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ABSTRACT Software Effort Estimation (SEE) is a critical challenge in software project management, dating
back to the early years of software engineering. Accurate estimation of the effort required for software
development is essential for project planning, resource allocation, and risk management. Incorrect effort
estimates can result in poor resource distribution, cost overruns, missed deadlines, and even complete project
failure. This issue is increasingly urgent today as software systems are deeply embedded in almost every
product and service, amplifying the need for reliable and accurate predictions. Over the years, several
methods for SEE have been proposed, ranging from algorithmic models to expert judgment. More recently,
machine learning (ML) approaches such as Case-Based Reasoning (CBR), Support Vector Machines (SVM),
Decision Trees (DT), and Neural Networks (NN) have gained attention for their ability to model complex,
nonlinear relationships inherent in SEE tasks. In this study, we propose a novel approach based on multi-
view learning with NN (MVNN), which leverages multiple views from existing datasets, thus improving
performance and generalization, particularly when the available data is small and scarce. The effectiveness
of the MVNN model is validated through empirical comparisons with existing SEE models, demonstrating
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its potential to enhance SEE accuracy and improve prediction reliability.
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I. INTRODUCTION

SEE is recognized as one of the earliest and most critical
challenges in software project management, with its
conceptual roots dating back to the formative years of software
engineering [1]. The ability to reliably estimate the effort
required for successful software development is fundamental
to effective project planning, resource allocation, and risk
management. Although the terms effort and cost are often used
interchangeably in practice, they represent distinct constructs;
nonetheless, both are integral to ensuring project feasibility
and delivery. Inaccurate estimation of software effort can
result in suboptimal resource distribution, leading to cost
overruns, missed deadlines, and ultimately project failure.
This issue becomes even more pressing in the current era,
where software systems underpin a significant portion of
goods and services, intensifying organizational reliance on
accurate estimation. Despite its longstanding relevance, SEE
continues to present considerable difficulties for software
teams and project managers, necessitating its consideration
from the earliest stages of project development [2].
Consequently, a substantial body of research has emerged
focusing on the advancement of models, techniques, and
empirical strategies aimed at enhancing the precision,
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efficiency, and applicability of software effort estimation in
various development contexts [3].

The scope of SEE extends beyond resource allocation; it
plays a critical role in facilitating communication among both
internal and external stakeholders concerning planning,
budgeting, financial oversight, and implementation proposals.
SEE enables organizations to establish budgets and allocate
funds effectively while offering insights into the anticipated
costs of software development [4]. More broadly, the capacity
to generate realistic effort estimates empowers executives and
managers to make informed decisions, mitigate risks, and
identify factors that could contribute to project failure, such as
complexity, technology constraints, and team requirements.
Since inaccurate effort estimation often leads to project crises,
providing an accurate approximation of the resources needed
to meet project objectives—while ensuring the delivery of
products and services that fulfil both functional and non-
functional requirements—can significantly reduce the
likelihood of project failure [1].

Measuring software sophistication early in the project
lifecycle and making accurate estimations is a complex task,
posing significant challenges for both managerial and
development roles [5]. Unlike traditional manufacturing,
software engineering is primarily a human-intensive process.
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Over the past 50 years, the software industry has undergone
substantial evolution, with at least four generations of
programming languages and three major development
paradigms [1]. This progression has been further complicated
by the rapid advancement of development technologies,
constant paradigm shifts, and ongoing changes in methods and
tools. Moreover, the nature of software development has
transitioned from being the responsibility of a single
contractor to distributed projects, where teams are dispersed
across various companies, time zones, cultures, and even
continents, further enhancing the intangible and volatile nature
of software products.

Over the years, researchers have developed a variety of
effort estimation methods, with each new approach generally
exhibiting increased sophistication. These methods are
extensively covered in the SEE literature and are typically
categorized into three main groups: algorithmic, non-
algorithmic, and ML methods (see Figure 1). Initially, SEE
relied on non-algorithmic expert judgment, a straightforward
approach to generate realistic estimates [6]. The Delphi
technique and work breakdown structure (WBS) are among
the most widely used expert judgment methods. In the Delphi
technique, a meeting is convened with project experts, and
through discussion and argumentation, a consensus estimate is
derived. In contrast, the WBS method involves breaking down
the entire project into smaller sub-projects or tasks, continuing
until the baseline activities are reached. This hierarchical
decomposition allows for more accurate effort estimations to
smaller and more manageable sub-tasks.

Effort Estimation Model

v ¥ |

Algorithmic — Non-algorithmic Machine Learning
> COCOMO -+  Expert Judgement | B NN
> uce = Analogy Based ™ SVR
- SLIM > Deiphi . DT
> Object Point > Planning Poker +»  Bayesian Network ‘

Figure 1. SEE Methods

Algorithmic  approaches leverage statistical and
mathematical principles for SEE. Notable examples of
estimation techniques within this category include
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Constructive Cost Model (COCOMO)-II, Putnam Software
Life Cycle Management (SLIM), SEER-SEM, and True
Planning. The primary input for these models is the size of the
software being estimated, which is typically measured using
metrics such as function points (FP), source lines of code
(LOC), or use case points [2].

ML techniques have recently demonstrated their
effectiveness, particularly in estimating the effort required for
software projects. Among these techniques, Case-Based
Reasoning (CBR) stands out as one that leverages the history
of successfully completed projects to predict solutions for new
cases [3]. CBR is particularly promising for effort estimation
because it emulates human reasoning by referencing past
projects that were successfully implemented and using their
actual effort data to predict the effort required for current
projects. Recently, Bayes' theorem has garnered significant
attention as a potential approach for managing estimation
uncertainty and integrating quantitative data with subjective
human judgment [1]. In addition to other well-known ML
algorithms such as SVM, DT, Linear Regression (LR), and K-
Nearest Neighbours (KNN), the growing complexity and
variability of software projects have driven the adoption of NN
in SEE [7]. One of the key advantages of using NNs is their
capacity to model complex, nonlinear relationships that are
inherent in software projects. Moreover, advancements in NN
architectures have significantly enhanced the accuracy of
estimations [8]. Additionally, innovations such as Genetic
Algorithms (GA), Convolution, and metaheuristic techniques
integrated with NNs have improved the convergence and
adaptability during the training phases, leading to more
accurate software effort estimates.

Several recent studies [9], [10], [11], [12] highlight the
challenges associated with assembling and analysing
empirical software engineering datasets. The SEE research
community has recognized and prioritized issues such as
noise, outliers, and missing data, where simple approaches like
the “majority rule” may not be applicable. A key example of
this challenge is the treatment of outliers, where common
practices of exclusion must be approached with caution, as
extreme estimates may sometimes be the most accurate [1].
Removing such values could also distort the dataset
distribution, which is particularly problematic since many ML
algorithms assume a normal distribution dataset. Additionally,
issues such as poor provenance, data inconsistency, and
commercial sensitivity in software estimation datasets have
been largely overlooked [13]. These issues complicate the
accuracy of SEE, especially for NN models, where the
availability of sufficient, high-quality data is crucial for
improving model performance.

