Kassaymeh et al. [40] presented a model for SEE using a Fully 

Connected NN (FCNN) combined with a Gray Wolf 

Optimizer (GWO), termed GWO-FC. This model was tested 

on 12 datasets and evaluated based on several criteria, 

including MSE, Relative Absolute Error (RAE), MAE, 

Variance Accounted For (VAF), Manhattan Distance (MD), 

and RMSE. 

 
IV. RESEARCH METHOD 

This section outlines the experimental procedures 

implemented in this study to assess the proposed SEE 
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methods. Figure 2 illustrates a schematic representation of the 

experimental framework employed to validate the 

effectiveness of our proposed method. The framework was 

designed to facilitate an empirical evaluation of the models, 

where K-fold CV is applied to SEE datasets, and the model 

with the lowest MMRE from the best k-fold result is selected 

as the optimal model. 

 

 
Figure 2. Experimental Framework 

 

A. PRE-PROCESSING 

The pre-processing phase begins by converting any 

feature to numerical and dropping unnecessary features 

which does not add information in the dataset. In addition, 

the absence of null values is handled by setting it to -1. The 

last phase of pre-processing is utilizing scaling to bring down 

all input value to a same scale to avoid any outlier of 

affecting the final calculation. A brief result of the pre-

processing is shown in Table II. 

 
TABLE II 

PRE-PROCESSED ESS DATASETS 

# Dataset Attributes 
Drop 

Features 

Null 

Value 

1 Desharnais 9 
Project, 
YearEnd 

Yes 

2 China 18 - No 

3 
COCOMO 
NASA-V1 

16 - No 

4 
COCOMO 

NASA-V2 
20 

projectname, 

year 
No 

5 COCOMO-81 17 - No 

 

Although NN has the abilities to extract features and 

complex relationship in the dataset and has proven effective 

with or without feature engineering across various domains 

as detailed by [41] on comparing between ML and NN, the 

transformed dataset will boost NN dynamically to process 

input data, and learned to recognize patterns and assimilate 

high-level features in a hierarchical manner, effectively 

managing complexities in relationships among features. A 

summary of features used from each dataset can be seen in 

Table III. 
TABLE III 

FEATURES USED 

Dataset Features 

Desharnais TeamExp Manager

Exp 

Language Transactions 

Length Entities PointsNon

Adjust 

PointsAdjust 

Adjustment 
   

China AFP Input Output Enquiry 

File Interface Added Changed 

Deleted PDR_A
FP 

PDR_UF
P 

NPDR_AFP 

NPDU 

_UFP 

Resou-

rce 

Dev.Type Duration 

N_effort effort 
  

COCOMO 

NASA-V1 

RELY DATA CPLX TIME 

STOR VIRT TURN ACAP 
AEXP PCAP VEXP LEXP 

MODP TOOL SCED LOC 

COCOMO 
NASA-V2 

cat2 forg center mode 
rely data cplx time 

stor virt turn acap 
aexp pcap vexp lexp 

modp tool sced equivphyskloc 

COCOMO-
81 

dev_mode rely data cplx 

time stor virt turn 

acap aexp pcap vexp 

lexp modp tool sced 

loc       
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B. K-FOLD CV 

In this study, we employed 10 folds K-fold CV in the 

training phase with a constant random state for reproduction. 

C. MVNN 

NN with two views as inputs will be used to predict SEE 

with the same architecture as shown in Figure 2. Both meta 

models consist of four layers of 256, 128, 64 and 32 nodes 

respectively with ReLu activation. The first meta-model 

input is the output of the pre-processing phase, while the 

output of the input transformation will be feed to the second 

meta-model. The outputs of both meta-models will be 

concatenated and feed to a layer of 2048 nodes and dropout 

(set at 0.1) for regularization before being feed to the final 

SEE regressor which will predict the final result. A depiction 

on the proposed MVNN is shown on Figure 3. 

 

 
Figure 3. Our proposed MVNN 

 

When data is scarce and acquiring additional data from 

external sources presents significant challenges—particularly 

due to confidentiality and privacy concerns, which are highly 

prevalent in software engineering projects—it becomes 

imperative to focus on maximizing the utility of the limited 

available datasets. In many real-world software engineering 

environments, especially those involving SEE, datasets are 

often small, incomplete, or imbalanced. This limitation is 

exacerbated by the sensitive nature of project data, which may 

include historical data or resource allocation records that 

organizations are unwilling or legally unable to share. As a 

result, conventional data-hungry approaches such as NN faces 

severe limitations in their applicability and generalization in 

SEE domain. 

