
 Boy Setiawan, et. al.: Multi View Neural Network for Software … (October 2025)

VOLUME 07, No 02, 2025 DOI: 10.52985/insyst.v7i2.442 64

Multi View Neural Network for Software
Effort Estimation Prediction

Boy Setiawan1 and Agus Subekti1
1Faculty of Computer Science, Nusa Mandiri University, Jakarta, Indonesia

Corresponding author: Boy Setiawan (e-mail: 14230023@nusamandiri.ac.id).

ABSTRACT Software Effort Estimation (SEE) is a critical challenge in software project management, dating

back to the early years of software engineering. Accurate estimation of the effort required for software

development is essential for project planning, resource allocation, and risk management. Incorrect effort

estimates can result in poor resource distribution, cost overruns, missed deadlines, and even complete project

failure. This issue is increasingly urgent today as software systems are deeply embedded in almost every

product and service, amplifying the need for reliable and accurate predictions. Over the years, several

methods for SEE have been proposed, ranging from algorithmic models to expert judgment. More recently,

machine learning (ML) approaches such as Case-Based Reasoning (CBR), Support Vector Machines (SVM),

Decision Trees (DT), and Neural Networks (NN) have gained attention for their ability to model complex,

nonlinear relationships inherent in SEE tasks. In this study, we propose a novel approach based on multi-

view learning with NN (MVNN), which leverages multiple views from existing datasets, thus improving

performance and generalization, particularly when the available data is small and scarce. The effectiveness

of the MVNN model is validated through empirical comparisons with existing SEE models, demonstrating

its potential to enhance SEE accuracy and improve prediction reliability.

KEYWORDS Multi View, Neural Networks, Scarce Dataset, Software Effort Estimation

I. INTRODUCTION

SEE is recognized as one of the earliest and most critical

challenges in software project management, with its

conceptual roots dating back to the formative years of software

engineering [1]. The ability to reliably estimate the effort

required for successful software development is fundamental

to effective project planning, resource allocation, and risk

management. Although the terms effort and cost are often used

interchangeably in practice, they represent distinct constructs;

nonetheless, both are integral to ensuring project feasibility

and delivery. Inaccurate estimation of software effort can

result in suboptimal resource distribution, leading to cost

overruns, missed deadlines, and ultimately project failure.

This issue becomes even more pressing in the current era,

where software systems underpin a significant portion of

goods and services, intensifying organizational reliance on

accurate estimation. Despite its longstanding relevance, SEE

continues to present considerable difficulties for software

teams and project managers, necessitating its consideration

from the earliest stages of project development [2].

Consequently, a substantial body of research has emerged

focusing on the advancement of models, techniques, and

empirical strategies aimed at enhancing the precision,

efficiency, and applicability of software effort estimation in

various development contexts [3].

The scope of SEE extends beyond resource allocation; it

plays a critical role in facilitating communication among both

internal and external stakeholders concerning planning,

budgeting, financial oversight, and implementation proposals.

SEE enables organizations to establish budgets and allocate

funds effectively while offering insights into the anticipated

costs of software development [4]. More broadly, the capacity

to generate realistic effort estimates empowers executives and

managers to make informed decisions, mitigate risks, and

identify factors that could contribute to project failure, such as

complexity, technology constraints, and team requirements.

Since inaccurate effort estimation often leads to project crises,

providing an accurate approximation of the resources needed

to meet project objectives—while ensuring the delivery of

products and services that fulfil both functional and non-

functional requirements—can significantly reduce the

likelihood of project failure [1].

Measuring software sophistication early in the project

lifecycle and making accurate estimations is a complex task,

posing significant challenges for both managerial and

development roles [5]. Unlike traditional manufacturing,

software engineering is primarily a human-intensive process.

 Boy Setiawan, et. al.: Multi View Neural Network for Software … (October 2025)

VOLUME 07, No 02, 2025 DOI: 10.52985/insyst.v7i2.442 65

Over the past 50 years, the software industry has undergone

substantial evolution, with at least four generations of

programming languages and three major development

paradigms [1]. This progression has been further complicated

by the rapid advancement of development technologies,

constant paradigm shifts, and ongoing changes in methods and

tools. Moreover, the nature of software development has

transitioned from being the responsibility of a single

contractor to distributed projects, where teams are dispersed

across various companies, time zones, cultures, and even

continents, further enhancing the intangible and volatile nature

of software products.

Over the years, researchers have developed a variety of

effort estimation methods, with each new approach generally

exhibiting increased sophistication. These methods are

extensively covered in the SEE literature and are typically

categorized into three main groups: algorithmic, non-

algorithmic, and ML methods (see Figure 1). Initially, SEE

relied on non-algorithmic expert judgment, a straightforward

approach to generate realistic estimates [6]. The Delphi

technique and work breakdown structure (WBS) are among

the most widely used expert judgment methods. In the Delphi

technique, a meeting is convened with project experts, and

through discussion and argumentation, a consensus estimate is

derived. In contrast, the WBS method involves breaking down

the entire project into smaller sub-projects or tasks, continuing

until the baseline activities are reached. This hierarchical

decomposition allows for more accurate effort estimations to

smaller and more manageable sub-tasks.

Figure 1. SEE Methods

Algorithmic approaches leverage statistical and

mathematical principles for SEE. Notable examples of

estimation techniques within this category include

Constructive Cost Model (COCOMO)-II, Putnam Software

Life Cycle Management (SLIM), SEER-SEM, and True

Planning. The primary input for these models is the size of the

software being estimated, which is typically measured using

metrics such as function points (FP), source lines of code

(LOC), or use case points [2].

ML techniques have recently demonstrated their

effectiveness, particularly in estimating the effort required for

software projects. Among these techniques, Case-Based

Reasoning (CBR) stands out as one that leverages the history

of successfully completed projects to predict solutions for new

cases [3]. CBR is particularly promising for effort estimation

because it emulates human reasoning by referencing past

projects that were successfully implemented and using their

actual effort data to predict the effort required for current

projects. Recently, Bayes' theorem has garnered significant

attention as a potential approach for managing estimation

uncertainty and integrating quantitative data with subjective

human judgment [1]. In addition to other well-known ML

algorithms such as SVM, DT, Linear Regression (LR), and K-

Nearest Neighbours (KNN), the growing complexity and

variability of software projects have driven the adoption of NN

in SEE [7]. One of the key advantages of using NNs is their

capacity to model complex, nonlinear relationships that are

inherent in software projects. Moreover, advancements in NN

architectures have significantly enhanced the accuracy of

estimations [8]. Additionally, innovations such as Genetic

Algorithms (GA), Convolution, and metaheuristic techniques

integrated with NNs have improved the convergence and

adaptability during the training phases, leading to more

accurate software effort estimates.

Several recent studies [9], [10], [11], [12] highlight the

challenges associated with assembling and analysing

empirical software engineering datasets. The SEE research

community has recognized and prioritized issues such as

noise, outliers, and missing data, where simple approaches like

the “majority rule” may not be applicable. A key example of

this challenge is the treatment of outliers, where common

practices of exclusion must be approached with caution, as

extreme estimates may sometimes be the most accurate [1].

Removing such values could also distort the dataset

distribution, which is particularly problematic since many ML

algorithms assume a normal distribution dataset. Additionally,

issues such as poor provenance, data inconsistency, and

commercial sensitivity in software estimation datasets have

been largely overlooked [13]. These issues complicate the

accuracy of SEE, especially for NN models, where the

availability of sufficient, high-quality data is crucial for

improving model performance.

When data is scarce and acquiring additional data from

external sources presents significant challenges, particularly

due to confidentiality concerns in software projects. It

becomes essential to maximize the utility of existing datasets.

Standard ML techniques used in SEE typically rely on a single

input for training. However, SEE can also be approached using

 Boy Setiawan, et. al.: Multi View Neural Network for Software … (October 2025)

VOLUME 07, No 02, 2025 DOI: 10.52985/insyst.v7i2.442 66

multiple views, where multiple feature vectors are utilized

[14]. Multi-view learning is an emerging area in ML that

leverages multiple perspectives or feature sets to enhance

generalization, commonly referred to as data fusion or data

integration [15]. The goal of multi-view learning is to model

each view independently while jointly optimizing all models

to improve overall generalization performance. A significant

advantage of this approach is its ability to boost generalization

by generating multiple views manually to enhance

performance. Although various multi-view ML methods, such

as sparse multi-view time SVM [16] and multi-view

discriminant analysis (DA) [17], have demonstrated

effectiveness in classification tasks, to the best of our

knowledge this is the first study applying multi-view learning

using NN within the SEE domain.

Based on the problems stated above, we are focussing our

study to use multiple-views with NN using common datasets

for SEE to construct a high-quality multi-view NN (MVNN).

On the issue of outlier, we opted a pre-processing method to

preserve as much information available by applying scaling to

reduce the high value impact of the outlier rather than

eliminating it from the dataset and apply -1 to null values . In

order to maximize existing datasets, we are using the same

datasets to generate a different view by using the output of a

dimensionality reduction algorithm to increase performance

and generalization of the proposed MVNN. At the end, we will

validate our findings with an empirical comparison from

previous studies to show the competitiveness of our proposed

method.

The key contributions of this works are as follows:

1. This study proposes a novel SEE model based on MVNN

to construct a prediction model that enhance the contribution

of SEE in software engineering.

2. We proposed a novel way to generate a different view of

the datasets by utilizing a dimensionality reduction algorithm

to produce the same datasets in a different latent space.

3. Finally, to verify the performance of the proposed method,

we conducted experiments on various SEE dataset with

existing SEE models.

This paper follows the following structure. Section 1 gives

introduction on the problem domain. Section 2 provides

literature overview of the relevant SEE work. The presentation

of our research methodology and experimental setups follow

in section 3. The experimental results are presented in Section

4 along with the threats to internal, external, construct of our

study and conclusions are covered in Section 5.

II. THEORETICAL FRAMEWORK

In this section we briefly introduced theoretical review

which underline our proposed MVNN method and related

works on SEE from previous studies.