When data is scarce and acquiring additional data from
external sources presents significant challenges, particularly
due to confidentiality concerns in software projects. It
becomes essential to maximize the utility of existing datasets.
Standard ML techniques used in SEE typically rely on a single
input for training. However, SEE can also be approached using
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multiple views, where multiple feature vectors are utilized
[14]. Multi-view learning is an emerging area in ML that
leverages multiple perspectives or feature sets to enhance
generalization, commonly referred to as data fusion or data
integration [15]. The goal of multi-view learning is to model
each view independently while jointly optimizing all models
to improve overall generalization performance. A significant
advantage of this approach is its ability to boost generalization
by generating multiple views manually to enhance
performance. Although various multi-view ML methods, such
as sparse multi-view time SVM [16] and multi-view
discriminant analysis (DA) [17], have demonstrated
effectiveness in classification tasks, to the best of our
knowledge this is the first study applying multi-view learning
using NN within the SEE domain.

Based on the problems stated above, we are focussing our
study to use multiple-views with NN using common datasets
for SEE to construct a high-quality multi-view NN (MVNN).
On the issue of outlier, we opted a pre-processing method to
preserve as much information available by applying scaling to
reduce the high value impact of the outlier rather than
eliminating it from the dataset and apply -1 to null values . In
order to maximize existing datasets, we are using the same
datasets to generate a different view by using the output of a
dimensionality reduction algorithm to increase performance
and generalization of the proposed MVNN. At the end, we will
validate our findings with an empirical comparison from
previous studies to show the competitiveness of our proposed
method.

The key contributions of this works are as follows:

1. This study proposes a novel SEE model based on MVNN
to construct a prediction model that enhance the contribution
of SEE in software engineering.

2. We proposed a novel way to generate a different view of
the datasets by utilizing a dimensionality reduction algorithm
to produce the same datasets in a different latent space.

3. Finally, to verify the performance of the proposed method,
we conducted experiments on various SEE dataset with
existing SEE models.

This paper follows the following structure. Section 1 gives
introduction on the problem domain. Section 2 provides
literature overview of the relevant SEE work. The presentation
of our research methodology and experimental setups follow
in section 3. The experimental results are presented in Section
4 along with the threats to internal, external, construct of our
study and conclusions are covered in Section 5.

Il. THEORETICAL FRAMEWORK

In this section we briefly introduced theoretical review
which underline our proposed MVNN method and related
works on SEE from previous studies.

A. MULTI-VIEW NEURAL NETWORK

With the growing volume and diversity of data in recent
years, the interest in multi-modal and heterogeneous
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representations has surged, driven by the desire to enhance
learning performance. MVNN have emerged as an effective
approach for integrating multiple data representations into a
unified predictive model [18]. MVNNs refer to NN
architectures that incorporate multiple feature representations
(views) from the same data instance to enhance learning
performance, leveraging both redundant and complementary
information across all modalities [15]. A key challenge lies in
effectively representing and summarizing multimodal data to
fully exploit the complementarity and redundancy of the
multiple modalities in the dataset [19]. One straightforward
approach to addressing multiple modalities is early fusion,
which involves concatenating features from individual
modalities immediately after extraction, resulting in joint
representations or unimodal data [20]. This approach aligns
well with NN, which excel at handling such unified
representations and have become a popular method in various
tasks. While several ML algorithms, such as kernel-based
SVM are used for multi-view classification problems, NN
have demonstrated exceptional performance in tasks such as
face recognition, object detection, and classification with
MVNNSs [15]. The superior performance of NN-based joint
representations, coupled with the ability to pre-train models in
an unsupervised manner, has further fuelled their popularity.
However, their performance is highly dependent on the
availability of large amounts of training data. Despite their
many advantages, one limitation of NN is their inability to
effectively handle missing data, although strategies exist to
mitigate this issue [21].

B. SOFTWARE EFFORT ESTIMATION DATASETS

SEE plays a pivotal role in software project management,
enabling accurate estimation of the effort required for a
successful software project completion including project
planning, budgeting, and execution of the project. Various
datasets have emerged as valuable resources for researchers
and practitioners in this field, specifically targeting the
challenge of estimating the effort required for software
development. These datasets typically consist of historical
data from previous software projects, encompassing various
project attributes, such as size, complexity, effort, and other
relevant factors which are used for training and evaluation of
SEE models. In the SEE domain, several publicly available
datasets have been widely used for model training and testing.
Notable examples include the COCOMO datasets, such as
COCOMO-81, COCOMO NASA-V1, and COCOMO
NASA-V2, which provide a detailed record of software
development effort based on various attributes like lines of
code, function points, and other software metrics. Other
commonly used datasets include Desharnais, China, and
Maxwell, which offer a diverse set of project data to evaluate
the performance of estimation models. The challenge in SEE
datasets lies not only in the availability of accurate data but
also in addressing common issues such as missing values,
noise, and outliers. Furthermore, the rapidly evolving nature
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of software development practices and technologies means
that datasets must be continuously updated to reflect current
trends and methodologies. In this context, datasets with a
diverse range of software projects and environments are
crucial for the generalization of SEE models across various
domains. A comprehensive understanding of the available
datasets is vital, as highlighted by [22], who identified 12
publicly accessible datasets including Albrecht, COCOMO-
81, and COCOMO NASA-V2 among others. They
specifically extracted the China and Maxwell datasets due to
their structural quality and content suitability for machine
learning applications in estimating software effort.

In this study, several SEE datasets were used to validate our
proposed method and compared with results from previous
studies. A summary description of the datasets used can be
seen in Table I.

TABLEI
ESS DATASETS
Dataset Records  Attri- Effort Size (Unit
butes measurement)
Desharnais 81 11 Person- Function point
hours
China 499 18 Person- Function points
hours
COCOMO 60 16 Person- LOC
NASA-V1 months
COCOMO 93 22 Person- LOC
NASA-V2 months
COCOMO-81 63 17 Person- LOC
months

C. K-FOLD CROSS-VALIDATION

K-fold cross-validation is an effective technique for
assessing the performance of ML models. This method
involves partitioning the dataset into K subsets or folds. A
model is trained K times, each time using K-1 folds for
training and the remaining fold for validation. This process
allows for a robust evaluation of the model’s performance, as
it mitigates issues related to overfitting and provides a better
estimate of model generalizability [23]. The choice of K can
significantly impact the effectiveness of cross-validation.
While 10-fold cross-validation is a common choice in the
literature, studies suggest that the optimal K could vary
depending on the dataset and the modelling context. For
instance, Okfalisa et al. argue that although 10-fold is
standard, there’s no one-size-fits-all solution, and K can be
adjusted based on the dataset size and specific requirements
[24]. Furthermore, increasing K might reduce bias but could
also lead to higher variance in model performance estimates
[25].

D. MIN-MAX SCALER

The Min-Max scaler adjusts the scale of an attribute by
shifting its values along the x-axis, ensuring that the
transformed attribute’s values fall within the interval of (0, 1)
[26], according to this formula:
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X — Xmin

(M

xscaled - X max ~ Xmin

In (1), the scaling factor is determined by the attribute’s
range, while the translational term is set as its minimum value.
This approach guarantees that the attribute’s values are
transformed to a minimum of zero and a maximum of one
which is the ideal value for NN input.