Traditional ML techniques commonly employed in SEE 

typically operate under a single-view paradigm. In contrast, 

multi-view learning—and more specifically, MVNN—

presents a robust and scalable solution to this challenge. Multi-

view learning leverages the idea that different "views" or 

feature groups, even if derived from the same underlying data 

instance, can offer both redundant and complementary 

information, which introduce new aspects or perspectives that 

a single view cannot provide alone. By simultaneously 

learning from all available views, MVNNs are capable of 

constructing a more holistic and discriminative representation 

of the data. Moreover, MVNNs help mitigate overfitting, 

which is a prevalent concern when training deep learning 

models on small datasets. By distributing the learning burden 

across multiple feature spaces, the model is less prone to 

memorizing noise or spurious correlations from any single 

view. Instead, it learns more robust and generalizable patterns 

that are supported by evidence across several data modalities. 

This becomes a particularly valuable property in SEE tasks, 

where the cost of misestimation can significantly impact 

project planning and resource allocation. 

A. INPUT TRANSFORMATION 

The correlation analysis summarized in Table IV provides 

a comprehensive overview of the linear relationships 

between input features and the effort target variable across 

multiple SEE datasets used in this study. This statistical 

analysis is a crucial step to understand the predictive power 

of individual attributes and identifying whether traditional 

linear modeling assumptions hold in the context of SEE. 

Upon close inspection, it becomes evident that most of the 

features across these datasets exhibit low or even negative 

correlation coefficients with the effort target variable, 

strongly suggesting the presence of non-linear or complex 

relationships that cannot be captured effectively through 

simple linear models. 

For the China dataset, a few features such as AFP (0.68), 

Added (0.69), and File (0.61) demonstrate moderately high 

positive correlations with effort, indicating that these 

variables may linearly contribute to SEE. This aligns with 

expectations, as Added functionality and function point 

metrics like AFP and File often scale with the complexity 

and size of the project, naturally increasing development 

effort. However, other features such as Deleted (0.07), 

Changed (0.11), and Interface (0.33) show very low 

correlations, suggesting they provide little to no linear 

explanatory power. The metric Dev.Type returns NaN, 

which might indicate missing or unprocessable data in this 

context. Furthermore, the moderately positive correlation of 

Duration (0.48) with effort is intuitive, though not strong 

enough. Notably, N_effort (0.99) shows an almost perfect 

correlation, likely because it is either a derived or a target-

like variable. 

The COCOMO NASA-V2 dataset presents a more 

nuanced picture. The majority of features show negative or 

weak positive correlations with the effort target. For 

example, forg (-0.37), mode (-0.33), and sced (-0.31) are 

negatively correlated with effort, suggesting either inverse 

relationships or the presence of non-linear dependencies. 

The relatively low positive correlations for center (0.42) and 
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cplx (0.41) suggest that complexity and organizational 

structure have some influence, but not dominantly so. 

Interestingly, equivphyskloc (0.59) shows one of the higher 

correlations, reinforcing the long-standing view that code 

size (KLOC) remains a strong, albeit imperfect, predictor of 

effort. However, other typical COCOMO drivers like acap (-

0.21) and aexp (-0.11) show negative or negligible 

relationships, raising questions about the linear assumptions 

often applied in parametric models such as traditional 

COCOMO. 

The COCOMO NASA-V1 and COCOMO 81 mirror the 

trend of weak correlations. In COCOMO NASA-V1, LOC 

(0.92) shows a very strong positive correlation with effort, 

again affirming size as a core effort driver. However, other 

features—such as TURN (-0.18), AEXP (-0.18), and MODP 

(-0.18)—display low or negative correlations, underscoring 

the possibility that their relationship with effort is non-linear 

or context-dependent. In COCOMO-81, feature correlations 

generally range between -0.15 and +0.66, with data (0.44) 

and loc (0.66) being the highest. This reinforces the general 

pattern that software size and data complexity tend to have 

higher linear correlations, while more abstract or qualitative 

attributes (e.g., tool usage, experience levels, scheduling 

constraints) demonstrate weaker associations. 

The DESHARNAIS dataset stands out due to several 

features showing moderate to strong positive correlations 

with effort. Notably PointsAjust (0.74) and PointsNonAdjust 

(0.71) show high correlation, suggesting that adjusted and 

raw function points are highly indicative of effort in this 

dataset. Length (0.69), Transactions (0.58), and Entities 

(0.51) further reinforce this observation, indicating that 

functional decomposition and feature complexity strongly 

drive effort in this particular dataset. Adjustment (0.46) and 

ManagerExp (0.16) follow a similar trend, although the 

correlation is weaker. The only notable negative correlation 

is with Language (-0.26), which may imply that the choice 

of programming language influences effort inversely—

possibly due to productivity differences across languages. 