A. MULTI-VIEW NEURAL NETWORK

With the growing volume and diversity of data in recent

years, the interest in multi-modal and heterogeneous

representations has surged, driven by the desire to enhance

learning performance. MVNN have emerged as an effective

approach for integrating multiple data representations into a

unified predictive model [18]. MVNNs refer to NN

architectures that incorporate multiple feature representations

(views) from the same data instance to enhance learning

performance, leveraging both redundant and complementary

information across all modalities [15]. A key challenge lies in

effectively representing and summarizing multimodal data to

fully exploit the complementarity and redundancy of the

multiple modalities in the dataset [19]. One straightforward

approach to addressing multiple modalities is early fusion,

which involves concatenating features from individual

modalities immediately after extraction, resulting in joint

representations or unimodal data [20]. This approach aligns

well with NN, which excel at handling such unified

representations and have become a popular method in various

tasks. While several ML algorithms, such as kernel-based

SVM are used for multi-view classification problems, NN

have demonstrated exceptional performance in tasks such as

face recognition, object detection, and classification with

MVNNs [15]. The superior performance of NN-based joint

representations, coupled with the ability to pre-train models in

an unsupervised manner, has further fuelled their popularity.

However, their performance is highly dependent on the

availability of large amounts of training data. Despite their

many advantages, one limitation of NN is their inability to

effectively handle missing data, although strategies exist to

mitigate this issue [21].

B. SOFTWARE EFFORT ESTIMATION DATASETS

SEE plays a pivotal role in software project management,

enabling accurate estimation of the effort required for a

successful software project completion including project

planning, budgeting, and execution of the project. Various

datasets have emerged as valuable resources for researchers

and practitioners in this field, specifically targeting the

challenge of estimating the effort required for software

development. These datasets typically consist of historical

data from previous software projects, encompassing various

project attributes, such as size, complexity, effort, and other

relevant factors which are used for training and evaluation of

SEE models. In the SEE domain, several publicly available

datasets have been widely used for model training and testing.

Notable examples include the COCOMO datasets, such as

COCOMO-81, COCOMO NASA-V1, and COCOMO

NASA-V2, which provide a detailed record of software

development effort based on various attributes like lines of

code, function points, and other software metrics. Other

commonly used datasets include Desharnais, China, and

Maxwell, which offer a diverse set of project data to evaluate

the performance of estimation models. The challenge in SEE

datasets lies not only in the availability of accurate data but

also in addressing common issues such as missing values,

noise, and outliers. Furthermore, the rapidly evolving nature

 Boy Setiawan, et. al.: Multi View Neural Network for Software … (October 2025)

VOLUME 07, No 02, 2025 DOI: 10.52985/insyst.v7i2.442 67

of software development practices and technologies means

that datasets must be continuously updated to reflect current

trends and methodologies. In this context, datasets with a

diverse range of software projects and environments are

crucial for the generalization of SEE models across various

domains. A comprehensive understanding of the available

datasets is vital, as highlighted by [22], who identified 12

publicly accessible datasets including Albrecht, COCOMO-

81, and COCOMO NASA-V2 among others. They

specifically extracted the China and Maxwell datasets due to

their structural quality and content suitability for machine

learning applications in estimating software effort.

In this study, several SEE datasets were used to validate our

proposed method and compared with results from previous

studies. A summary description of the datasets used can be

seen in Table I.
TABLE I

ESS DATASETS

Dataset Records Attri-

butes

Effort Size (Unit

measurement)

Desharnais 81 11 Person-
hours

Function point

China 499 18 Person-

hours

Function points

COCOMO

NASA-V1

60 16 Person-

months

LOC

COCOMO
NASA-V2

93 22 Person-
months

LOC

COCOMO-81 63 17 Person-

months

LOC

C. K-FOLD CROSS-VALIDATION

K-fold cross-validation is an effective technique for

assessing the performance of ML models. This method

involves partitioning the dataset into K subsets or folds. A

model is trained K times, each time using K-1 folds for

training and the remaining fold for validation. This process

allows for a robust evaluation of the model’s performance, as

it mitigates issues related to overfitting and provides a better

estimate of model generalizability [23]. The choice of K can

significantly impact the effectiveness of cross-validation.

While 10-fold cross-validation is a common choice in the

literature, studies suggest that the optimal K could vary

depending on the dataset and the modelling context. For

instance, Okfalisa et al. argue that although 10-fold is

standard, there’s no one-size-fits-all solution, and K can be

adjusted based on the dataset size and specific requirements

[24]. Furthermore, increasing K might reduce bias but could

also lead to higher variance in model performance estimates

[25].

D. MIN-MAX SCALER

The Min-Max scaler adjusts the scale of an attribute by

shifting its values along the x-axis, ensuring that the

transformed attribute’s values fall within the interval of (0, 1)

[26], according to this formula:

 끫륦scaled =
끫륦 − 끫륦min끫륦 max − 끫륦min (1)

In (1), the scaling factor is determined by the attribute’s

range, while the translational term is set as its minimum value.

This approach guarantees that the attribute’s values are

transformed to a minimum of zero and a maximum of one

which is the ideal value for NN input.

E. ISOMETRIC FEATURE MAPPING

Isometric Feature Mapping (Isomap) is a widely used

technique for non-linear dimensionality reduction technique to

overcome high dimensionality in a dataset compare to

Principal Component Analysis (PCA) which excels on linear

dataset. The most distinct feature of Isomap lies in its

versatility tested across various applications, ranging from

image processing, fault prediction in electromechanical

systems, and anomaly detection in hyperspectral imagery [27].

Introduced in 2000 by Tenenbaum et al. [28] as an

improvement of multidimensional scaling (MDS) by

replacing geodesic distances rather than Euclidean distances,

this improvement allows Isomap to capture the true manifold

structure of the dataset [29]. Beside the advantages, Isomap

performs sub optimally when processing data that

encompasses multiple clusters or manifold structures, but this

drawback has spurred the development of modifications,

including extensions from the original Isomap such as

FastIsomap and Landmark Isomap, aimed at enhancing

computational efficiency and the ability to handle more

complex datasets effectively [30].

F. EVALUATION MEASURES

Evaluation measures typically reflect the performance of

ML predictive result. In this paper, there are five main

measures to validate the effectiveness of the proposed model:

mean absolute error (MAE), mean square error (MSE), mean

magnitude relative error (MMRE), root mean square error

(RMSE), R-squared (R2) and median magnitude relative error

(MdMRE) as shown in (2) until (7) respectively.

MAE =
1௡∑ ௜ݕ| − �పݕ |௡௜=1 (2)

MSE =
1௡∑ ௜ݕ) − ప�)2௡௜=1ݕ (3)

MMRE =
1௡∑ |௬೔−௬ഢ�|௬೔௡௜=1 (4)

RMSE = �1௡∑ ௜ݕ) − ప�)2௡௜=1ݕ (5)

 ܴ2 = 1− ∑ (௬೔−௬ഢ�)2೙೔=1∑ (௬೔−௬�)2೙೔=1 (6)

MdMRE = median �|௬೔−௬ഢ�|௬೔ � (7)

 Boy Setiawan, et. al.: Multi View Neural Network for Software … (October 2025)

VOLUME 07, No 02, 2025 DOI: 10.52985/insyst.v7i2.442 68

III. PREVIOUS RESEARCH

Numerous studies have been conducted over time to

enhance the efficacy of SEE, particularly in predicting effort

estimation early in the software development lifecycle

(SDLC). Researchers have explored various techniques,

including ML, NN, and hybrid methods, which integrate

multiple approaches to develop the most effective SEE

models. One notable study by [3] combined CBR with GA to

optimize key CBR parameters, such as feature selection (FS),

feature weighting, similarity measures, and the number of

nearest neighbours (k). The results demonstrated the

effectiveness of GA in producing an accurate SEE model.

Another study proposed by [31], focused on applying CBR

with a bisecting k-medoids clustering algorithm to better

understand datasets and identify the most relevant cases for

effort estimation. This approach involved removing unrelated

projects to find the best k analogies for each new project

requiring estimation. Empirical experiments on different

datasets indicated that the optimal k value depends on the

specific characteristics of the dataset. In the study of [32], the

authors explored SEE estimation based on analogies utilizing

distance similarity measures such as Euclidean, Manhattan,

and Minkowski. Their results showed that the Manhattan

similarity measure yielded the highest accuracy, with a 50%

MMRE, 28% MdMRE, and 48% prediction accuracy

(PRED). In a study by [33], SEE model named DEAPS was

proposed, which is based on the differential evolution

algorithm using the Desharnais dataset. The model employed

the Euclidean distance similarity measure to reduce the set of

historical projects to a subset of similar projects, followed by

the application of the differential evolution algorithm to refine

and retrieve the best solutions. The results of this model

showed significant improvements in analogy-based effort

SEE.

In the field of ML, a study by [34] compare the performance

of Random Forest (RF), SVM, DeepNet, and NN. Their

findings concluded that RF outperformed the other methods

when applied to the Desharnais, Maxwell, China, and

Albrecht datasets. Rahman et al. [2], compared three SEE

forecasting algorithms: DT, Support Vector Regression

(SVR), and KNN. They processed and analysed the datasets,

applying the proposed algorithms and evaluating the models

based on three criteria: MAE, MSE, and R². The study

demonstrated that DT outperformed the other algorithms.

Alhazmi et al. [35] employed bagged learning with base

learners such as LR, SMOReg, NN, RF, REPTree, and M5

rule for SEE. They also implemented FS algorithm to assess

the impact of the BestFit FS algorithm and GA, using the

China dataset for evaluation. The results revealed that the M5

packing rule with GA as FS achieved an average relative error

size of 10%, making it more effective than the other

algorithms. Varshini et al. [6] presented both single and

combined techniques which included combinations of

individual methods. They used RF, SVM, DT, stacking with

SVM, and stacking with RF and conducted experiments on the

Albrecht, China, Desharnais, Kemmerer, Kitchenham,

Maxwell, and COCOMO-81 datasets. The models were

evaluated using MAE, RMSE, and R², with the results

showing the superiority of RF over other models, including

ML algorithms and clustering techniques. Zakaria et al. [36]

introduced a model based on SVM and LR for SEE,

implemented through an application called SOFREST

estimator. They applied RF, regression tree, LR, and SVM to

the COCOMO Nasa-V1, COCOMO Nasa-V2, and

COCOMO-81 datasets. The models were evaluated using

multiple criteria, including MSE, RMSE, MAE, MdMRE,

min–max accuracy, correlation accuracy, and P-value with the

results demonstrating the superiority of the targeted

algorithms across the datasets.