E. ISOMETRIC FEATURE MAPPING

Isometric Feature Mapping (Isomap) is a widely used
technique for non-linear dimensionality reduction technique to
overcome high dimensionality in a dataset compare to
Principal Component Analysis (PCA) which excels on linear
dataset. The most distinct feature of Isomap lies in its
versatility tested across various applications, ranging from
image processing, fault prediction in electromechanical
systems, and anomaly detection in hyperspectral imagery [27].
Introduced in 2000 by Tenenbaum et al. [28] as an
improvement of multidimensional scaling (MDS) by
replacing geodesic distances rather than Euclidean distances,
this improvement allows Isomap to capture the true manifold
structure of the dataset [29]. Beside the advantages, Isomap
performs sub optimally when processing data that
encompasses multiple clusters or manifold structures, but this
drawback has spurred the development of modifications,
including extensions from the original Isomap such as
Fastlsomap and Landmark Isomap, aimed at enhancing
computational efficiency and the ability to handle more
complex datasets effectively [30].

F. EVALUATION MEASURES

Evaluation measures typically reflect the performance of
ML predictive result. In this paper, there are five main
measures to validate the effectiveness of the proposed model:
mean absolute error (MAE), mean square error (MSE), mean
magnitude relative error (MMRE), root mean square error
(RMSE), R-squared (R2) and median magnitude relative error
(MdMRE) as shown in (2) until (7) respectively.

1 P
MAE = - ¥i_1ly: = 71l )

MSE = 3%, (v — 90> (3)

MMRE = 37, '“y‘iﬁ' )

RMSE = /— =1 i = 9% (5)
2 =1 _ Zin0iow?

k=1 I 0i-5)? ©)

MdMRE = median (ly‘ % ) @)
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lll. PREVIOUS RESEARCH

Numerous studies have been conducted over time to
enhance the efficacy of SEE, particularly in predicting effort
estimation early in the software development lifecycle
(SDLC). Researchers have explored various techniques,
including ML, NN, and hybrid methods, which integrate
multiple approaches to develop the most effective SEE
models. One notable study by [3] combined CBR with GA to
optimize key CBR parameters, such as feature selection (FS),
feature weighting, similarity measures, and the number of
nearest neighbours (k). The results demonstrated the
effectiveness of GA in producing an accurate SEE model.
Another study proposed by [31], focused on applying CBR
with a bisecting k-medoids clustering algorithm to better
understand datasets and identify the most relevant cases for
effort estimation. This approach involved removing unrelated
projects to find the best k analogies for each new project
requiring estimation. Empirical experiments on different
datasets indicated that the optimal k value depends on the
specific characteristics of the dataset. In the study of [32], the
authors explored SEE estimation based on analogies utilizing
distance similarity measures such as Euclidean, Manhattan,
and Minkowski. Their results showed that the Manhattan
similarity measure yielded the highest accuracy, with a 50%
MMRE, 28% MdAMRE, and 48% prediction accuracy
(PRED). In a study by [33], SEE model named DEAPS was
proposed, which is based on the differential evolution
algorithm using the Desharnais dataset. The model employed
the Euclidean distance similarity measure to reduce the set of
historical projects to a subset of similar projects, followed by
the application of the differential evolution algorithm to refine
and retrieve the best solutions. The results of this model
showed significant improvements in analogy-based effort
SEE.

In the field of ML, a study by [34] compare the performance
of Random Forest (RF), SVM, DeepNet, and NN. Their
findings concluded that RF outperformed the other methods
when applied to the Desharnais, Maxwell, China, and
Albrecht datasets. Rahman et al. [2], compared three SEE
forecasting algorithms: DT, Support Vector Regression
(SVR), and KNN. They processed and analysed the datasets,
applying the proposed algorithms and evaluating the models
based on three criteria: MAE, MSE, and R% The study
demonstrated that DT outperformed the other algorithms.
Alhazmi et al. [35] employed bagged learning with base
learners such as LR, SMOReg, NN, RF, REPTree, and M5
rule for SEE. They also implemented FS algorithm to assess
the impact of the BestFit FS algorithm and GA, using the
China dataset for evaluation. The results revealed that the M5
packing rule with GA as FS achieved an average relative error
size of 10%, making it more effective than the other
algorithms. Varshini et al. [6] presented both single and
combined techniques which included combinations of
individual methods. They used RF, SVM, DT, stacking with
SVM, and stacking with RF and conducted experiments on the
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Albrecht, China, Desharnais, Kemmerer, Kitchenham,
Maxwell, and COCOMO-81 datasets. The models were
evaluated using MAE, RMSE, and R? with the results
showing the superiority of RF over other models, including
ML algorithms and clustering techniques. Zakaria et al. [36]
introduced a model based on SVM and LR for SEE,
implemented through an application called SOFREST
estimator. They applied RF, regression tree, LR, and SVM to
the COCOMO Nasa-V1l, COCOMO Nasa-V2, and
COCOMO-81 datasets. The models were evaluated using
multiple criteria, including MSE, RMSE, MAE, MdMRE,
min—max accuracy, correlation accuracy, and P-value with the
results demonstrating the superiority of the targeted
algorithms across the datasets.

Fadhil et al. [37] introduced a model based on the Dolphin
Swarm Algorithm (DSA) and the hybrid Bat Algorithm
(DolBat) to enhance cost estimation models. The DSA is
particularly effective for optimization tasks, requiring fewer
individuals and fitness function calls while utilizing
echolocation to more efficiently find optimal solutions. This
study was conducted using the COCOMO NASA-V1 and
NASA-V2 datasets. The model's performance was evaluated
using the MMRE metric and was compared with other
algorithms, such as GA. Vo Van et al. [38] proposed a model
to assess the impact of data aggregation on SEE, aiming to
identify the most effective aggregation method. This model,
called Effort Estimation Using Machine Learning Applied to
Clusters (EEAC), was evaluated using multiple metrics,
including Mean Absolute Percentage Error (MAPE), RMSE,
MAE, Mean Balance Relative Error (MBRE), and Mean
Inverted Balance Relative Error (MIBRE). The experimental
results demonstrated that estimation accuracy achieved
through clustering consistently outperformed accuracy
without clustering, for both Function Point Analysis (FPA)
and the EEAC methods.

The application of NN is also widespread in SEE research.
Sharma et al. [39] proposed four distinct methods for SEE
prediction: Localized Neighbourhood Mutual Information-
based NN (LNI-NN), Fuzzy-based NN (NFL), Adaptive GA-
based NN (AGANN), and GEHO-based Neural Fuzzy
Network (GEHO-NN). These models were applied to five
datasets: COCOMO-81, COCOMO NASA-V1, COCOMO
NASA-V2, China, and Desharnais, and evaluated using four
prediction metrics: MMRE, RMSE, MdMRE, and PRED.
Kassaymeh et al. [40] presented a model for SEE using a Fully
Connected NN (FCNN) combined with a Gray Wolf
Optimizer (GWO), termed GWO-FC. This model was tested
on 12 datasets and evaluated based on several criteria,
including MSE, Relative Absolute Error (RAE), MAE,
Variance Accounted For (VAF), Manhattan Distance (MD),
and RMSE.