The overarching insight drawn from Table IV is the 

prevalence of weak and negative correlations across multiple 

datasets and feature sets, especially in the COCOMO and 

CHINA datasets. This pattern strongly suggests that simple 

linear models may fail to capture the true complexity of 

relationships in SEE. Specifically features that are 

traditionally assumed to be strong drivers (e.g., programmer 

capability, experience, scheduling pressure) show poor 

linear alignment with effort, challenging their effectiveness 

in linear regression-based models. Many features likely 

interact in non-linear, conditional, or hierarchical ways—for 

example, the impact of complexity may depend on developer 

experience or tool support, which linear correlations cannot 

detect. The consistent correlation of size-based metrics 

(AFP, LOC, PointsAdjust) with effort supports their 

inclusion, but highlights a potential over-reliance in models 

that don’t incorporate richer, multi-dimensional feature 

representations. 

TABLE IV 

FEATURES CORRELATION WITH EFFORT 

CHINA COCOMO NASA-V2 COCOMO NASA-V1 COCOMO-81 DESHARNAIS 

AFP 0.68 projectname 0.11 RELY -0.13 dev_mode -0.13 TeamExp 0.12 

Input 0.58 cat2 -0.14 DATA -0.03 rely 0.21 ManagerExp 0.16 

Output 0.56 forg -0.37 CPLX 0.16 data 0.44 Length 0.69 
Enquiry 0.51 center 0.42 TIME -0.14 cplx 0.01 Transactions 0.58 

File 0.61 mode -0.33 STOR -0.16 time 0.15 Entities 0.51 

Interface 0.33 rely 0.24 VIRT -0.12 stor 0.10 PointsNonAdjust 0.71 

Added 0.69 data -0.25 TURN -0.18 virt 0.02 Adjustment 0.46 

Changed 0.11 cplx 0.41 ACAP -0.05 turn 0.21 PointsAjust 0.74 

Deleted 0.07 time 0.38 AEXP -0.18 acap -0.15 Language -0.26 

PDR_AFP 0.24 stor 0.26 PCAP 0.10 aexp -0.04 
  

PDR_UFP 0.26 virt 0.19 VEXP 0.00 pcap 0.16 
  

NPDR_AFP 0.22 turn 0.13 LEXP 0.26 vexp 0.07 
  

NPDU_UFP 0.24 acap -0.21 MODP -0.18 lexp 0.09 
  

Resource 0.22 aexp -0.11 TOOL 0.12 modp 0.27 
  

Dev.Type NaN pcap -0.16 SCED 0.03 tool 0.00 
  

Duration 0.48 vexp -0.23 LOC 0.92 sced 0.02 
  

N_effort 0.99 lexp -0.05 
 

 loc 0.66 
  

 
 

modp -0.14 
      

 
 

tool 0.10 
      

 
 

sced -0.31 
      

 
 

equivphyskloc 0.59 
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This correlation analysis motivates the need for more 

sophisticated, non-linear modeling that can capture complex 

feature interactions and non-additive effects. Additionally, it 

opens opportunities for multi-view learning, enabling better 

utilization of both weakly and strongly correlated features 

across diverse views. 

As the SEE datasets are non-linear in nature, the process 

of transforming the original dataset with a non-linear method 

such as Isomap will produce a better solution compared with 

a linear method such as PCA. The dimensionality reduction 

and transformation process described in the proposed 

method reflects a critical pre-processing step aimed at 

enhancing the representational quality of the input data used 

in the MVNN architecture. Specifically, the procedure 

involves applying the Isomap algorithm to each fold of the 

training dataset during CV. Isomap, a well-established non-

linear manifold learning technique, is employed here with 

n_neighbors set to half of the dataset dimension, which 

defines the local neighbourhood size used to construct the 

geodesic distance graph—a key component in preserving the 

intrinsic geometry of the data in the lower-dimensional 

space. The use of Isomap as a pre-processing transformation 

in this stage is particularly valuable for revealing latent non-

linear structures in the feature space. Beside introducing 

diversity in input representations, which enhances the 

learning behaviour of MVNN. By setting n_neighbors to a 

half the dataset dimension, the Isomap transformation 

becomes highly sensitive to local curvature and fine-grained 

manifold structure, potentially capturing non-linear 

relationships that are otherwise obscured in high-

dimensional Euclidean space. This configuration is 

particularly useful in SEE datasets, where feature 

interdependencies often exhibit non-linear interactions due 

to the complex nature of software artifacts, such as code 

metrics, effort estimations, and process attributes. As a result 

of this transformation, each fold of the transformed dataset 

is effectively reduced to half of its original size, not in terms 

of instances, but in feature dimensionality, making the 

subsequent learning process more efficient while preserving 

relevant structural information. 