Fadhil et al. [37] introduced a model based on the Dolphin

Swarm Algorithm (DSA) and the hybrid Bat Algorithm

(DolBat) to enhance cost estimation models. The DSA is

particularly effective for optimization tasks, requiring fewer

individuals and fitness function calls while utilizing

echolocation to more efficiently find optimal solutions. This

study was conducted using the COCOMO NASA-V1 and

NASA-V2 datasets. The model's performance was evaluated

using the MMRE metric and was compared with other

algorithms, such as GA. Vo Van et al. [38] proposed a model

to assess the impact of data aggregation on SEE, aiming to

identify the most effective aggregation method. This model,

called Effort Estimation Using Machine Learning Applied to

Clusters (EEAC), was evaluated using multiple metrics,

including Mean Absolute Percentage Error (MAPE), RMSE,

MAE, Mean Balance Relative Error (MBRE), and Mean

Inverted Balance Relative Error (MIBRE). The experimental

results demonstrated that estimation accuracy achieved

through clustering consistently outperformed accuracy

without clustering, for both Function Point Analysis (FPA)

and the EEAC methods.

The application of NN is also widespread in SEE research.

Sharma et al. [39] proposed four distinct methods for SEE

prediction: Localized Neighbourhood Mutual Information-

based NN (LNI-NN), Fuzzy-based NN (NFL), Adaptive GA-

based NN (AGANN), and GEHO-based Neural Fuzzy

Network (GEHO-NN). These models were applied to five

datasets: COCOMO-81, COCOMO NASA-V1, COCOMO

NASA-V2, China, and Desharnais, and evaluated using four

prediction metrics: MMRE, RMSE, MdMRE, and PRED.

Kassaymeh et al. [40] presented a model for SEE using a Fully

Connected NN (FCNN) combined with a Gray Wolf

Optimizer (GWO), termed GWO-FC. This model was tested

on 12 datasets and evaluated based on several criteria,

including MSE, Relative Absolute Error (RAE), MAE,

Variance Accounted For (VAF), Manhattan Distance (MD),

and RMSE.

IV. RESEARCH METHOD

This section outlines the experimental procedures

implemented in this study to assess the proposed SEE

 Boy Setiawan, et. al.: Multi View Neural Network for Software … (October 2025)

VOLUME 07, No 02, 2025 DOI: 10.52985/insyst.v7i2.442 69

methods. Figure 2 illustrates a schematic representation of the

experimental framework employed to validate the

effectiveness of our proposed method. The framework was

designed to facilitate an empirical evaluation of the models,

where K-fold CV is applied to SEE datasets, and the model

with the lowest MMRE from the best k-fold result is selected

as the optimal model.

Figure 2. Experimental Framework

A. PRE-PROCESSING

The pre-processing phase begins by converting any

feature to numerical and dropping unnecessary features

which does not add information in the dataset. In addition,

the absence of null values is handled by setting it to -1. The

last phase of pre-processing is utilizing scaling to bring down

all input value to a same scale to avoid any outlier of

affecting the final calculation. A brief result of the pre-

processing is shown in Table II.

TABLE II

PRE-PROCESSED ESS DATASETS

Dataset Attributes
Drop

Features

Null

Value

1 Desharnais 9
Project,
YearEnd

Yes

2 China 18 - No

3
COCOMO
NASA-V1

16 - No

4
COCOMO

NASA-V2
20

projectname,

year
No

5 COCOMO-81 17 - No

Although NN has the abilities to extract features and

complex relationship in the dataset and has proven effective

with or without feature engineering across various domains

as detailed by [41] on comparing between ML and NN, the

transformed dataset will boost NN dynamically to process

input data, and learned to recognize patterns and assimilate

high-level features in a hierarchical manner, effectively

managing complexities in relationships among features. A

summary of features used from each dataset can be seen in

Table III.
TABLE III

FEATURES USED

Dataset Features

Desharnais TeamExp Manager

Exp

Language Transactions

Length Entities PointsNon

Adjust

PointsAdjust

Adjustment

China AFP Input Output Enquiry

File Interface Added Changed

Deleted PDR_A
FP

PDR_UF
P

NPDR_AFP

NPDU

_UFP

Resou-

rce

Dev.Type Duration

N_effort effort

COCOMO

NASA-V1

RELY DATA CPLX TIME

STOR VIRT TURN ACAP
AEXP PCAP VEXP LEXP

MODP TOOL SCED LOC

COCOMO
NASA-V2

cat2 forg center mode
rely data cplx time

stor virt turn acap
aexp pcap vexp lexp

modp tool sced equivphyskloc

COCOMO-
81

dev_mode rely data cplx

time stor virt turn

acap aexp pcap vexp

lexp modp tool sced

loc

 Boy Setiawan, et. al.: Multi View Neural Network for Software … (October 2025)

VOLUME 07, No 02, 2025 DOI: 10.52985/insyst.v7i2.442 70

B. K-FOLD CV

In this study, we employed 10 folds K-fold CV in the

training phase with a constant random state for reproduction.

C. MVNN

NN with two views as inputs will be used to predict SEE

with the same architecture as shown in Figure 2. Both meta

models consist of four layers of 256, 128, 64 and 32 nodes

respectively with ReLu activation. The first meta-model

input is the output of the pre-processing phase, while the

output of the input transformation will be feed to the second

meta-model. The outputs of both meta-models will be

concatenated and feed to a layer of 2048 nodes and dropout

(set at 0.1) for regularization before being feed to the final

SEE regressor which will predict the final result. A depiction

on the proposed MVNN is shown on Figure 3.

Figure 3. Our proposed MVNN

When data is scarce and acquiring additional data from

external sources presents significant challenges—particularly

due to confidentiality and privacy concerns, which are highly

prevalent in software engineering projects—it becomes

imperative to focus on maximizing the utility of the limited

available datasets. In many real-world software engineering

environments, especially those involving SEE, datasets are

often small, incomplete, or imbalanced. This limitation is

exacerbated by the sensitive nature of project data, which may

include historical data or resource allocation records that

organizations are unwilling or legally unable to share. As a

result, conventional data-hungry approaches such as NN faces

severe limitations in their applicability and generalization in

SEE domain.

Traditional ML techniques commonly employed in SEE

typically operate under a single-view paradigm. In contrast,

multi-view learning—and more specifically, MVNN—

presents a robust and scalable solution to this challenge. Multi-

view learning leverages the idea that different "views" or

feature groups, even if derived from the same underlying data

instance, can offer both redundant and complementary

information, which introduce new aspects or perspectives that

a single view cannot provide alone. By simultaneously

learning from all available views, MVNNs are capable of

constructing a more holistic and discriminative representation

of the data. Moreover, MVNNs help mitigate overfitting,

which is a prevalent concern when training deep learning

models on small datasets. By distributing the learning burden

across multiple feature spaces, the model is less prone to

memorizing noise or spurious correlations from any single

view. Instead, it learns more robust and generalizable patterns

that are supported by evidence across several data modalities.

This becomes a particularly valuable property in SEE tasks,

where the cost of misestimation can significantly impact

project planning and resource allocation.

A. INPUT TRANSFORMATION

The correlation analysis summarized in Table IV provides

a comprehensive overview of the linear relationships

between input features and the effort target variable across

multiple SEE datasets used in this study. This statistical

analysis is a crucial step to understand the predictive power

of individual attributes and identifying whether traditional

linear modeling assumptions hold in the context of SEE.

Upon close inspection, it becomes evident that most of the

features across these datasets exhibit low or even negative

correlation coefficients with the effort target variable,

strongly suggesting the presence of non-linear or complex

relationships that cannot be captured effectively through

simple linear models.

For the China dataset, a few features such as AFP (0.68),

Added (0.69), and File (0.61) demonstrate moderately high

positive correlations with effort, indicating that these

variables may linearly contribute to SEE. This aligns with

expectations, as Added functionality and function point

metrics like AFP and File often scale with the complexity

and size of the project, naturally increasing development

effort. However, other features such as Deleted (0.07),

Changed (0.11), and Interface (0.33) show very low

correlations, suggesting they provide little to no linear

explanatory power. The metric Dev.Type returns NaN,

which might indicate missing or unprocessable data in this

context. Furthermore, the moderately positive correlation of

Duration (0.48) with effort is intuitive, though not strong

enough. Notably, N_effort (0.99) shows an almost perfect

correlation, likely because it is either a derived or a target-

like variable.

The COCOMO NASA-V2 dataset presents a more

nuanced picture. The majority of features show negative or

weak positive correlations with the effort target. For

example, forg (-0.37), mode (-0.33), and sced (-0.31) are

negatively correlated with effort, suggesting either inverse

relationships or the presence of non-linear dependencies.

The relatively low positive correlations for center (0.42) and

 Boy Setiawan, et. al.: Multi View Neural Network for Software … (October 2025)

VOLUME 07, No 02, 2025 DOI: 10.52985/insyst.v7i2.442 71

cplx (0.41) suggest that complexity and organizational

structure have some influence, but not dominantly so.

Interestingly, equivphyskloc (0.59) shows one of the higher

correlations, reinforcing the long-standing view that code

size (KLOC) remains a strong, albeit imperfect, predictor of

effort. However, other typical COCOMO drivers like acap (-

0.21) and aexp (-0.11) show negative or negligible

relationships, raising questions about the linear assumptions

often applied in parametric models such as traditional

COCOMO.

The COCOMO NASA-V1 and COCOMO 81 mirror the

trend of weak correlations. In COCOMO NASA-V1, LOC

(0.92) shows a very strong positive correlation with effort,

again affirming size as a core effort driver. However, other

features—such as TURN (-0.18), AEXP (-0.18), and MODP

(-0.18)—display low or negative correlations, underscoring

the possibility that their relationship with effort is non-linear

or context-dependent. In COCOMO-81, feature correlations

generally range between -0.15 and +0.66, with data (0.44)

and loc (0.66) being the highest. This reinforces the general

pattern that software size and data complexity tend to have

higher linear correlations, while more abstract or qualitative

attributes (e.g., tool usage, experience levels, scheduling

constraints) demonstrate weaker associations.