IV. RESEARCH METHOD

This section outlines the experimental procedures
implemented in this study to assess the proposed SEE
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methods. Figure 2 illustrates a schematic representation of the
experimental framework employed to validate the
effectiveness of our proposed method. The framework was
designed to facilitate an empirical evaluation of the models,
where K-fold CV is applied to SEE datasets, and the model
with the lowest MMRE from the best k-fold result is selected
as the optimal model.

SEE Datasets

Mj‘,—-—"
- — .

. Ercasing

=

i Femture Sadeosiees

Figure 2. Experimental Framework

A. PRE-PROCESSING

The pre-processing phase begins by converting any

VOLUME 07, No 02, 2025 DOI: 10.52985/insyst.v7i2.442

feature to numerical and dropping unnecessary features
which does not add information in the dataset. In addition,
the absence of null values is handled by setting it to -1. The
last phase of pre-processing is utilizing scaling to bring down
all input value to a same scale to avoid any outlier of
affecting the final calculation. A brief result of the pre-
processing is shown in Table II.

TABLE II
PRE-PROCESSED ESS DATASETS
. Drop Null
# Dataset Attributes Features Value
. Project,
1 Desharnais 9 YearEnd Yes
2 China 18 - No
COCOMO
3 NASA-VI 16 - No
COCOMO projectname,
4 NASA-V2 20 year No
5 COCOMO-81 17 - No

Although NN has the abilities to extract features and
complex relationship in the dataset and has proven effective
with or without feature engineering across various domains
as detailed by [41] on comparing between ML and NN, the
transformed dataset will boost NN dynamically to process
input data, and learned to recognize patterns and assimilate
high-level features in a hierarchical manner, effectively
managing complexities in relationships among features. A
summary of features used from each dataset can be seen in
Table III.

TABLE III
FEATURES USED
Dataset Features
Desharnais ~ TeamExp Manager  Language  Transactions
Exp
Length Entities PointsNon  PointsAdjust
Adjust
Adjustment
China AFP Input Output Enquiry
File Interface  Added Changed
Deleted PDR_A PDR_UF NPDR_AFP
FP P
NPDU Resou- Dev.Type Duration
~UFP rce
N effort effort
COCOMO RELY DATA CPLX TIME
NASA-VI  STOR VIRT TURN ACAP
AEXP PCAP VEXP LEXP
MODP TOOL SCED LOC
COCOMO  cat2 forg center mode
NASA-V2  rely data cplx time
stor virt turn acap
aexp pcap vexp lexp
modp tool sced equivphyskloc
COCOMO-  dev_mode rely data cplx
81 time stor virt turn
acap aexp pcap vexp
lexp modp tool sced
loc
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B. K-FOLD cVv

In this study, we employed 10 folds K-fold CV in the
training phase with a constant random state for reproduction.

C. MVNN

NN with two views as inputs will be used to predict SEE
with the same architecture as shown in Figure 2. Both meta
models consist of four layers of 256, 128, 64 and 32 nodes
respectively with ReLu activation. The first meta-model
input is the output of the pre-processing phase, while the
output of the input transformation will be feed to the second
meta-model. The outputs of both meta-models will be
concatenated and feed to a layer of 2048 nodes and dropout
(set at 0.1) for regularization before being feed to the final
SEE regressor which will predict the final result. A depiction
on the proposed MVNN is shown on Figure 3.

Meta Mode! 1

Concatenation

Origional
Data Set

SEE Regrassor

Concat Layer

‘Transformed
Data Set

Meta Model 2

Figure 3. Our proposed MVNN

When data is scarce and acquiring additional data from
external sources presents significant challenges—particularly
due to confidentiality and privacy concerns, which are highly
prevalent in software engineering projects—it becomes
imperative to focus on maximizing the utility of the limited
available datasets. In many real-world software engineering
environments, especially those involving SEE, datasets are
often small, incomplete, or imbalanced. This limitation is
exacerbated by the sensitive nature of project data, which may
include historical data or resource allocation records that
organizations are unwilling or legally unable to share. As a
result, conventional data-hungry approaches such as NN faces
severe limitations in their applicability and generalization in
SEE domain.

Traditional ML techniques commonly employed in SEE
typically operate under a single-view paradigm. In contrast,
multi-view learning—and more specifically, MVNN—
presents a robust and scalable solution to this challenge. Multi-
view learning leverages the idea that different "views" or
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feature groups, even if derived from the same underlying data
instance, can offer both redundant and complementary
information, which introduce new aspects or perspectives that
a single view cannot provide alone. By simultaneously
learning from all available views, MVNNSs are capable of
constructing a more holistic and discriminative representation
of the data. Moreover, MVNNs help mitigate overfitting,
which is a prevalent concern when training deep learning
models on small datasets. By distributing the learning burden
across multiple feature spaces, the model is less prone to
memorizing noise or spurious correlations from any single
view. Instead, it learns more robust and generalizable patterns
that are supported by evidence across several data modalities.
This becomes a particularly valuable property in SEE tasks,
where the cost of misestimation can significantly impact
project planning and resource allocation.

A. INPUT TRANSFORMATION

The correlation analysis summarized in Table IV provides
a comprehensive overview of the linear relationships
between input features and the effort target variable across
multiple SEE datasets used in this study. This statistical
analysis is a crucial step to understand the predictive power
of individual attributes and identifying whether traditional
linear modeling assumptions hold in the context of SEE.
Upon close inspection, it becomes evident that most of the
features across these datasets exhibit low or even negative
correlation coefficients with the effort target variable,
strongly suggesting the presence of non-linear or complex
relationships that cannot be captured effectively through
simple linear models.

For the China dataset, a few features such as AFP (0.68),
Added (0.69), and File (0.61) demonstrate moderately high
positive correlations with effort, indicating that these
variables may linearly contribute to SEE. This aligns with
expectations, as Added functionality and function point
metrics like AFP and File often scale with the complexity
and size of the project, naturally increasing development
effort. However, other features such as Deleted (0.07),
Changed (0.11), and Interface (0.33) show very low
correlations, suggesting they provide little to no linear
explanatory power. The metric Dev.Type returns NaN,
which might indicate missing or unprocessable data in this
context. Furthermore, the moderately positive correlation of
Duration (0.48) with effort is intuitive, though not strong
enough. Notably, N_effort (0.99) shows an almost perfect
correlation, likely because it is either a derived or a target-
like variable.