Figure 4 provides a visual TSNE transformed description 

of the original and Isomap-transformed datasets in each parts 

of the MVNN. The upper-left quadrant illustrates the post-

Isomap transformation output. When compared to the 

original data—where a clear quadratic trend is observable, 

allowing for a smooth approximation curve or regression 

line—the Isomap-transformed data appears spread out, 

disordered, and random in its geometric structure. This 

visual manifestation is typical of Isomap in scenarios where 

local neighbourhood preservation dominates over global 

structure, especially with a low n_neighbors parameter. This 

seemingly erratic pattern does not imply a degradation in 

data quality but instead reflects a reprojection of the data 

manifold into a space where latent non-linear relationships 

are more linearly separable. In essence, Isomap flattens the 

manifold, unfolding hidden non-linearities that are not 

linearly apparent in the original high-dimensional feature 

space. 

Following transformation, both the original dataset and 

the Isomap transformed version are independently fed into 

their respective meta-models within the MVNN architecture. 

These meta-models, implemented as parallel NN, learn 

distinct representations from their input view. Notably, 

because of the stark difference in feature space geometry, the 

activation patterns and learned representations within each 

meta-model diverge significantly. Consistent with the visual 

outputs in Figure 4, the internal activations from both meta-

models are characterized by random-like scatter patterns, 

reflecting the absence of obvious global trends in the 

transformed feature spaces. This also indicate that there is no 

dominant view which could affect the final prediction. 

Despite this initial irregularity, the concatenation layer, 

which aggregates the outputs from both views, also exhibits 

a composite randomness, with no immediate coherent 

structure emerging at this intermediate level. However, this 

multimodal noise is not a sign of model failure but rather a 

reflection of the heterogeneity and complementary nature of 

the multi-view inputs. 

The most critical insight emerges at the final SSE 

regressor layer of the MVNN. It is at this terminal stage that 

a clear, structured pattern becomes visible. Despite the 

randomness seen in earlier stages, the final layer manages to 

synthesize the multi-view representations into a coherent 

mapping that aligns with the underlying regression task. A 

distinct solid line emerges in the output, indicative of a 

strong predictive signal and successful integration of both 

views. This progression—from scattered and disjointed 

feature spaces to a unified and interpretable output—is a 

hallmark of deep NN architectures capable of abstract feature 

fusion and non-linear regression modelling. This behaviour 

illustrates one of the primary strengths of MVNN, which is 

their ability to learn hierarchical representations from 

disparate feature spaces, gradually integrating them through 

multiple layers of abstraction and non-linear 

transformations. The earlier layers focus on local view-

specific encoding, while the deeper layers are tasked with 

capturing cross-view synergies, ultimately culminating in a 

more structured and fine-grained and robust prediction.  

 

Figure 4. Original, Isomap, Meta Model 1 and 2, Concatenation and 
SSE Regressor Transformation on the dataset 
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V. RESULT AND DISCUSSION 

In this section, the results of the study are presented and 

summarizing the performance parameters used such as 

MAE, MSE, MMRE, RMSE, MdMRE and R2 as shown in 

Table V.  

A. RESULTS FROM SEVERAL SEE DATASETS 

TABLE V 

OUR PROPOSED MVNN RESULTS ON VARIOUS SEE DATASETS 

MAE MSE MMRE RMSE MdRME R2 

2.38E-03 2.30E-05 3.34E-02 4.79E-03 3.76E-02 0.998 

5.47E-03 5.70E-05 4.44E-02 7.54E-03 7.21E-02 0.999 
1.25E-02 8.31E-04 1.66E-01 2.88E-02 2.47E-01 0.956 

9.52E-03 1.85E-03 1.60E-01 4.30E-02 3.48E-01 0.927 

1.04E-02 3.69E-04 5.40E-02 1.92E-02 3.44E-02 0.990 

 

The results presented a detailed narrative of how the 

proposed MVNN performs across a variety of widely 

recognized SEE datasets in the following order: China, 

COCOMO NASA-V1, COCOMO NASA-V2, COCOMO-

81 and Desharnais. Each dataset represents a distinct context 

with different data characteristics, feature sets, and 

distributions. Despite this diversity, the MVNN consistently 

demonstrates strong predictive performance, reinforcing its 

adaptability and effectiveness in complex, real-world 

scenarios where SEE remains a challenging task. 

Since no universal baseline exists across these datasets—

and because each dataset is inherently unique and lacks 

correlation with the others—the evaluation of model 

performance focuses primarily on the R² (coefficient of 

determination) metric. This measure reflects how much of 

the variation in the target (effort) can be explained by the 

model. A high R² value indicates that the model captures the 

underlying relationships between features and the target 

variable very well. 