The DESHARNAIS dataset stands out due to several

features showing moderate to strong positive correlations

with effort. Notably PointsAjust (0.74) and PointsNonAdjust

(0.71) show high correlation, suggesting that adjusted and

raw function points are highly indicative of effort in this

dataset. Length (0.69), Transactions (0.58), and Entities

(0.51) further reinforce this observation, indicating that

functional decomposition and feature complexity strongly

drive effort in this particular dataset. Adjustment (0.46) and

ManagerExp (0.16) follow a similar trend, although the

correlation is weaker. The only notable negative correlation

is with Language (-0.26), which may imply that the choice

of programming language influences effort inversely—

possibly due to productivity differences across languages.

The overarching insight drawn from Table IV is the

prevalence of weak and negative correlations across multiple

datasets and feature sets, especially in the COCOMO and

CHINA datasets. This pattern strongly suggests that simple

linear models may fail to capture the true complexity of

relationships in SEE. Specifically features that are

traditionally assumed to be strong drivers (e.g., programmer

capability, experience, scheduling pressure) show poor

linear alignment with effort, challenging their effectiveness

in linear regression-based models. Many features likely

interact in non-linear, conditional, or hierarchical ways—for

example, the impact of complexity may depend on developer

experience or tool support, which linear correlations cannot

detect. The consistent correlation of size-based metrics

(AFP, LOC, PointsAdjust) with effort supports their

inclusion, but highlights a potential over-reliance in models

that don’t incorporate richer, multi-dimensional feature

representations.

TABLE IV

FEATURES CORRELATION WITH EFFORT

CHINA COCOMO NASA-V2 COCOMO NASA-V1 COCOMO-81 DESHARNAIS

AFP 0.68 projectname 0.11 RELY -0.13 dev_mode -0.13 TeamExp 0.12

Input 0.58 cat2 -0.14 DATA -0.03 rely 0.21 ManagerExp 0.16

Output 0.56 forg -0.37 CPLX 0.16 data 0.44 Length 0.69
Enquiry 0.51 center 0.42 TIME -0.14 cplx 0.01 Transactions 0.58

File 0.61 mode -0.33 STOR -0.16 time 0.15 Entities 0.51

Interface 0.33 rely 0.24 VIRT -0.12 stor 0.10 PointsNonAdjust 0.71

Added 0.69 data -0.25 TURN -0.18 virt 0.02 Adjustment 0.46

Changed 0.11 cplx 0.41 ACAP -0.05 turn 0.21 PointsAjust 0.74

Deleted 0.07 time 0.38 AEXP -0.18 acap -0.15 Language -0.26

PDR_AFP 0.24 stor 0.26 PCAP 0.10 aexp -0.04

PDR_UFP 0.26 virt 0.19 VEXP 0.00 pcap 0.16

NPDR_AFP 0.22 turn 0.13 LEXP 0.26 vexp 0.07

NPDU_UFP 0.24 acap -0.21 MODP -0.18 lexp 0.09

Resource 0.22 aexp -0.11 TOOL 0.12 modp 0.27

Dev.Type NaN pcap -0.16 SCED 0.03 tool 0.00

Duration 0.48 vexp -0.23 LOC 0.92 sced 0.02

N_effort 0.99 lexp -0.05

 loc 0.66

modp -0.14

tool 0.10

sced -0.31

equivphyskloc 0.59

 Boy Setiawan, et. al.: Multi View Neural Network for Software … (October 2025)

VOLUME 07, No 02, 2025 DOI: 10.52985/insyst.v7i2.442 72

This correlation analysis motivates the need for more

sophisticated, non-linear modeling that can capture complex

feature interactions and non-additive effects. Additionally, it

opens opportunities for multi-view learning, enabling better

utilization of both weakly and strongly correlated features

across diverse views.

As the SEE datasets are non-linear in nature, the process

of transforming the original dataset with a non-linear method

such as Isomap will produce a better solution compared with

a linear method such as PCA. The dimensionality reduction

and transformation process described in the proposed

method reflects a critical pre-processing step aimed at

enhancing the representational quality of the input data used

in the MVNN architecture. Specifically, the procedure

involves applying the Isomap algorithm to each fold of the

training dataset during CV. Isomap, a well-established non-

linear manifold learning technique, is employed here with

n_neighbors set to half of the dataset dimension, which

defines the local neighbourhood size used to construct the

geodesic distance graph—a key component in preserving the

intrinsic geometry of the data in the lower-dimensional

space. The use of Isomap as a pre-processing transformation

in this stage is particularly valuable for revealing latent non-

linear structures in the feature space. Beside introducing

diversity in input representations, which enhances the

learning behaviour of MVNN. By setting n_neighbors to a

half the dataset dimension, the Isomap transformation

becomes highly sensitive to local curvature and fine-grained

manifold structure, potentially capturing non-linear

relationships that are otherwise obscured in high-

dimensional Euclidean space. This configuration is

particularly useful in SEE datasets, where feature

interdependencies often exhibit non-linear interactions due

to the complex nature of software artifacts, such as code

metrics, effort estimations, and process attributes. As a result

of this transformation, each fold of the transformed dataset

is effectively reduced to half of its original size, not in terms

of instances, but in feature dimensionality, making the

subsequent learning process more efficient while preserving

relevant structural information.

Figure 4 provides a visual TSNE transformed description

of the original and Isomap-transformed datasets in each parts

of the MVNN. The upper-left quadrant illustrates the post-

Isomap transformation output. When compared to the

original data—where a clear quadratic trend is observable,

allowing for a smooth approximation curve or regression

line—the Isomap-transformed data appears spread out,

disordered, and random in its geometric structure. This

visual manifestation is typical of Isomap in scenarios where

local neighbourhood preservation dominates over global

structure, especially with a low n_neighbors parameter. This

seemingly erratic pattern does not imply a degradation in

data quality but instead reflects a reprojection of the data

manifold into a space where latent non-linear relationships

are more linearly separable. In essence, Isomap flattens the

manifold, unfolding hidden non-linearities that are not

linearly apparent in the original high-dimensional feature

space.

Following transformation, both the original dataset and

the Isomap transformed version are independently fed into

their respective meta-models within the MVNN architecture.

These meta-models, implemented as parallel NN, learn

distinct representations from their input view. Notably,

because of the stark difference in feature space geometry, the

activation patterns and learned representations within each

meta-model diverge significantly. Consistent with the visual

outputs in Figure 4, the internal activations from both meta-

models are characterized by random-like scatter patterns,

reflecting the absence of obvious global trends in the

transformed feature spaces. This also indicate that there is no

dominant view which could affect the final prediction.

Despite this initial irregularity, the concatenation layer,

which aggregates the outputs from both views, also exhibits

a composite randomness, with no immediate coherent

structure emerging at this intermediate level. However, this

multimodal noise is not a sign of model failure but rather a

reflection of the heterogeneity and complementary nature of

the multi-view inputs.

The most critical insight emerges at the final SSE

regressor layer of the MVNN. It is at this terminal stage that

a clear, structured pattern becomes visible. Despite the

randomness seen in earlier stages, the final layer manages to

synthesize the multi-view representations into a coherent

mapping that aligns with the underlying regression task. A

distinct solid line emerges in the output, indicative of a

strong predictive signal and successful integration of both

views. This progression—from scattered and disjointed

feature spaces to a unified and interpretable output—is a

hallmark of deep NN architectures capable of abstract feature

fusion and non-linear regression modelling. This behaviour

illustrates one of the primary strengths of MVNN, which is

their ability to learn hierarchical representations from

disparate feature spaces, gradually integrating them through

multiple layers of abstraction and non-linear

transformations. The earlier layers focus on local view-

specific encoding, while the deeper layers are tasked with

capturing cross-view synergies, ultimately culminating in a

more structured and fine-grained and robust prediction.

Figure 4. Original, Isomap, Meta Model 1 and 2, Concatenation and
SSE Regressor Transformation on the dataset

 Boy Setiawan, et. al.: Multi View Neural Network for Software … (October 2025)

VOLUME 07, No 02, 2025 DOI: 10.52985/insyst.v7i2.442 73

V. RESULT AND DISCUSSION

In this section, the results of the study are presented and

summarizing the performance parameters used such as

MAE, MSE, MMRE, RMSE, MdMRE and R2 as shown in

Table V.

A. RESULTS FROM SEVERAL SEE DATASETS

TABLE V

OUR PROPOSED MVNN RESULTS ON VARIOUS SEE DATASETS

MAE MSE MMRE RMSE MdRME R2

2.38E-03 2.30E-05 3.34E-02 4.79E-03 3.76E-02 0.998

5.47E-03 5.70E-05 4.44E-02 7.54E-03 7.21E-02 0.999
1.25E-02 8.31E-04 1.66E-01 2.88E-02 2.47E-01 0.956

9.52E-03 1.85E-03 1.60E-01 4.30E-02 3.48E-01 0.927

1.04E-02 3.69E-04 5.40E-02 1.92E-02 3.44E-02 0.990

The results presented a detailed narrative of how the

proposed MVNN performs across a variety of widely

recognized SEE datasets in the following order: China,

COCOMO NASA-V1, COCOMO NASA-V2, COCOMO-

81 and Desharnais. Each dataset represents a distinct context

with different data characteristics, feature sets, and

distributions. Despite this diversity, the MVNN consistently

demonstrates strong predictive performance, reinforcing its

adaptability and effectiveness in complex, real-world

scenarios where SEE remains a challenging task.

Since no universal baseline exists across these datasets—

and because each dataset is inherently unique and lacks

correlation with the others—the evaluation of model

performance focuses primarily on the R² (coefficient of

determination) metric. This measure reflects how much of

the variation in the target (effort) can be explained by the

model. A high R² value indicates that the model captures the

underlying relationships between features and the target

variable very well.

The MVNN achieves an R² of 0.998 on the CHINA

dataset, suggesting that nearly all of the variability in

software effort can be explained by the model’s predictions.

The error values are remarkably low—MAE of 0.00238 and

RMSE of 0.00479—indicating both accuracy and

consistency. The MMRE, which stands at just 3.34%, further

supports this conclusion. In practice, this means that the

MVNN effectively learns from different feature views and

integrates them to generate accurate effort predictions.

Similarly, for the COCOMO NASA-V1 dataset, the model

achieves an exceptionally high R² of 0.999, indicating nearly

perfect alignment between predicted and actual effort values.