The COCOMO NASA-V2 dataset presents a more
nuanced picture. The majority of features show negative or
weak positive correlations with the effort target. For
example, forg (-0.37), mode (-0.33), and sced (-0.31) are
negatively correlated with effort, suggesting either inverse
relationships or the presence of non-linear dependencies.
The relatively low positive correlations for center (0.42) and
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cplx (0.41) suggest that complexity and organizational
structure have some influence, but not dominantly so.
Interestingly, equivphyskloc (0.59) shows one of the higher
correlations, reinforcing the long-standing view that code
size (KLOC) remains a strong, albeit imperfect, predictor of
effort. However, other typical COCOMO drivers like acap (-
0.21) and aexp (-0.11) show negative or negligible
relationships, raising questions about the linear assumptions
often applied in parametric models such as traditional
COCOMO.

The COCOMO NASA-V1 and COCOMO 81 mirror the
trend of weak correlations. In COCOMO NASA-V1, LOC
(0.92) shows a very strong positive correlation with effort,
again affirming size as a core effort driver. However, other
features—such as TURN (-0.18), AEXP (-0.18), and MODP
(-0.18)—display low or negative correlations, underscoring
the possibility that their relationship with effort is non-linear
or context-dependent. In COCOMO-81, feature correlations
generally range between -0.15 and +0.66, with data (0.44)
and loc (0.66) being the highest. This reinforces the general
pattern that software size and data complexity tend to have
higher linear correlations, while more abstract or qualitative
attributes (e.g., tool usage, experience levels, scheduling
constraints) demonstrate weaker associations.

The DESHARNAIS dataset stands out due to several
features showing moderate to strong positive correlations
with effort. Notably PointsAjust (0.74) and PointsNonAdjust
(0.71) show high correlation, suggesting that adjusted and

raw function points are highly indicative of effort in this
dataset. Length (0.69), Transactions (0.58), and Entities
(0.51) further reinforce this observation, indicating that
functional decomposition and feature complexity strongly
drive effort in this particular dataset. Adjustment (0.46) and
ManagerExp (0.16) follow a similar trend, although the
correlation is weaker. The only notable negative correlation
is with Language (-0.26), which may imply that the choice
of programming language influences effort inversely—
possibly due to productivity differences across languages.

The overarching insight drawn from Table IV is the
prevalence of weak and negative correlations across multiple
datasets and feature sets, especially in the COCOMO and
CHINA datasets. This pattern strongly suggests that simple
linear models may fail to capture the true complexity of
relationships in SEE. Specifically features that are
traditionally assumed to be strong drivers (e.g., programmer
capability, experience, scheduling pressure) show poor
linear alignment with effort, challenging their effectiveness
in linear regression-based models. Many features likely
interact in non-linear, conditional, or hierarchical ways—for
example, the impact of complexity may depend on developer
experience or tool support, which linear correlations cannot
detect. The consistent correlation of size-based metrics
(AFP, LOC, PointsAdjust) with effort supports their
inclusion, but highlights a potential over-reliance in models
that don’t incorporate richer, multi-dimensional feature
representations.

TABLEIV
FEATURES CORRELATION WITH EFFORT

CHINA COCOMO NASA-V2 COCOMO NASA-V1 COCOMO-81 DESHARNAIS
AFP 0.68 projectname 0.11 RELY -0.13 dev_mode -0.13 TeamExp 0.12
Input 0.58 cat2 -0.14 DATA -0.03 rely 0.21 ManagerExp 0.16
Output 0.56 forg -0.37 CPLX 0.16 data 0.44 Length 0.69
Enquiry 0.51 center 0.42 TIME -0.14 cplx 0.01 Transactions 0.58
File 0.61 mode -0.33 STOR -0.16 time 0.15 Entities 0.51
Interface 0.33 rely 0.24 VIRT -0.12 stor 0.10 PointsNonAdjust 0.71
Added 0.69 data -0.25 TURN -0.18 virt 0.02 Adjustment 0.46
Changed 0.11 cplx 0.41 ACAP -0.05 turn 0.21 PointsAjust 0.74
Deleted 0.07 time 0.38 AEXP -0.18 acap -0.15 Language -0.26
PDR_AFP 0.24 stor 0.26 PCAP 0.10 aexp -0.04
PDR_UFP 0.26 virt 0.19 VEXP 0.00 pcap 0.16
NPDR_AFP 0.22 turn 0.13 LEXP 0.26 vexp 0.07
NPDU_UFP 0.24 acap -0.21 MODP -0.18 lexp 0.09
Resource 0.22 aexp -0.11 TOOL 0.12 modp 0.27
Dev.Type NaN pcap -0.16 SCED 0.03 tool 0.00
Duration 0.48 vexp -0.23 LOC 0.92 sced 0.02
N effort 0.99 lexp -0.05 loc 0.66

modp -0.14

tool 0.10

sced -0.31

equivphyskloc 0.59
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This correlation analysis motivates the need for more
sophisticated, non-linear modeling that can capture complex
feature interactions and non-additive effects. Additionally, it
opens opportunities for multi-view learning, enabling better
utilization of both weakly and strongly correlated features
across diverse views.

As the SEE datasets are non-linear in nature, the process
of transforming the original dataset with a non-linear method
such as Isomap will produce a better solution compared with
a linear method such as PCA. The dimensionality reduction
and transformation process described in the proposed
method reflects a critical pre-processing step aimed at
enhancing the representational quality of the input data used
in the MVNN architecture. Specifically, the procedure
involves applying the Isomap algorithm to each fold of the
training dataset during CV. Isomap, a well-established non-
linear manifold learning technique, is employed here with
n_neighbors set to half of the dataset dimension, which
defines the local neighbourhood size used to construct the
geodesic distance graph—a key component in preserving the
intrinsic geometry of the data in the lower-dimensional
space. The use of Isomap as a pre-processing transformation
in this stage is particularly valuable for revealing latent non-
linear structures in the feature space. Beside introducing
diversity in input representations, which enhances the
learning behaviour of MVNN. By setting n_neighbors to a
half the dataset dimension, the Isomap transformation
becomes highly sensitive to local curvature and fine-grained
manifold structure, potentially capturing non-linear
relationships that are otherwise obscured in high-
dimensional Euclidean space. This configuration is
particularly useful in SEE datasets, where feature
interdependencies often exhibit non-linear interactions due
to the complex nature of software artifacts, such as code
metrics, effort estimations, and process attributes. As a result
of this transformation, each fold of the transformed dataset
is effectively reduced to half of its original size, not in terms
of instances, but in feature dimensionality, making the
subsequent learning process more efficient while preserving
relevant structural information.

Figure 4 provides a visual TSNE transformed description
of the original and Isomap-transformed datasets in each parts
of the MVNN. The upper-left quadrant illustrates the post-
Isomap transformation output. When compared to the
original data—where a clear quadratic trend is observable,
allowing for a smooth approximation curve or regression
line—the Isomap-transformed data appears spread out,
disordered, and random in its geometric structure. This
visual manifestation is typical of Isomap in scenarios where
local neighbourhood preservation dominates over global
structure, especially with a low n_neighbors parameter. This
seemingly erratic pattern does not imply a degradation in
data quality but instead reflects a reprojection of the data
manifold into a space where latent non-linear relationships
are more linearly separable. In essence, Isomap flattens the
manifold, unfolding hidden non-linearities that are not
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linearly apparent in the original high-dimensional feature
space.