The MVNN achieves an R² of 0.998 on the CHINA 

dataset, suggesting that nearly all of the variability in 

software effort can be explained by the model’s predictions. 

The error values are remarkably low—MAE of 0.00238 and 

RMSE of 0.00479—indicating both accuracy and 

consistency. The MMRE, which stands at just 3.34%, further 

supports this conclusion. In practice, this means that the 

MVNN effectively learns from different feature views and 

integrates them to generate accurate effort predictions. 

Similarly, for the COCOMO NASA-V1 dataset, the model 

achieves an exceptionally high R² of 0.999, indicating nearly 

perfect alignment between predicted and actual effort values. 

The error rates are similarly low, with an MAE of 0.00547 

and MMRE of 4.44%, showing that the MVNN captures 

both large-scale and nuanced relationships within the 

dataset. 

The COCOMO NASA-V2 dataset yields a lower R² value 

of 0.956, but this still indicates that more than 95.6% of the 

variance in the target variable is explained by the MVNN. 

The model’s performance in terms of error—MAE of 

0.0125, RMSE of 0.0288, and MMRE of 16.6%—is slightly 

worse than in the previous datasets, which may be due to the 

noisier nature of the dataset or missing contextual features 

that are not captured. Nevertheless, the performance is still 

excellent by regression standards, especially in the domain 

of SEE, where achieving high R² values is notoriously 

difficult due to the uncertainty and inconsistency in human 

estimation and project documentation. 

On the older and perhaps less structured COCOMO-81 

dataset, the model achieves an R² of 0.927, the lowest 

performance compared with other datasets,  but it still 

manages to capture over 92% of the effort variance. The 

result is still impressive given the dataset’s age and potential 

inconsistencies in its feature definitions. The MMRE of 16% 

and MdRME of 34.8% suggest that prediction accuracy 

varies more in this dataset—possibly because the influence 

of human and organizational factors in historical data is 

harder to quantify or was less rigorously measured. Even so, 

the MVNN maintains strong performance by adapting to the 

available feature views. 

Lastly, for the Desharnais dataset, the MVNN achieves an 

R² of 0.990, a level of accuracy that again demonstrates its 

robustness. With an MAE of 0.0104, MMRE of 5.4%, and 

RMSE of 0.0192, the model shows both precision and 

consistency. This dataset contains structured features like 

function points and adjustment factors, which are well-suited 

to multi-view processing. The MVNN takes advantage of 

these structured views to accurately map input features to 

effort values. 

Across all datasets, the R² values range from 0.927 to 

0.999, reflecting that the MVNN captures between 92.7% 

and 99.9% of the variance in software effort. Even in the 

most challenging case (COCOMO NASA-V2), the 

unexplained variance is less than 4.4%, which could be 

attributed to random noise, missing features, or non-

observable project management factors. Such high R² values 

are rare in SEE tasks and indicate a very strong model fit 

across diverse datasets. 

This outcome supports the key strength of the MVNN with 

its ability to process and learn from multiple feature 

representations—or views—of the same data instance. By 

combining complementary and redundant information from 

different views, the MVNN forms a richer, more nuanced 

internal representation of the data, enabling it to model 

complex, non-linear relationships far better than traditional 

single-view or linear models. 

The performance results demonstrate that the proposed 

MVNN offers exceptional predictive capability in the SEE 

domain. Its ability to generalize across varied datasets, 

capture complex relationships, and maintain low error rates 

makes it a highly effective solution—particularly in domains 

where effort is influenced by numerous interdependent and 

heterogeneous factors. The consistently high R² values 

reaffirm that MVNN not only models the data accurately but 

also understands the underlying structure of software project 
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characteristics, leading to predictions that are both reliable 

and interpretable. 

B. RESULTS FROM MULTI VIEW AND SINGLE VIEW 

The comparative results presented in Table VI offer a 

detailed performance analysis between the proposed MVNN 

architecture and two variations of single-view meta-models 

across five prominent SEE datasets. This comparison aims to 

empirically validate the impact of incorporating multiple 

data perspectives (views) during learning, as facilitated by 

the MVNN architecture, in contrast to learning from a single 

representation of the data. 

From a technical standpoint, the MVNN consistently 

demonstrates superior predictive performance across most 

evaluation metrics. This consistent superiority is particularly 

evident when analyzing the R² metric, which represents the 

proportion of variance in the target variable that is 

predictable from the input features. MVNN achieves R² 

values above 0.99 in the China and COCOMO NASA-V1 

datasets, 0.956 in COCOMO NASA-V2, 0.927 in 

COCOMO-81, and 0.990 in Desharnais—each indicative of 

excellent model fit and high reliability in capturing the 

underlying functional relationship. 