The error rates are similarly low, with an MAE of 0.00547

and MMRE of 4.44%, showing that the MVNN captures

both large-scale and nuanced relationships within the

dataset.

The COCOMO NASA-V2 dataset yields a lower R² value

of 0.956, but this still indicates that more than 95.6% of the

variance in the target variable is explained by the MVNN.

The model’s performance in terms of error—MAE of

0.0125, RMSE of 0.0288, and MMRE of 16.6%—is slightly

worse than in the previous datasets, which may be due to the

noisier nature of the dataset or missing contextual features

that are not captured. Nevertheless, the performance is still

excellent by regression standards, especially in the domain

of SEE, where achieving high R² values is notoriously

difficult due to the uncertainty and inconsistency in human

estimation and project documentation.

On the older and perhaps less structured COCOMO-81

dataset, the model achieves an R² of 0.927, the lowest

performance compared with other datasets, but it still

manages to capture over 92% of the effort variance. The

result is still impressive given the dataset’s age and potential

inconsistencies in its feature definitions. The MMRE of 16%

and MdRME of 34.8% suggest that prediction accuracy

varies more in this dataset—possibly because the influence

of human and organizational factors in historical data is

harder to quantify or was less rigorously measured. Even so,

the MVNN maintains strong performance by adapting to the

available feature views.

Lastly, for the Desharnais dataset, the MVNN achieves an

R² of 0.990, a level of accuracy that again demonstrates its

robustness. With an MAE of 0.0104, MMRE of 5.4%, and

RMSE of 0.0192, the model shows both precision and

consistency. This dataset contains structured features like

function points and adjustment factors, which are well-suited

to multi-view processing. The MVNN takes advantage of

these structured views to accurately map input features to

effort values.

Across all datasets, the R² values range from 0.927 to

0.999, reflecting that the MVNN captures between 92.7%

and 99.9% of the variance in software effort. Even in the

most challenging case (COCOMO NASA-V2), the

unexplained variance is less than 4.4%, which could be

attributed to random noise, missing features, or non-

observable project management factors. Such high R² values

are rare in SEE tasks and indicate a very strong model fit

across diverse datasets.

This outcome supports the key strength of the MVNN with

its ability to process and learn from multiple feature

representations—or views—of the same data instance. By

combining complementary and redundant information from

different views, the MVNN forms a richer, more nuanced

internal representation of the data, enabling it to model

complex, non-linear relationships far better than traditional

single-view or linear models.

The performance results demonstrate that the proposed

MVNN offers exceptional predictive capability in the SEE

domain. Its ability to generalize across varied datasets,

capture complex relationships, and maintain low error rates

makes it a highly effective solution—particularly in domains

where effort is influenced by numerous interdependent and

heterogeneous factors. The consistently high R² values

reaffirm that MVNN not only models the data accurately but

also understands the underlying structure of software project

 Boy Setiawan, et. al.: Multi View Neural Network for Software … (October 2025)

VOLUME 07, No 02, 2025 DOI: 10.52985/insyst.v7i2.442 74

characteristics, leading to predictions that are both reliable

and interpretable.

B. RESULTS FROM MULTI VIEW AND SINGLE VIEW

The comparative results presented in Table VI offer a

detailed performance analysis between the proposed MVNN

architecture and two variations of single-view meta-models

across five prominent SEE datasets. This comparison aims to

empirically validate the impact of incorporating multiple

data perspectives (views) during learning, as facilitated by

the MVNN architecture, in contrast to learning from a single

representation of the data.

From a technical standpoint, the MVNN consistently

demonstrates superior predictive performance across most

evaluation metrics. This consistent superiority is particularly

evident when analyzing the R² metric, which represents the

proportion of variance in the target variable that is

predictable from the input features. MVNN achieves R²

values above 0.99 in the China and COCOMO NASA-V1

datasets, 0.956 in COCOMO NASA-V2, 0.927 in

COCOMO-81, and 0.990 in Desharnais—each indicative of

excellent model fit and high reliability in capturing the

underlying functional relationship.

The results highlight that the multi-view architecture of

MVNN provides a significant performance boost over both

single-view meta-models. For instance, in the COCOMO

NASA-V2 dataset, which is considered more complex and

noisy, MVNN achieves an R² of 0.956—whereas the two

single-view models achieve considerably lower R² values of

0.657 and 0.698, respectively. This stark contrast clearly

illustrates the advantage of multi-view learning in capturing

richer and more abstract representations of the data,

especially in complex estimation scenarios where a single

perspective may fail to account for latent dependencies or

nonlinear interactions.

In terms of MAE and RMSE, the MVNN also maintains

lower values across most datasets, indicating reduced

average error and deviation. For the China dataset, for

example, MVNN produces a MAE of 0.00238 and an RMSE

of 0.00479, compared to 0.00263 and 0.00607 in Meta

Model 1, and 0.011 and 0.0172 in Meta Model 2. This pattern

holds across multiple datasets, suggesting the MVNN’s

robustness and consistent capability to generalize better,

despite the inherent variance and distributional shifts in the

dataset characteristics.

A notable observation is the performance on the

COCOMO-81 dataset, where Single View Meta Model 2

slightly outperforms MVNN with an R² of 0.998 versus

0.927 and a lower MAE (0.00405 vs. 0.00952). This

exception also apply with Single View Meta Model 1 which

also outperforms our proposed MVNN on MdRME using the

same dataset. But overall, the multi-view approach embodied

in the MVNN framework demonstrates a clear and consistent

improvement in SEE when compared to traditional single-

view models. This improvement is attributed to the MVNN’s

ability to integrate diverse feature subspaces into a unified

representation, enabling it to model complex, nonlinear, and

multidimensional relationships that are often missed in

single-view approaches. The comparative results confirm the

hypothesis that leveraging multiple views enhances learning

capability and prediction fidelity, particularly in real-world

SEE problems where data can be sparse, noisy, and high-

dimensional.

C. COMPARISON WITH PREVIOUS SEE METHODS

To validate our proposed method, we verify it with previous

SEE studies on the same performance metric and datasets to

compare the results in Table VII.

The experimental evaluation of our proposed MVNN

demonstrates a consistent and notable improvement across a

variety of benchmark datasets compared with LNI-based NN

[39], Neuro-fuzzy logic [39], Adaptive GA-based NN [39],

GEHO-based NFN [39], FCNN [40], GWO-FC [40] and

others.

The comparison reveals that our MVNN achieves lower

error rates in most cases. For instance, on the China dataset,

TABLE VI

COMPARISON BETWEEN SINGLE AND MULTI-VIEW

Model Dataset MAE MSE MMRE RMSE MdRME R2

MVNN China 2.38E-03 2.30E-05 3.34E-02 4.79E-03 3.76E-02 0.998

COCOMO NASA-V1 5.47E-03 5.70E-05 4.44E-02 7.54E-03 7.21E-02 0.999

COCOMO NASA-V2 1.25E-02 8.31E-04 1.66E-01 2.88E-02 2.47E-01 0.956

COCOMO-81 9.52E-03 1.85E-03 1.60E-01 4.30E-02 3.48E-01 0.927

Desharnais 1.04E-02 3.69E-04 5.40E-02 1.92E-02 3.44E-02 0.990

Single View Meta

Model 1

China 2.63E-03 3.70E-05 3.68E-02 6.07E-03 4.56E-02 0.997

COCOMO NASA-V1 6.54E-03 1.02E-04 5.31E-02 1.01E-02 1.07E-01 0.997

COCOMO NASA-V2 1.84E-02 6.51E-03 2.45E-01 8.07E-02 2.05E-01 0.657

COCOMO-81 5.92E-03 2.19E-04 9.96E-02 1.48E-02 2.83E-01 0.991

Desharnais 1.20E-02 6.83E-04 6.23E-02 2.61E-02 3.83E-02 0.981

Single View Meta

Model 2

China -CLEANED 1.10E-02 2.96E-04 1.54E-01 1.72E-02 2.38E-01 0.979

COCOMO NASA-V1 2.60E-02 7.92E-03 2.11E-01 8.90E-02 1.86E-01 0.805

COCOMO NASA-V2 2.68E-02 5.73E-03 3.57E-01 7.57E-02 3.44E-01 0.698

COCOMO-81 4.05E-03 5.80E-05 6.81E-02 7.63E-03 3.36E-01 0.998

Desharnais 2.55E-02 2.34E-03 1.33E-01 4.84E-02 1.09E-01 0.933

 Boy Setiawan, et. al.: Multi View Neural Network for Software … (October 2025)

VOLUME 07, No 02, 2025 DOI: 10.52985/insyst.v7i2.442 75

our MVNN achieved an exceptionally low MAE of 0.00238,

outperforming other models such as the FCNN (MAE

0.0310) and KNN (MAE 0.0332). Similarly, on the

COCOMO NASA-V1 dataset, our model obtained an MAE

of 0.00547, which is significantly better than traditional

learning approaches such as Linear Regression (MAE

0.0168) and Naive Bayes (MAE 0.0164). Even on more

challenging datasets like COCOMO NASA-V2 and

COCOMO-81, which tend to produce relatively higher error

margins, our MVNN still performs competitively. On

COCOMO NASA-V2, our model achieved an MAE of

0.0125, compared to FCNN with an MAE of 0.0967.

Likewise, in the Desharnais dataset, where many classical

methods show significant errors and variability, our model

reached an MAE of 0.0104.