Following transformation, both the original dataset and
the Isomap transformed version are independently fed into
their respective meta-models within the MVNN architecture.
These meta-models, implemented as parallel NN, learn
distinct representations from their input view. Notably,
because of the stark difference in feature space geometry, the
activation patterns and learned representations within each
meta-model diverge significantly. Consistent with the visual
outputs in Figure 4, the internal activations from both meta-
models are characterized by random-like scatter patterns,
reflecting the absence of obvious global trends in the
transformed feature spaces. This also indicate that there is no
dominant view which could affect the final prediction.
Despite this initial irregularity, the concatenation layer,
which aggregates the outputs from both views, also exhibits
a composite randomness, with no immediate coherent
structure emerging at this intermediate level. However, this
multimodal noise is not a sign of model failure but rather a
reflection of the heterogeneity and complementary nature of
the multi-view inputs.

The most critical insight emerges at the final SSE
regressor layer of the MVNN. It is at this terminal stage that
a clear, structured pattern becomes visible. Despite the
randomness seen in earlier stages, the final layer manages to
synthesize the multi-view representations into a coherent
mapping that aligns with the underlying regression task. A
distinct solid line emerges in the output, indicative of a
strong predictive signal and successful integration of both
views. This progression—from scattered and disjointed
feature spaces to a unified and interpretable output—is a
hallmark of deep NN architectures capable of abstract feature
fusion and non-linear regression modelling. This behaviour
illustrates one of the primary strengths of MVNN, which is
their ability to learn hierarchical representations from
disparate feature spaces, gradually integrating them through
multiple  layers of  abstraction and non-linear
transformations. The earlier layers focus on local view-
specific encoding, while the deeper layers are tasked with
capturing cross-view synergies, ultimately culminating in a
more structured and fine-grained and robust prediction.

TSME Isomap Dataset

TSNE Original Dataset TSNE Meta Model 2

TSNE Meta Model 1

TSNE Concatenation TSNE SEE Regressor

Figure 4. Original, Isomap, Meta Model 1 and 2, Concatenation and
SSE Regressor Transformation on the dataset
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V. RESULT AND DISCUSSION

In this section, the results of the study are presented and
summarizing the performance parameters used such as
MAE, MSE, MMRE, RMSE, MdMRE and R? as shown in
Table V.

A. RESULTS FROM SEVERAL SEE DATASETS

TABLEV
OUR PROPOSED MVNN RESULTS ON VARIOUS SEE DATASETS

MAE MSE MMRE  RMSE MdJRME R’

2.38E-03 2.30E-05 3.34E-02 4.79E-03  3.76E-02 0.998
5.47E-03  5.70E-05 4.44E-02  7.54E-03 7.21E-02 0.999
1.25E-02 8.31E-04 1.66E-01 2.88E-02 247E-01 0.956
9.52E-03  1.85E-03 1.60E-01 4.30E-02 3.48E-01 0.927
1.04E-02  3.69E-04 5.40E-02 1.92E-02  3.44E-02 0.990

The results presented a detailed narrative of how the
proposed MVNN performs across a variety of widely
recognized SEE datasets in the following order: China,
COCOMO NASA-VI, COCOMO NASA-V2, COCOMO-
81 and Desharnais. Each dataset represents a distinct context
with different data characteristics, feature sets, and
distributions. Despite this diversity, the MVNN consistently
demonstrates strong predictive performance, reinforcing its
adaptability and effectiveness in complex, real-world
scenarios where SEE remains a challenging task.

Since no universal baseline exists across these datasets—
and because each dataset is inherently unique and lacks
correlation with the others—the evaluation of model
performance focuses primarily on the R? (coefficient of
determination) metric. This measure reflects how much of
the variation in the target (effort) can be explained by the
model. A high R? value indicates that the model captures the
underlying relationships between features and the target
variable very well.

The MVNN achieves an R? of 0.998 on the CHINA
dataset, suggesting that nearly all of the variability in
software effort can be explained by the model’s predictions.
The error values are remarkably low—MAE of 0.00238 and
RMSE of 0.00479—indicating both accuracy and
consistency. The MMRE, which stands at just 3.34%, further
supports this conclusion. In practice, this means that the
MVNN effectively learns from different feature views and
integrates them to generate accurate effort predictions.

Similarly, for the COCOMO NASA-V1 dataset, the model
achieves an exceptionally high R? of 0.999, indicating nearly
perfect alignment between predicted and actual effort values.
The error rates are similarly low, with an MAE of 0.00547
and MMRE of 4.44%, showing that the MVNN captures
both large-scale and nuanced relationships within the
dataset.

The COCOMO NASA-V2 dataset yields a lower R? value
of 0.956, but this still indicates that more than 95.6% of the
variance in the target variable is explained by the MVNN.
The model’s performance in terms of erro—MAE of
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0.0125, RMSE 0f 0.0288, and MMRE of 16.6%—is slightly
worse than in the previous datasets, which may be due to the
noisier nature of the dataset or missing contextual features
that are not captured. Nevertheless, the performance is still
excellent by regression standards, especially in the domain
of SEE, where achieving high R? values is notoriously
difficult due to the uncertainty and inconsistency in human
estimation and project documentation.

On the older and perhaps less structured COCOMO-81
dataset, the model achieves an R? of 0.927, the lowest
performance compared with other datasets, but it still
manages to capture over 92% of the effort variance. The
result is still impressive given the dataset’s age and potential
inconsistencies in its feature definitions. The MMRE of 16%
and MdRME of 34.8% suggest that prediction accuracy
varies more in this dataset—possibly because the influence
of human and organizational factors in historical data is
harder to quantify or was less rigorously measured. Even so,
the MVNN maintains strong performance by adapting to the
available feature views.

Lastly, for the Desharnais dataset, the MVNN achieves an
R? 0f 0.990, a level of accuracy that again demonstrates its
robustness. With an MAE of 0.0104, MMRE of 5.4%, and
RMSE of 0.0192, the model shows both precision and
consistency. This dataset contains structured features like
function points and adjustment factors, which are well-suited
to multi-view processing. The MVNN takes advantage of
these structured views to accurately map input features to
effort values.

Across all datasets, the R? values range from 0.927 to
0.999, reflecting that the MVNN captures between 92.7%
and 99.9% of the variance in software effort. Even in the
most challenging case (COCOMO NASA-V2), the
unexplained variance is less than 4.4%, which could be
attributed to random noise, missing features, or non-
observable project management factors. Such high R? values
are rare in SEE tasks and indicate a very strong model fit
across diverse datasets.

This outcome supports the key strength of the MVNN with
its ability to process and learn from multiple feature
representations—or views—of the same data instance. By
combining complementary and redundant information from
different views, the MVNN forms a richer, more nuanced
internal representation of the data, enabling it to model
complex, non-linear relationships far better than traditional
single-view or linear models.