The results highlight that the multi-view architecture of 

MVNN provides a significant performance boost over both 

single-view meta-models. For instance, in the COCOMO 

NASA-V2 dataset, which is considered more complex and 

noisy, MVNN achieves an R² of 0.956—whereas the two 

single-view models achieve considerably lower R² values of 

0.657 and 0.698, respectively. This stark contrast clearly 

illustrates the advantage of multi-view learning in capturing 

richer and more abstract representations of the data, 

especially in complex estimation scenarios where a single 

perspective may fail to account for latent dependencies or 

nonlinear interactions. 

In terms of MAE and RMSE, the MVNN also maintains 

lower values across most datasets, indicating reduced 

average error and deviation. For the China dataset, for 

example, MVNN produces a MAE of 0.00238 and an RMSE 

of 0.00479, compared to 0.00263 and 0.00607 in Meta 

Model 1, and 0.011 and 0.0172 in Meta Model 2. This pattern 

holds across multiple datasets, suggesting the MVNN’s 

robustness and consistent capability to generalize better, 

despite the inherent variance and distributional shifts in the 

dataset characteristics. 

A notable observation is the performance on the 

COCOMO-81 dataset, where Single View Meta Model 2 

slightly outperforms MVNN with an R² of 0.998 versus 

0.927 and a lower MAE (0.00405 vs. 0.00952). This 

exception also apply with Single View Meta Model 1 which 

also outperforms our proposed MVNN on MdRME using the 

same dataset. But overall, the multi-view approach embodied 

in the MVNN framework demonstrates a clear and consistent 

improvement in SEE when compared to traditional single-

view models. This improvement is attributed to the MVNN’s 

ability to integrate diverse feature subspaces into a unified 

representation, enabling it to model complex, nonlinear, and 

multidimensional relationships that are often missed in 

single-view approaches. The comparative results confirm the 

hypothesis that leveraging multiple views enhances learning 

capability and prediction fidelity, particularly in real-world 

SEE problems where data can be sparse, noisy, and high-

dimensional. 

C. COMPARISON WITH PREVIOUS SEE METHODS 

To validate our proposed method, we verify it with previous 

SEE studies on the same performance metric and datasets to 

compare the results in Table VII.  

The experimental evaluation of our proposed MVNN 

demonstrates a consistent and notable improvement across a 

variety of benchmark datasets compared with LNI-based NN 

[39], Neuro-fuzzy logic [39], Adaptive GA-based NN [39], 

GEHO-based NFN [39], FCNN [40], GWO-FC [40] and 

others. 

The comparison reveals that our MVNN achieves lower 

error rates in most cases. For instance, on the China dataset, 

TABLE VI 

COMPARISON BETWEEN SINGLE AND MULTI-VIEW 

Model Dataset MAE MSE MMRE RMSE MdRME R2 

MVNN China 2.38E-03 2.30E-05 3.34E-02 4.79E-03 3.76E-02 0.998 

COCOMO NASA-V1 5.47E-03 5.70E-05 4.44E-02 7.54E-03 7.21E-02 0.999 

COCOMO NASA-V2 1.25E-02 8.31E-04 1.66E-01 2.88E-02 2.47E-01 0.956 

COCOMO-81 9.52E-03 1.85E-03 1.60E-01 4.30E-02 3.48E-01 0.927 

Desharnais 1.04E-02 3.69E-04 5.40E-02 1.92E-02 3.44E-02 0.990 

Single View Meta 

Model 1 

China 2.63E-03 3.70E-05 3.68E-02 6.07E-03 4.56E-02 0.997 

COCOMO NASA-V1 6.54E-03 1.02E-04 5.31E-02 1.01E-02 1.07E-01 0.997 

COCOMO NASA-V2 1.84E-02 6.51E-03 2.45E-01 8.07E-02 2.05E-01 0.657 

COCOMO-81 5.92E-03 2.19E-04 9.96E-02 1.48E-02 2.83E-01 0.991 

Desharnais 1.20E-02 6.83E-04 6.23E-02 2.61E-02 3.83E-02 0.981 

Single View Meta 

Model 2 

China -CLEANED 1.10E-02 2.96E-04 1.54E-01 1.72E-02 2.38E-01 0.979 

COCOMO NASA-V1 2.60E-02 7.92E-03 2.11E-01 8.90E-02 1.86E-01 0.805 

COCOMO NASA-V2 2.68E-02 5.73E-03 3.57E-01 7.57E-02 3.44E-01 0.698 

COCOMO-81 4.05E-03 5.80E-05 6.81E-02 7.63E-03 3.36E-01 0.998 

Desharnais 2.55E-02 2.34E-03 1.33E-01 4.84E-02 1.09E-01 0.933 
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our MVNN achieved an exceptionally low MAE of 0.00238, 