TABLE VII

PERFORMANCE COMPARISON

Method Metrics MAE MSE MMRE RMSE MdMRE

LNI-based NN [39] China - - 2.40E-01 1.48E-01 2.55E-01

 COCOMO NASA-V1 - - 2.43E-01 1.83E-01 2.49E-01

 COCOMO NASA-V2 - - 2.25E-01 3.83E-01 2.49E-01

 COCOMO-81 - - 2.24E-01 2.61E-01 2.56E-01

 Desharnais - - 3.20E-01 3.12E-01 3.36E-01

Neuro-fuzzy logic [39] China - - 2.20E-01 7.50E-02 2.40E-01

 COCOMO NASA-V1 - - 2.36E-01 1.31E-01 2.15E-01

 COCOMO NASA-V2 - - 1.96E-01 2.90E-01 2.15E-01

 COCOMO-81 - - 2.13E-01 1.78E-01 2.56E-01
 Desharnais - - 2.96E-01 1.73E-01 2.23E-01

Adaptive GA-based NN [39] China - - 1.92E-01 5.60E-02 2.18E-01

 COCOMO NASA-V1 - - 2.31E-01 6.50E-02 1.72E-01

 COCOMO NASA-V2 - - 1.74E-01 2.32E-01 1.72E-01

 COCOMO-81 - - 1.99E-01 1.30E-01 2.35E-01

 Desharnais - - 1.97E-01 1.11E-01 1.81E-01

GEHO-based NFN [39] China - - 1.67E-01 3.90E-01 1.68E-01

 COCOMO NASA-V1 - - 2.20E-01 6.00E-02 1.30E-01

 COCOMO NASA-V2 - - 1.28E-01 9.60E-01 1.30E-01

 COCOMO-81 - - 1.74E-01 5.50E-02 2.23E-01

 Desharnais - - 1.12E-01 6.00E-02 1.00E-01

FCNN [40] China 3.10E-02 2.88E-03 - 5.36E-02 5.71E-01

 COCOMO NASA-V1 1.06E-01 2.53E-02 - 1.59E-01 7.87E-01

 COCOMO NASA-V2 9.67E-02 2.10E-02 - 1.42E-01 8.25E-01

 COCOMO-81 1.52E-01 3.19E-02 - 1.79E-01 1.73E-01
 Desharnais 1.27E-01 3.47E-02 - 1.86E-01 4.39E-01

GWO-FC [40] China 2.18E-02 1.34E-03 - 3.66E-02 3.82E-01

 COCOMO NASA-V1 4.80E-03 4.58E-05 - 6.80E-03 6.30E-03

 COCOMO NASA-V2 6.53E-02 1.17E-02 - 1.08E-01 6.31E-01

 COCOMO-81 1.30E-02 2.82E-04 - 1.68E-02 1.31E-02

 Desharnais 3.21E-02 1.85E-03 - 4.30E-02 8.43E-02

KNN [42] China 3.32E-02 6.30E-03 7.92E-02 3.48E-01

 COCOMO NASA-V1 7.80E-02 1.16E-02 1.08E-01 1.98E-01

 COCOMO NASA-V2 1.10E-01 4.38E-02 2.09E-01 3.37E-01

 COCOMO-81 1.54E-02 9.00E-04 3.00E-02 4.27E-01

 Desharnais 9.94E-02 2.84E-02 1.69E-01 2.10E-01

LR [42] China 4.33E-02 9.90E-03 9.95E-02 4.75E-01

 COCOMO NASA-V1 1.68E-02 4.00E-04 2.00E-02 1.01E-01

 COCOMO NASA-V2 1.11E-01 3.38E-02 1.84E-01 6.11E-01

 COCOMO-81 1.00E-01 1.90E-02 1.38E-01 4.69E+00
 Desharnais 8.96E-02 1.38E-02 1.17E-01 3.10E-01

NB [42] China 4.15E-02 6.80E-03 8.26E-02 4.55E-01

 COCOMO NASA-V1 1.64E-02 4.00E-04 1.92E-02 1.06E-01

 COCOMO NASA-V2 1.05E-01 3.34E-02 1.83E-01 6.63E-01

 COCOMO-81 3.26E-02 2.10E-03 4.53E-02 3.19E+00

 Desharnais 8.78E-02 1.28E-02 1.13E-01 3.14E-01

SBG [42] China 4.36E-02 8.50E-03 9.23E-02 5.50E-01

 COCOMO NASA-V1 1.42E-01 3.14E-02 1.77E-01 3.38E-01

 COCOMO NASA-V2 8.92E-02 3.56E-02 1.89E-01 6.89E-01

 COCOMO-81 4.87E-02 5.10E-03 7.13E-02 3.91E+00

 Desharnais 1.12E-01 2.27E-02 1.51E-01 2.99E-01

Our China 2.38E-03 2.30E-05 3.34E-02 4.79E-03 3.76E-02

 COCOMO NASA-V1 5.47E-03 5.70E-05 4.44E-02 7.54E-03 7.21E-02

 COCOMO NASA-V2 1.25E-02 8.31E-04 1.66E-01 2.88E-02 2.47E-01

 COCOMO-81 9.52E-03 1.85E-03 1.60E-01 4.30E-02 3.48E-01
 Desharnais 1.04E-02 3.69E-04 5.40E-02 1.92E-02 3.44E-02

 Boy Setiawan, et. al.: Multi View Neural Network for Software … (October 2025)

VOLUME 07, No 02, 2025 DOI: 10.52985/insyst.v7i2.442 76

These results demonstrate the robustness and

generalizability of our approach across datasets of varying

characteristics. Unlike many baseline models that either rely

on linear assumptions or are limited by single-view input

representations, our MVNN benefits from its architecture

that integrates multiple views through a structured DL

pipeline. This allows it to adapt to different data distributions

and capture complex nonlinear relationships that are often

present in software effort estimation tasks.

D. THREATS TO VALIDITY

As with every empirical experiment, the results of our

works are subject to some threats to validity.

E. CONSTRUCT VALIDITY

We admit that during our experiments, only a subset of

various SEE datasets were used and not all datasets were

included in the case of PROMISE. Although it would be best

to include all of them, but the limitation of resources hinders

us to take this step. For objectivity, we reserved ourself from

modifying unless it is necessary to conduct the experiment.

Since most studies on SEE uses an open and public datasets,

we consider the datasets is complete and adequately fixed

and reliable to be used in our study.

F. INTERNAL VALIDITY

Although there are variations of the same dataset in some

repositories. We found it to be constructive and the necessary

adjustment have been made and verified by previous studies.

Therefore, the validity of the datasets should be minor and

will cause little effect on the results.

G. EXTERNAL VALIDITY

We validated our findings using open and public datasets

from different sources and different software metrics to gain

more confidence in the external validity of our study. By

doing so, we hope to achieve generalization with our

proposed method, and any replicated studies with our

method will be a step to improve our method.

VI. CONCLUSION

In this article, we propose MVNN for SEE which shows

to be reliable compared with previous studies. The

challenges of SEE lies in the small amount of examples and

the different software metrics used universally among

software projects. Although there are methods and

techniques to overcome the challenges of SEE, but the

complex nature of software projects still prove to be a

challenging field in the future to improve software

engineering, by finding an efficient tools to find and predict

defect during the life cycle of software development. In this

method, we used multiple steps of pre-processing prior of

training ranging from features selection, imputation, and

scaling to overcome the different software metrics, and to

avoid any dominant value in the outlier. Besides the original

dataset as the primary view, we opted to create a different

view from the dataset by utilizing Isomap reliable

dimensionality reduction algorithm. The use of Isomap as a

dimensionality reduction will reduce the size of the MVNN

input, so a smaller yet effective NN regressor can be trained

using K-fold CV. Empirical studies with some notably SEE

datasets show the effectiveness of our proposed method

compared with previous methods. In the future, we would

like to extend our research towards more deep layers NN to

further improve the performance of our proposed MVNN.

AUTHORS CONTRIBUTION

Boy Setiawan: Conceptualization, Methodology, Research,

Investigation, Formal Analysis, Resources, Software,

Visualization, Original Draft Writing.

Agus Subekti: Supervision, Validation, Original Draft

Writing Preparation, Review Writing & Editing.

COPYRIGHT

This work is licensed under a Creative

Commons Attribution-NonCommercial-

ShareAlike 4.0 International License.

REFERENCES
[1] A. Trendowicz and R. Jeffery, Software Project Effort Estimation:

Foundations and Best Practice Guidelines for Success. Cham:

Springer International Publishing, 2014. doi: 10.1007/978-3-319-

03629-8.

[2] M. Rahman, P. P. Roy, M. Ali, T. Gonc¸alves, and H. Sarwar,

“Software Effort Estimation using Machine Learning Technique,” Int.

J. Adv. Comput. Sci. Appl., vol. 14, no. 4, 2023, doi:

10.14569/IJACSA.2023.0140491.

[3] S. Hameed, Y. Elsheikh, and M. Azzeh, “An optimized case-based

software project effort estimation using genetic algorithm,” Inf. Softw.

Technol., vol. 153, p. 107088, Jan. 2023, doi:

10.1016/j.infsof.2022.107088.

[4] Moatasem. M. Draz, O. Emam, and Safaa. M. Azzam, “Software cost

estimation predication using a convolutional neural network and

particle swarm optimization algorithm,” Sci. Rep., vol. 14, no. 1, p.

13129, Jun. 2024, doi: 10.1038/s41598-024-63025-8.

[5] M. S. Khan, F. Jabeen, S. Ghouzali, Z. Rehman, S. Naz, and W. Abdul,

“Metaheuristic Algorithms in Optimizing Deep Neural Network Model

for Software Effort Estimation,” IEEE Access, vol. 9, pp. 60309–

60327, 2021, doi: 10.1109/ACCESS.2021.3072380.

[6] P. V. A G, A. K. K, and V. Varadarajan, “Estimating Software

Development Efforts Using a Random Forest-Based Stacked Ensemble

Approach,” Electronics, vol. 10, no. 10, p. 1195, May 2021, doi:

10.3390/electronics10101195.

[7] J. Rashid, S. Kanwal, M. Wasif Nisar, J. Kim, and A. Hussain, “An

Artificial Neural Network-Based Model for Effective Software

Development Effort Estimation,” Comput. Syst. Sci. Eng., vol. 44, no.

2, pp. 1309–1324, 2023, doi: 10.32604/csse.2023.026018.

[8] N. Rankovic, D. Rankovic, M. Ivanovic, and L. Lazic, “A New

Approach to Software Effort Estimation Using Different Artificial

Neural Network Architectures and Taguchi Orthogonal Arrays,” IEEE

Access, vol. 9, pp. 26926–26936, 2021, doi:

10.1109/ACCESS.2021.3057807.

[9] M. F. Bosu, S. G. MacDonell, and P. A. Whigham, “Analyzing the

Stationarity Process in Software Effort Estimation Datasets,” 2021,

doi: 10.48550/ARXIV.2107.01616.

https://creativecommons.org/licenses/by-nc-sa/4.0/

 Boy Setiawan, et. al.: Multi View Neural Network for Software … (October 2025)

VOLUME 07, No 02, 2025 DOI: 10.52985/insyst.v7i2.442 77

[10] M. Rahman, T. Goncalves, and H. Sarwar, “Review of Existing

Datasets Used for Software Effort Estimation,” Int. J. Adv. Comput.