The performance results demonstrate that the proposed
MVNN offers exceptional predictive capability in the SEE
domain. Its ability to generalize across varied datasets,
capture complex relationships, and maintain low error rates
makes it a highly effective solution—particularly in domains
where effort is influenced by numerous interdependent and
heterogeneous factors. The consistently high R? values
reaffirm that MVNN not only models the data accurately but
also understands the underlying structure of software project
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characteristics, leading to predictions that are both reliable
and interpretable.

B. RESULTS FROM MULTI VIEW AND SINGLE VIEW

The comparative results presented in Table VI offer a
detailed performance analysis between the proposed MVNN
architecture and two variations of single-view meta-models
across five prominent SEE datasets. This comparison aims to
empirically validate the impact of incorporating multiple
data perspectives (views) during learning, as facilitated by
the MVNN architecture, in contrast to learning from a single
representation of the data.

From a technical standpoint, the MVNN consistently
demonstrates superior predictive performance across most
evaluation metrics. This consistent superiority is particularly
evident when analyzing the R? metric, which represents the
proportion of variance in the target variable that is
predictable from the input features. MVNN achieves R?
values above 0.99 in the China and COCOMO NASA-V1
datasets, 0.956 in COCOMO NASA-V2, 0.927 in
COCOMO-81, and 0.990 in Desharnais—each indicative of
excellent model fit and high reliability in capturing the
underlying functional relationship.

The results highlight that the multi-view architecture of
MVNN provides a significant performance boost over both
single-view meta-models. For instance, in the COCOMO
NASA-V2 dataset, which is considered more complex and
noisy, MVNN achieves an R? of 0.956—whereas the two
single-view models achieve considerably lower R? values of
0.657 and 0.698, respectively. This stark contrast clearly
illustrates the advantage of multi-view learning in capturing
richer and more abstract representations of the data,
especially in complex estimation scenarios where a single
perspective may fail to account for latent dependencies or
nonlinear interactions.

In terms of MAE and RMSE, the MVNN also maintains
lower values across most datasets, indicating reduced
average error and deviation. For the China dataset, for

example, MVNN produces a MAE of 0.00238 and an RMSE
of 0.00479, compared to 0.00263 and 0.00607 in Meta
Model 1, and 0.011 and 0.0172 in Meta Model 2. This pattern
holds across multiple datasets, suggesting the MVNN’s
robustness and consistent capability to generalize better,
despite the inherent variance and distributional shifts in the
dataset characteristics.

A notable observation is the performance on the
COCOMO-81 dataset, where Single View Meta Model 2
slightly outperforms MVNN with an R? of 0.998 versus
0.927 and a lower MAE (0.00405 vs. 0.00952). This
exception also apply with Single View Meta Model 1 which
also outperforms our proposed MVNN on MdRME using the
same dataset. But overall, the multi-view approach embodied
in the MVNN framework demonstrates a clear and consistent
improvement in SEE when compared to traditional single-
view models. This improvement is attributed to the MVNN’s
ability to integrate diverse feature subspaces into a unified
representation, enabling it to model complex, nonlinear, and
multidimensional relationships that are often missed in
single-view approaches. The comparative results confirm the
hypothesis that leveraging multiple views enhances learning
capability and prediction fidelity, particularly in real-world
SEE problems where data can be sparse, noisy, and high-
dimensional.

C. COMPARISON WITH PREVIOUS SEE METHODS

To validate our proposed method, we verify it with previous
SEE studies on the same performance metric and datasets to
compare the results in Table VII.

The experimental evaluation of our proposed MVNN
demonstrates a consistent and notable improvement across a
variety of benchmark datasets compared with LNI-based NN
[39], Neuro-fuzzy logic [39], Adaptive GA-based NN [39],
GEHO-based NFN [39], FCNN [40], GWO-FC [40] and
others.

The comparison reveals that our MVNN achieves lower
error rates in most cases. For instance, on the China dataset,