outperforming other models such as the FCNN (MAE 

0.0310) and KNN (MAE 0.0332). Similarly, on the 

COCOMO NASA-V1 dataset, our model obtained an MAE 

of 0.00547, which is significantly better than traditional 

learning approaches such as Linear Regression (MAE 

0.0168) and Naive Bayes (MAE 0.0164). Even on more 

challenging datasets like COCOMO NASA-V2 and 

COCOMO-81, which tend to produce relatively higher error 

margins, our MVNN still performs competitively. On 

COCOMO NASA-V2, our model achieved an MAE of 

0.0125, compared to FCNN with an MAE of 0.0967. 

Likewise, in the Desharnais dataset, where many classical 

methods show significant errors and variability, our model 

reached an MAE of 0.0104. 

 

TABLE VII 

PERFORMANCE COMPARISON 

Method  Metrics  MAE  MSE  MMRE  RMSE  MdMRE  

LNI-based NN [39] China - - 2.40E-01 1.48E-01 2.55E-01 

 COCOMO NASA-V1 - - 2.43E-01 1.83E-01 2.49E-01 

 COCOMO NASA-V2 - - 2.25E-01 3.83E-01 2.49E-01 

 COCOMO-81 - - 2.24E-01 2.61E-01 2.56E-01 

  Desharnais - - 3.20E-01 3.12E-01 3.36E-01 

Neuro-fuzzy logic [39] China - - 2.20E-01 7.50E-02 2.40E-01 

 COCOMO NASA-V1 - - 2.36E-01 1.31E-01 2.15E-01 

 COCOMO NASA-V2 - - 1.96E-01 2.90E-01 2.15E-01 

 COCOMO-81 - - 2.13E-01 1.78E-01 2.56E-01 
  Desharnais - - 2.96E-01 1.73E-01 2.23E-01 

Adaptive GA-based NN [39] China - - 1.92E-01 5.60E-02 2.18E-01 

 COCOMO NASA-V1 - - 2.31E-01 6.50E-02 1.72E-01 

 COCOMO NASA-V2 - - 1.74E-01 2.32E-01 1.72E-01 

 COCOMO-81 - - 1.99E-01 1.30E-01 2.35E-01 

  Desharnais - - 1.97E-01 1.11E-01 1.81E-01 

GEHO-based NFN [39] China - - 1.67E-01 3.90E-01 1.68E-01 

 COCOMO NASA-V1 - - 2.20E-01 6.00E-02 1.30E-01 

 COCOMO NASA-V2 - - 1.28E-01 9.60E-01 1.30E-01 

 COCOMO-81 - - 1.74E-01 5.50E-02 2.23E-01 

  Desharnais - - 1.12E-01 6.00E-02 1.00E-01 

FCNN [40] China 3.10E-02 2.88E-03 - 5.36E-02 5.71E-01 

 COCOMO NASA-V1 1.06E-01 2.53E-02 - 1.59E-01 7.87E-01 

 COCOMO NASA-V2 9.67E-02 2.10E-02 - 1.42E-01 8.25E-01 

 COCOMO-81 1.52E-01 3.19E-02 - 1.79E-01 1.73E-01 
  Desharnais 1.27E-01 3.47E-02 - 1.86E-01 4.39E-01 

GWO-FC [40] China 2.18E-02 1.34E-03 - 3.66E-02 3.82E-01 

 COCOMO NASA-V1 4.80E-03 4.58E-05 - 6.80E-03 6.30E-03 

 COCOMO NASA-V2 6.53E-02 1.17E-02 - 1.08E-01 6.31E-01 

 COCOMO-81 1.30E-02 2.82E-04 - 1.68E-02 1.31E-02 

  Desharnais 3.21E-02 1.85E-03 - 4.30E-02 8.43E-02 

KNN [42] China 3.32E-02 6.30E-03  7.92E-02 3.48E-01 

 COCOMO NASA-V1 7.80E-02 1.16E-02  1.08E-01 1.98E-01 

 COCOMO NASA-V2 1.10E-01 4.38E-02  2.09E-01 3.37E-01 

 COCOMO-81 1.54E-02 9.00E-04  3.00E-02 4.27E-01 

  Desharnais 9.94E-02 2.84E-02  1.69E-01 2.10E-01 

LR [42] China 4.33E-02 9.90E-03  9.95E-02 4.75E-01 

 COCOMO NASA-V1 1.68E-02 4.00E-04  2.00E-02 1.01E-01 

 COCOMO NASA-V2 1.11E-01 3.38E-02  1.84E-01 6.11E-01 

 COCOMO-81 1.00E-01 1.90E-02  1.38E-01 4.69E+00 
  Desharnais 8.96E-02 1.38E-02  1.17E-01 3.10E-01 