Sci. Appl., vol. 14, no. 7, 2023, doi:

10.14569/IJACSA.2023.01407100.

[11] M. Azzeh, “Dataset Quality Assessment: An extension for analogy

based effort estimation,” 2017, arXiv. doi:

10.48550/ARXIV.1703.04575.

[12] S. S. Gautam and V. Singh, “Adaptive Discretization Using Golden

Section to Aid Outlier Detection for Software Development Effort

Estimation,” IEEE Access, vol. 10, pp. 90369–90387, 2022, doi:

10.1109/ACCESS.2022.3200149.

[13] M. F. Bosu and S. G. MacDonell, “Experience: Quality Benchmarking

of Datasets Used in Software Effort Estimation,” 2020, doi:

10.48550/ARXIV.2012.10836.

[14] E. O. Kiyak, D. Birant, and K. U. Birant, “Multi-view learning for

software defect prediction,” E-Inform. Softw. Eng. J., vol. 15, no. 1, pp.

163–184, Nov. 2021, doi: 10.37190/e-Inf210108.

[15] J. Zhao, X. Xie, X. Xu, and S. Sun, “Multi-view learning overview:

Recent progress and new challenges,” Inf. Fusion, vol. 38, pp. 43–54,

Nov. 2017, doi: 10.1016/j.inffus.2017.02.007.

[16] X. Xie and S. Sun, “Multi-view twin support vector machines,” Intell

Data Anal, vol. 19, no. 4, pp. 701–712, Jul. 2015, doi: 10.3233/IDA-

150740.

[17] Y. Makihara, A. Mansur, D. Muramatsu, M. Uddin, and Y. Yagi,

“Multi-view discriminant analysis with tensor representation and its

application to cross-view gait recognition,” Jul. 2015, doi:

10.1109/FG.2015.7163131.

[18] X. Yan, S. Hu, Y. Mao, Y. Ye, and H. Yu, “Deep multi-view learning

methods: A review,” Neurocomputing, vol. 448, pp. 106–129, Aug.

2021, doi: 10.1016/j.neucom.2021.03.090.

[19] T. Baltrusaitis, C. Ahuja, and L.-P. Morency, “Multimodal Machine

Learning: A Survey and Taxonomy,” IEEE Trans Pattern Anal Mach

Intell, vol. 41, no. 2, pp. 423–443, Feb. 2019, doi:

10.1109/TPAMI.2018.2798607.

[20] S. K. D’mello and J. Kory, “A Review and Meta-Analysis of

Multimodal Affect Detection Systems,” ACM Comput Surv, vol. 47,

no. 3, Feb. 2015, doi: 10.1145/2682899.

[21] D. Wang, P. Cui, M. Ou, and W. Zhu, “Deep multimodal hashing with

orthogonal regularization.,” in IJCAI, 2015, pp. 2291–2297.

[22] A. Jadhav and S. Kumar Shandilya, “Towards effective feature

selection in estimating software effort using machine learning,” J.

Softw. Evol. Process, vol. 36, no. 5, p. e2588, May 2024, doi:

10.1002/smr.2588.

[23] E. Hadjisolomou, K. Stefanidis, H. Herodotou, M. Michaelides, G.

Papatheodorou, and E. Papastergiadou, “Modelling Freshwater

Eutrophication with Limited Limnological Data Using Artificial

Neural Networks,” Water, vol. 13, no. 11, p. 1590, Jun. 2021, doi:

10.3390/w13111590.

[24] Okfalisa, I. Gazalba, Mustakim, and N. G. I. Reza, “Comparative

analysis of k-nearest neighbor and modified k-nearest neighbor

algorithm for data classification,” in 2017 2nd International

conferences on Information Technology, Information Systems and

Electrical Engineering (ICITISEE), Yogyakarta: IEEE, Nov. 2017, pp.

294–298. doi: 10.1109/ICITISEE.2017.8285514.

[25] J. Li, “Asymptotics of K-Fold Cross Validation,” J. Artif. Intell. Res.,

vol. 78, pp. 491–526, Nov. 2023, doi: 10.1613/jair.1.13974.

[26] L. B. V. de Amorim, G. D. C. Cavalcanti, and R. M. O. Cruz, “The

choice of scaling technique matters for classification performance,”

Appl. Soft Comput., vol. 133, p. 109924, 2023, doi:

https://doi.org/10.1016/j.asoc.2022.109924.

[27] F. J. O. Gómez, G. O. López, E. Filatovas, O. Kurasova, and G. E. M.

Garzón, “Hyperspectral Image Classification Using Isomap with

SMACOF,” Informatica, vol. 30, no. 2, pp. 349–365, 2019, doi:

10.15388/Informatica.2019.209.

[28] J. B. Tenenbaum, V. D. Silva, and J. C. Langford, “A Global

Geometric Framework for Nonlinear Dimensionality Reduction,”

Science, vol. 290, no. 5500, pp. 2319–2323, Dec. 2000, doi:

10.1126/science.290.5500.2319.

[29] T. Qu and Z. Cai, “An improved Isomap method for manifold

learning,” Int. J. Intell. Comput. Cybern., vol. 10, pp. 30–40, Mar.

2017, doi: 10.1108/IJICC-03-2016-0014.

[30] M. Yousaf, T. U. Rehman, and L. Jing, “An Extended Isomap

Approach for Nonlinear Dimension Reduction,” SN Comput. Sci., vol.

1, no. 3, p. 160, May 2020, doi: 10.1007/s42979-020-00179-y.

[31] M. Azzeh and Y. Elsheikh, “Learning best K analogies from data

distribution for case-based software effort estimation,” 2017, arXiv.

doi: 10.48550/ARXIV.1703.04567.

[32] A. Ardiansyah, M. M. Mardhia, and S. Handayaningsih, “Analogy-

based model for software project effort estimation,” Int. J. Adv. Intell.

Inform., vol. 4, no. 3, p. 251, Nov. 2018, doi: 10.26555/ijain.v4i3.266.

[33] I. Thamarai and S. Murugavalli, “An Evolutionary Computation

Approach for Project Selection in Analogy based Software Effort

Estimation,” Indian J. Sci. Technol., vol. 9, no. 21, Jun. 2016, doi:

10.17485/ijst/2016/v9i21/95286.

[34] A. G. Priya Varshini, K. Anitha Kumari, D. Janani, and S. Soundariya,

“Comparative analysis of Machine learning and Deep learning

algorithms for Software Effort Estimation,” J. Phys. Conf. Ser., vol.

1767, no. 1, p. 012019, Feb. 2021, doi: 10.1088/1742-

6596/1767/1/012019.

[35] O. H. Alhazmi and M. Z. Khan, “Software Effort Prediction Using

Ensemble Learning Methods,” J. Softw. Eng. Appl., vol. 13, no. 07, pp.

143–160, 2020, doi: 10.4236/jsea.2020.137010.

[36] N. A. Zakaria, A. R. Ismail, A. Y. Ali, N. H. M. Khalid, and N. Z.

Abidin, “Software Project Estimation with Machine Learning,” Int. J.

Adv. Comput. Sci. Appl., vol. 12, no. 6, 2021, doi:

10.14569/IJACSA.2021.0120685.

[37] A. A. Fadhil, R. G. H. Alsarraj, and A. M. Altaie, “Software Cost

Estimation Based on Dolphin Algorithm,” IEEE Access, vol. 8, pp.

75279–75287, 2020, doi: 10.1109/ACCESS.2020.2988867.

[38] V. Van Hai, H. L. T. K. Nhung, Z. Prokopova, R. Silhavy, and P.

Silhavy, “Toward Improving the Efficiency of Software Development

Effort Estimation via Clustering Analysis,” IEEE Access, vol. 10, pp.

83249–83264, 2022, doi: 10.1109/ACCESS.2022.3185393.

[39] S. Sharma and S. Vijayvargiya, “Modeling of software project effort

estimation: a comparative performance evaluation of optimized soft

computing-based methods,” Int. J. Inf. Technol., vol. 14, no. 5, pp.

2487–2496, Aug. 2022, doi: 10.1007/s41870-022-00962-5.

[40] S. Kassaymeh, M. Alweshah, M. A. Al-Betar, A. I. Hammouri, and M.

A. Al-Ma’aitah, “Software effort estimation modeling and fully

connected artificial neural network optimization using soft computing

techniques,” Clust. Comput., vol. 27, no. 1, pp. 737–760, Feb. 2024,

doi: 10.1007/s10586-023-03979-y.

[41] Y. L. Alemu, T. Lahmer, and C. Walther, “Damage Detection with

Data-Driven Machine Learning Models on an Experimental

Structure,” Eng, vol. 5, no. 2, pp. 629–656, 2024, doi:

10.3390/eng5020036.

[42] A. Jadhav and S. K. Shandilya, “Reliable machine learning models for

estimating effective software development efforts: A comparative

analysis,” J. Eng. Res., vol. 11, no. 4, pp. 362–376, Dec. 2023, doi:

10.1016/j.jer.2023.100150.