TABLE VI
COMPARISON BETWEEN SINGLE AND MULTI-VIEW
Model Dataset MAE MSE MMRE RMSE MdJdRME R2
MVNN China 2.38E-03 2.30E-05 3.34E-02 4.79E-03 3.76E-02 0.998
COCOMO NASA-V1 5.47E-03 5.70E-05 4.44E-02 7.54E-03 7.21E-02 0.999
COCOMO NASA-V2 1.25E-02 8.31E-04 1.66E-01 2.88E-02 2.47E-01 0.956
COCOMO-81 9.52E-03 1.85E-03 1.60E-01 4.30E-02 3.48E-01 0.927
Desharnais 1.04E-02 3.69E-04 5.40E-02 1.92E-02 3.44E-02 0.990
Single View Meta ~ China 2.63E-03 3.70E-05 3.68E-02 6.07E-03 4.56E-02 0.997
Model 1 COCOMO NASA-V1 6.54E-03 1.02E-04 5.31E-02 1.01E-02 1.07E-01 0.997
COCOMO NASA-V2 1.84E-02 6.51E-03 2.45E-01 8.07E-02 2.05E-01 0.657
COCOMO-81 5.92E-03 2.19E-04 9.96E-02 1.48E-02 2.83E-01 0.991
Desharnais 1.20E-02 6.83E-04 6.23E-02 2.61E-02 3.83E-02 0.981
Single View Meta ~ China -CLEANED 1.10E-02 2.96E-04 1.54E-01 1.72E-02 2.38E-01 0.979
Model 2 COCOMO NASA-V1 2.60E-02 7.92E-03 2.11E-01 8.90E-02 1.86E-01 0.805
COCOMO NASA-V2 2.68E-02 5.73E-03 3.57E-01 7.57E-02 3.44E-01 0.698
COCOMO-81 4.05E-03 5.80E-05 6.81E-02 7.63E-03 3.36E-01 0.998
Desharnais 2.55E-02 2.34E-03 1.33E-01 4.84E-02 1.09E-01 0.933
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TABLE VII
PERFORMANCE COMPARISON
Method Metrics MAE MSE MMRE RMSE MdMRE
LNI-based NN [39] China - - 2.40E-01 1.48E-01 2.55E-01
COCOMO NASA-V1 - - 2.43E-01 1.83E-01 2.49E-01
COCOMO NASA-V2 - - 2.25E-01 3.83E-01 2.49E-01
COCOMO-81 - - 2.24E-01 2.61E-01 2.56E-01
Desharnais - - 3.20E-01 3.12E-01 3.36E-01
Neuro-fuzzy logic [39] China - - 2.20E-01 7.50E-02 2.40E-01
COCOMO NASA-V1 - - 2.36E-01 1.31E-01 2.15E-01
COCOMO NASA-V2 - - 1.96E-01 2.90E-01 2.15E-01
COCOMO-81 - - 2.13E-01 1.78E-01 2.56E-01
Desharnais - - 2.96E-01 1.73E-01 2.23E-01
Adaptive GA-based NN [39]  China - - 1.92E-01 5.60E-02 2.18E-01
COCOMO NASA-V1 - - 2.31E-01 6.50E-02 1.72E-01
COCOMO NASA-V2 - - 1.74E-01 2.32E-01 1.72E-01
COCOMO-81 - - 1.99E-01 1.30E-01 2.35E-01
Desharnais - - 1.97E-01 1.11E-01 1.81E-01
GEHO-based NFN [39] China - - 1.67E-01 3.90E-01 1.68E-01
COCOMO NASA-V1 - - 2.20E-01 6.00E-02 1.30E-01
COCOMO NASA-V2 - - 1.28E-01 9.60E-01 1.30E-01
COCOMO-81 - - 1.74E-01 5.50E-02 2.23E-01
Desharnais - - 1.12E-01 6.00E-02 1.00E-01
FCNN [40] China 3.10E-02 2.88E-03 - 5.36E-02 5.71E-01
COCOMO NASA-V1 1.06E-01 2.53E-02 - 1.59E-01 7.87E-01
COCOMO NASA-V2 9.67E-02 2.10E-02 - 1.42E-01 8.25E-01
COCOMO-81 1.52E-01 3.19E-02 - 1.79E-01 1.73E-01
Desharnais 1.27E-01 3.47E-02 - 1.86E-01 4.39E-01
GWO-FC [40] China 2.18E-02 1.34E-03 - 3.66E-02 3.82E-01
COCOMO NASA-V1 4.80E-03 4.58E-05 - 6.80E-03 6.30E-03
COCOMO NASA-V2 6.53E-02 1.17E-02 - 1.08E-01 6.31E-01
COCOMO-81 1.30E-02 2.82E-04 - 1.68E-02 1.31E-02
Desharnais 3.21E-02 1.85E-03 - 4.30E-02 8.43E-02
KNN [42] China 3.32E-02 6.30E-03 7.92E-02 3.48E-01
COCOMO NASA-V1 7.80E-02 1.16E-02 1.08E-01 1.98E-01
COCOMO NASA-V2 1.10E-01 4.38E-02 2.09E-01 3.37E-01
COCOMO-81 1.54E-02 9.00E-04 3.00E-02 4.27E-01
Desharnais 9.94E-02 2.84E-02 1.69E-01 2.10E-01
LR [42] China 4.33E-02 9.90E-03 9.95E-02 4.75E-01
COCOMO NASA-V1 1.68E-02 4.00E-04 2.00E-02 1.01E-01
COCOMO NASA-V2 1.11E-01 3.38E-02 1.84E-01 6.11E-01
COCOMO-81 1.00E-01 1.90E-02 1.38E-01 4.69E+00
Desharnais 8.96E-02 1.38E-02 1.17E-01 3.10E-01
NB [42] China 4.15E-02 6.80E-03 8.26E-02 4.55E-01
COCOMO NASA-V1 1.64E-02 4.00E-04 1.92E-02 1.06E-01
COCOMO NASA-V2 1.05E-01 3.34E-02 1.83E-01 6.63E-01
COCOMO-81 3.26E-02 2.10E-03 4.53E-02 3.19E+00
Desharnais 8.78E-02 1.28E-02 1.13E-01 3.14E-01
SBG [42] China 4.36E-02 8.50E-03 9.23E-02 5.50E-01
COCOMO NASA-V1 1.42E-01 3.14E-02 1.77E-01 3.38E-01
COCOMO NASA-V2 8.92E-02 3.56E-02 1.89E-01 6.89E-01
COCOMO-81 4.87E-02 5.10E-03 7.13E-02 3.91E+00
Desharnais 1.12E-01 2.27E-02 1.51E-01 2.99E-01
Our China 2.38E-03 2.30E-05 3.34E-02 4.79E-03 3.76E-02
COCOMO NASA-V1 5.47E-03 5.70E-05 4.44E-02 7.54E-03 7.21E-02
COCOMO NASA-V2 1.25E-02 8.31E-04 1.66E-01 2.88E-02 2.47E-01
COCOMO-81 9.52E-03 1.85E-03 1.60E-01 4.30E-02 3.48E-01
Desharnais 1.04E-02 3.69E-04 5.40E-02 1.92E-02 3.44E-02

our MVNN achieved an exceptionally low MAE of 0.00238,
outperforming other models such as the FCNN (MAE
0.0310) and KNN (MAE 0.0332). Similarly, on the
COCOMO NASA-V1 dataset, our model obtained an MAE
of 0.00547, which is significantly better than traditional
learning approaches such as Linear Regression (MAE
0.0168) and Naive Bayes (MAE 0.0164). Even on more
challenging datasets like COCOMO NASA-V2 and
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COCOMO-81, which tend to produce relatively higher error
margins, our MVNN still performs competitively. On
COCOMO NASA-V2, our model achieved an MAE of
0.0125, compared to FCNN with an MAE of 0.0967.
Likewise, in the Desharnais dataset, where many classical
methods show significant errors and variability, our model
reached an MAE of 0.0104.
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These results demonstrate the robustness and
generalizability of our approach across datasets of varying
characteristics. Unlike many baseline models that either rely
on linear assumptions or are limited by single-view input
representations, our MVNN benefits from its architecture
that integrates multiple views through a structured DL
pipeline. This allows it to adapt to different data distributions
and capture complex nonlinear relationships that are often
present in software effort estimation tasks.

D. THREATS TO VALIDITY

As with every empirical experiment, the results of our
works are subject to some threats to validity.

E. CONSTRUCT VALIDITY

We admit that during our experiments, only a subset of
various SEE datasets were used and not all datasets were
included in the case of PROMISE. Although it would be best
to include all of them, but the limitation of resources hinders
us to take this step. For objectivity, we reserved ourself from
modifying unless it is necessary to conduct the experiment.
Since most studies on SEE uses an open and public datasets,
we consider the datasets is complete and adequately fixed
and reliable to be used in our study.

F. INTERNAL VALIDITY

Although there are variations of the same dataset in some
repositories. We found it to be constructive and the necessary
adjustment have been made and verified by previous studies.
Therefore, the validity of the datasets should be minor and
will cause little effect on the results.

G. EXTERNAL VALIDITY

We validated our findings using open and public datasets
from different sources and different software metrics to gain
more confidence in the external validity of our study. By
doing so, we hope to achieve generalization with our
proposed method, and any replicated studies with our
method will be a step to improve our method.

VI. CONCLUSION

In this article, we propose MVNN for SEE which shows
to be reliable compared with previous studies. The
challenges of SEE lies in the small amount of examples and
the different software metrics used universally among
software projects. Although there are methods and
techniques to overcome the challenges of SEE, but the
complex nature of software projects still prove to be a
challenging field in the future to improve software
engineering, by finding an efficient tools to find and predict
defect during the life cycle of software development. In this
method, we used multiple steps of pre-processing prior of
training ranging from features selection, imputation, and
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scaling to overcome the different software metrics, and to
avoid any dominant value in the outlier. Besides the original
dataset as the primary view, we opted to create a different
view from the dataset by utilizing Isomap reliable
dimensionality reduction algorithm. The use of Isomap as a
dimensionality reduction will reduce the size of the MVNN
input, so a smaller yet effective NN regressor can be trained
using K-fold CV. Empirical studies with some notably SEE
datasets show the effectiveness of our proposed method
compared with previous methods. In the future, we would
like to extend our research towards more deep layers NN to
further improve the performance of our proposed MVNN.
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