NB [42] China 4.15E-02 6.80E-03  8.26E-02 4.55E-01 

 COCOMO NASA-V1 1.64E-02 4.00E-04  1.92E-02 1.06E-01 

 COCOMO NASA-V2 1.05E-01 3.34E-02  1.83E-01 6.63E-01 

 COCOMO-81 3.26E-02 2.10E-03  4.53E-02 3.19E+00 

  Desharnais 8.78E-02 1.28E-02  1.13E-01 3.14E-01 

SBG [42] China 4.36E-02 8.50E-03  9.23E-02 5.50E-01 

 COCOMO NASA-V1 1.42E-01 3.14E-02  1.77E-01 3.38E-01 

 COCOMO NASA-V2 8.92E-02 3.56E-02  1.89E-01 6.89E-01 

 COCOMO-81 4.87E-02 5.10E-03  7.13E-02 3.91E+00 

  Desharnais 1.12E-01 2.27E-02  1.51E-01 2.99E-01 

Our China 2.38E-03 2.30E-05 3.34E-02 4.79E-03 3.76E-02 

 COCOMO NASA-V1 5.47E-03 5.70E-05 4.44E-02 7.54E-03 7.21E-02 

 COCOMO NASA-V2 1.25E-02 8.31E-04 1.66E-01 2.88E-02 2.47E-01 

 COCOMO-81 9.52E-03 1.85E-03 1.60E-01 4.30E-02 3.48E-01 
  Desharnais 1.04E-02 3.69E-04 5.40E-02 1.92E-02 3.44E-02 

  



 Boy Setiawan, et. al.: Multi View Neural Network for Software … (October 2025) 

VOLUME 07, No 02, 2025 DOI: 10.52985/insyst.v7i2.442 76 

These results demonstrate the robustness and 

generalizability of our approach across datasets of varying 

characteristics. Unlike many baseline models that either rely 

on linear assumptions or are limited by single-view input 

representations, our MVNN benefits from its architecture 

that integrates multiple views through a structured DL 

pipeline. This allows it to adapt to different data distributions 

and capture complex nonlinear relationships that are often 

present in software effort estimation tasks. 

D. THREATS TO VALIDITY 

As with every empirical experiment, the results of our 

works are subject to some threats to validity. 

E. CONSTRUCT VALIDITY 

We admit that during our experiments, only a subset of 

various SEE datasets were used and not all datasets were 

included in the case of PROMISE. Although it would be best 

to include all of them, but the limitation of resources hinders 

us to take this step. For objectivity, we reserved ourself from 

modifying unless it is necessary to conduct the experiment. 

Since most studies on SEE uses an open and public datasets, 

we consider the datasets is complete and adequately fixed 

and reliable to be used in our study. 

F. INTERNAL VALIDITY 

Although there are variations of the same dataset in some 

repositories. We found it to be constructive and the necessary 

adjustment have been made and verified by previous studies. 

Therefore, the validity of the datasets should be minor and 

will cause little effect on the results.  

G. EXTERNAL VALIDITY 

We validated our findings using open and public datasets 

from different sources and different software metrics to gain 

more confidence in the external validity of our study. By 

doing so, we hope to achieve generalization with our 

proposed method, and any replicated studies with our 

method will be a step to improve our method. 

 
VI. CONCLUSION 

In this article, we propose MVNN for SEE which shows 

to be reliable compared with previous studies. The 

challenges of SEE lies in the small amount of examples and 

the different software metrics used universally among 

software projects. Although there are methods and 

techniques to overcome the challenges of SEE, but the 

complex nature of software projects still prove to be a 

challenging field in the future to improve software 

engineering, by finding an efficient tools to find and predict 

defect during the life cycle of software development. In this 

method, we used multiple steps of pre-processing prior of 

training ranging from features selection, imputation, and 

scaling to overcome the different software metrics, and to 

avoid any dominant value in the outlier. Besides the original 

dataset as the primary view, we opted to create a different 

view from the dataset by utilizing Isomap reliable 

dimensionality reduction algorithm. The use of Isomap as a 

dimensionality reduction will reduce the size of the MVNN 

input, so a smaller yet effective NN regressor can be trained 

using K-fold CV. Empirical studies with some notably SEE 

datasets show the effectiveness of our proposed method 

compared with previous methods. In the future, we would 

like to extend our research towards more deep layers NN to 

further improve the performance of our proposed MVNN. 
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