	[1] A. Trendowicz and R. Jeffery, Software Project Effort Estimation: Foundations and Best Practice Guidelines for Success. Cham: Springer International Publishing, 2014. doi: 10.1007/978-3-319-03629-8.
	[2] M. Rahman, P. P. Roy, M. Ali, T. Gonc¸alves, and H. Sarwar, “Software Effort Estimation using Machine Learning Technique,” Int. J. Adv. Comput. Sci. Appl., vol. 14, no. 4, 2023, doi: 10.14569/IJACSA.2023.0140491.
	[3] S. Hameed, Y. Elsheikh, and M. Azzeh, “An optimized case-based software project effort estimation using genetic algorithm,” Inf. Softw. Technol., vol. 153, p. 107088, Jan. 2023, doi: 10.1016/j.infsof.2022.107088.
	[4] Moatasem. M. Draz, O. Emam, and Safaa. M. Azzam, “Software cost estimation predication using a convolutional neural network and particle swarm optimization algorithm,” Sci. Rep., vol. 14, no. 1, p. 13129, Jun. 2024, doi: 10.1038/s41598-024-63025-8.
	[5] M. S. Khan, F. Jabeen, S. Ghouzali, Z. Rehman, S. Naz, and W. Abdul, “Metaheuristic Algorithms in Optimizing Deep Neural Network Model for Software Effort Estimation,” IEEE Access, vol. 9, pp. 60309–60327, 2021, doi: 10.1109/ACCESS.2021.3072380.
	[6] P. V. A G, A. K. K, and V. Varadarajan, “Estimating Software Development Efforts Using a Random Forest-Based Stacked Ensemble Approach,” Electronics, vol. 10, no. 10, p. 1195, May 2021, doi: 10.3390/electronics10101195.
	[7] J. Rashid, S. Kanwal, M. Wasif Nisar, J. Kim, and A. Hussain, “An Artificial Neural Network-Based Model for Effective Software Development Effort Estimation,” Comput. Syst. Sci. Eng., vol. 44, no. 2, pp. 1309–1324, 2023, doi: 10.32604/csse.2023.02...
	[8] N. Rankovic, D. Rankovic, M. Ivanovic, and L. Lazic, “A New Approach to Software Effort Estimation Using Different Artificial Neural Network Architectures and Taguchi Orthogonal Arrays,” IEEE Access, vol. 9, pp. 26926–26936, 2021, doi: 10.1109/ACC...
	[9] M. F. Bosu, S. G. MacDonell, and P. A. Whigham, “Analyzing the Stationarity Process in Software Effort Estimation Datasets,” 2021, doi: 10.48550/ARXIV.2107.01616.
	[10] M. Rahman, T. Goncalves, and H. Sarwar, “Review of Existing Datasets Used for Software Effort Estimation,” Int. J. Adv. Comput. Sci. Appl., vol. 14, no. 7, 2023, doi: 10.14569/IJACSA.2023.01407100.
	[11] M. Azzeh, “Dataset Quality Assessment: An extension for analogy based effort estimation,” 2017, arXiv. doi: 10.48550/ARXIV.1703.04575.
	[12] S. S. Gautam and V. Singh, “Adaptive Discretization Using Golden Section to Aid Outlier Detection for Software Development Effort Estimation,” IEEE Access, vol. 10, pp. 90369–90387, 2022, doi: 10.1109/ACCESS.2022.3200149.
	[13] M. F. Bosu and S. G. MacDonell, “Experience: Quality Benchmarking of Datasets Used in Software Effort Estimation,” 2020, doi: 10.48550/ARXIV.2012.10836.
	[14] E. O. Kiyak, D. Birant, and K. U. Birant, “Multi-view learning for software defect prediction,” E-Inform. Softw. Eng. J., vol. 15, no. 1, pp. 163–184, Nov. 2021, doi: 10.37190/e-Inf210108.
	[15] J. Zhao, X. Xie, X. Xu, and S. Sun, “Multi-view learning overview: Recent progress and new challenges,” Inf. Fusion, vol. 38, pp. 43–54, Nov. 2017, doi: 10.1016/j.inffus.2017.02.007.
	[16] X. Xie and S. Sun, “Multi-view twin support vector machines,” Intell Data Anal, vol. 19, no. 4, pp. 701–712, Jul. 2015, doi: 10.3233/IDA-150740.
	[17] Y. Makihara, A. Mansur, D. Muramatsu, M. Uddin, and Y. Yagi, “Multi-view discriminant analysis with tensor representation and its application to cross-view gait recognition,” Jul. 2015, doi: 10.1109/FG.2015.7163131.
	[18] X. Yan, S. Hu, Y. Mao, Y. Ye, and H. Yu, “Deep multi-view learning methods: A review,” Neurocomputing, vol. 448, pp. 106–129, Aug. 2021, doi: 10.1016/j.neucom.2021.03.090.
	[19] T. Baltrusaitis, C. Ahuja, and L.-P. Morency, “Multimodal Machine Learning: A Survey and Taxonomy,” IEEE Trans Pattern Anal Mach Intell, vol. 41, no. 2, pp. 423–443, Feb. 2019, doi: 10.1109/TPAMI.2018.2798607.
	[20] S. K. D’mello and J. Kory, “A Review and Meta-Analysis of Multimodal Affect Detection Systems,” ACM Comput Surv, vol. 47, no. 3, Feb. 2015, doi: 10.1145/2682899.
	[21] D. Wang, P. Cui, M. Ou, and W. Zhu, “Deep multimodal hashing with orthogonal regularization.,” in IJCAI, 2015, pp. 2291–2297.
	[22] A. Jadhav and S. Kumar Shandilya, “Towards effective feature selection in estimating software effort using machine learning,” J. Softw. Evol. Process, vol. 36, no. 5, p. e2588, May 2024, doi: 10.1002/smr.2588.
	[23] E. Hadjisolomou, K. Stefanidis, H. Herodotou, M. Michaelides, G. Papatheodorou, and E. Papastergiadou, “Modelling Freshwater Eutrophication with Limited Limnological Data Using Artificial Neural Networks,” Water, vol. 13, no. 11, p. 1590, Jun. 20...
	[24] Okfalisa, I. Gazalba, Mustakim, and N. G. I. Reza, “Comparative analysis of k-nearest neighbor and modified k-nearest neighbor algorithm for data classification,” in 2017 2nd International conferences on Information Technology, Information System...
	[25] J. Li, “Asymptotics of K-Fold Cross Validation,” J. Artif. Intell. Res., vol. 78, pp. 491–526, Nov. 2023, doi: 10.1613/jair.1.13974.
	[26] L. B. V. de Amorim, G. D. C. Cavalcanti, and R. M. O. Cruz, “The choice of scaling technique matters for classification performance,” Appl. Soft Comput., vol. 133, p. 109924, 2023, doi: https://doi.org/10.1016/j.asoc.2022.109924.
	[27] F. J. O. Gómez, G. O. López, E. Filatovas, O. Kurasova, and G. E. M. Garzón, “Hyperspectral Image Classification Using Isomap with SMACOF,” Informatica, vol. 30, no. 2, pp. 349–365, 2019, doi: 10.15388/Informatica.2019.209.
	[28] J. B. Tenenbaum, V. D. Silva, and J. C. Langford, “A Global Geometric Framework for Nonlinear Dimensionality Reduction,” Science, vol. 290, no. 5500, pp. 2319–2323, Dec. 2000, doi: 10.1126/science.290.5500.2319.
	[29] T. Qu and Z. Cai, “An improved Isomap method for manifold learning,” Int. J. Intell. Comput. Cybern., vol. 10, pp. 30–40, Mar. 2017, doi: 10.1108/IJICC-03-2016-0014.
	[30] M. Yousaf, T. U. Rehman, and L. Jing, “An Extended Isomap Approach for Nonlinear Dimension Reduction,” SN Comput. Sci., vol. 1, no. 3, p. 160, May 2020, doi: 10.1007/s42979-020-00179-y.
	[31] M. Azzeh and Y. Elsheikh, “Learning best K analogies from data distribution for case-based software effort estimation,” 2017, arXiv. doi: 10.48550/ARXIV.1703.04567.
	[32] A. Ardiansyah, M. M. Mardhia, and S. Handayaningsih, “Analogy-based model for software project effort estimation,” Int. J. Adv. Intell. Inform., vol. 4, no. 3, p. 251, Nov. 2018, doi: 10.26555/ijain.v4i3.266.
	[33] I. Thamarai and S. Murugavalli, “An Evolutionary Computation Approach for Project Selection in Analogy based Software Effort Estimation,” Indian J. Sci. Technol., vol. 9, no. 21, Jun. 2016, doi: 10.17485/ijst/2016/v9i21/95286.
	[34] A. G. Priya Varshini, K. Anitha Kumari, D. Janani, and S. Soundariya, “Comparative analysis of Machine learning and Deep learning algorithms for Software Effort Estimation,” J. Phys. Conf. Ser., vol. 1767, no. 1, p. 012019, Feb. 2021, doi: 10.108...
	[35] O. H. Alhazmi and M. Z. Khan, “Software Effort Prediction Using Ensemble Learning Methods,” J. Softw. Eng. Appl., vol. 13, no. 07, pp. 143–160, 2020, doi: 10.4236/jsea.2020.137010.
	[36] N. A. Zakaria, A. R. Ismail, A. Y. Ali, N. H. M. Khalid, and N. Z. Abidin, “Software Project Estimation with Machine Learning,” Int. J. Adv. Comput. Sci. Appl., vol. 12, no. 6, 2021, doi: 10.14569/IJACSA.2021.0120685.
	[37] A. A. Fadhil, R. G. H. Alsarraj, and A. M. Altaie, “Software Cost Estimation Based on Dolphin Algorithm,” IEEE Access, vol. 8, pp. 75279–75287, 2020, doi: 10.1109/ACCESS.2020.2988867.
	[38] V. Van Hai, H. L. T. K. Nhung, Z. Prokopova, R. Silhavy, and P. Silhavy, “Toward Improving the Efficiency of Software Development Effort Estimation via Clustering Analysis,” IEEE Access, vol. 10, pp. 83249–83264, 2022, doi: 10.1109/ACCESS.2022.31...
	[39] S. Sharma and S. Vijayvargiya, “Modeling of software project effort estimation: a comparative performance evaluation of optimized soft computing-based methods,” Int. J. Inf. Technol., vol. 14, no. 5, pp. 2487–2496, Aug. 2022, doi: 10.1007/s41870-...
	[40] S. Kassaymeh, M. Alweshah, M. A. Al-Betar, A. I. Hammouri, and M. A. Al-Ma’aitah, “Software effort estimation modeling and fully connected artificial neural network optimization using soft computing techniques,” Clust. Comput., vol. 27, no. 1, pp...
	[41] Y. L. Alemu, T. Lahmer, and C. Walther, “Damage Detection with Data-Driven Machine Learning Models on an Experimental Structure,” Eng, vol. 5, no. 2, pp. 629–656, 2024, doi: 10.3390/eng5020036.
	[42] A. Jadhav and S. K. Shandilya, “Reliable machine learning models for estimating effective software development efforts: A comparative analysis,” J. Eng. Res., vol. 11, no. 4, pp. 362–376, Dec. 2023, doi: 10.1016/j.jer.2023.100150.

