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Abstract

Internet of Things (loT)-based air quality monitoring systems represent a significant advancement in urban
environmental management. This research implements a system that integrates PM2.5, PM10, CO2, and NO2 sensors for
real-time monitoring of pollutants. The results showed that the integration of loT technology with cloud computing and
machine learning algorithms successfully created a responsive and accurate monitoring system. The model achieved
maximum accuracy during the training process, with promising predictive capabilities in real-world implementation. The
main findings of the study confirmed that the Weighted Class (WC) approach significantly improved performance in the
testing and prediction process by addressing class imbalance in the dataset, while the Data Augmentation (DA)
technique did not show the expected improvement due to the intrinsic characteristics of air quality data. The automatic
notification system successfully provides early warnings when air quality exceeds specified thresholds, enabling
proactive responses from authorities and the public. The implementation of a web-based monitoring dashboard provides
comprehensive visualization of data for long-term analysis. This research contributes to the development of smart cities
by providing an effective framework for air quality management, supporting data-driven decision-making, and increasing
public awareness of environmental conditions.
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1. INTRODUCTION

In cities, where air pollution significantly affects public health and living conditions, air quality is a
critical issue that demands immediate attention. Hawari et al. [2] in their research on an Internet of Things
(IoT)-based air quality monitoring system asserted that modern technology is needed to collect and analyze
real-time data to address the complexity of air pollution. The system allows authorities to provide early
warnings to the public about dangerous air conditions.

Karnati [1] emphasized the urgency of the research by pointing out that the rapid growth of urban
populations requires more effective and innovative air quality management systems. This research aims to
develop technological solutions capable of overcoming the limitations of conventional systems through a
comprehensive IoT approach, with a primary focus on real-time monitoring and predictive analysis
capabilities.

Martillano et al. [3] underscored the importance of communication in air quality monitoring systems,
showing how the integration of notifications can improve public response to changes in air quality. The
developed system does not simply track pollutants, but also provides valuable information that helps people
make quick decisions regarding activities and health.

Patil and Waghmare [4] further strengthened the argument by showing that modern IoT systems
should be capable of continuous monitoring and sending automated alerts. This proactive approach is
especially important in complex urban areas, where air quality can change rapidly due to various factors such
as traffic, industrial activities, and weather conditions. As such, this research contributes to the development
of technological solutions that can reduce health risks due to air pollution through smarter and more
responsive monitoring.

The implementation of automatic alert mechanisms is crucial for effective air quality management.
Patil and Waghmare (2021) proposed a smart IoT-based air quality monitoring system that not only tracks
pollution levels but also sends automatic alerts to users, thereby promoting proactive measures against air
quality deterioration [4]. This proactive approach is essential in urban areas where air quality can change
rapidly due to various factors, including traffic, industrial activities, and weather conditions. Furthermore,
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Yadav and Verma (2020) highlighted the role of smart alerting systems in enhancing community
responsiveness to air quality issues, emphasizing that timely notifications can lead to behavioral changes that
reduce exposure to harmful pollutants [5].

Research on IoT based air quality monitoring systems has experienced significant developments in
recent years. Jabbar et al. [5] introduced an IoT implementation system for remote air quality monitoring,
which opens up new opportunities in environmental monitoring using cutting-edge technology. Their
contribution provides an important foundation for the development of systems capable of collecting air
quality data in a comprehensive and continuous manner. Furthermore, Alvear-Puertas et al. [9] expanded the
scope of the research by designing a portable and cost-effective device for air quality monitoring in urban
areas. Their approach shows the great potential of IoT technology in creating monitoring solutions that are
not only accurate, but also easy to implement in various strategic locations. This is especially important given
the growing complexity of air pollution problems in urban areas. Abimannan et al. [10] made an innovative
contribution by integrating edge computing and distributed learning into the air quality monitoring system.
They emphasized the importance of smart data analysis and distributed computing capabilities to gain deeper
and more comprehensive insights into air quality conditions.

The comprehensive integration of IoT sensors, cloud computing, and machine learning algorithms
allows the system to go beyond mere data collection. Through this approach, the research was able to
generate accurate predictions of changes in air quality, which is an innovative contribution to the field of
urban environmental monitoring. The main focus of the research is to develop a more responsive automated
notification system, capable of providing early warnings to the public and stakeholders. Thus, the
contribution of this research is not only technological, but also has a direct impact on efforts to protect public
health and manage a smarter and more sustainable urban environment.

In conclusion, the development of IoT-based air quality monitoring systems represents a significant
advancement in environmental management. By providing real-time data and automatic notifications, these
systems empower individuals and communities to take informed actions to protect their health and well-
being. The ongoing research and development in this field continue to pave the way for smarter, more
sustainable urban environments, as evidenced by the comprehensive frameworks and innovative solutions
proposed in recent literature [9]-[12]. and when cities around the world start to have air problems, then air
quality monitoring tools will be needed.

2. MATERIALS AND METHOD

This study takes an experimental approach to explore how IoT technology can improve air quality
monitoring in cities. It looks at how collecting real-time data, using various sensors, and sending automatic
alerts can help communities respond more effectively to air quality changes. The focus is on testing different
parts of the system, like sensors that measure pollutants such as PM2.5, PM10, CO2, and NO2,
communication modules that send data, and notification systems that alert users when pollution levels
become unhealthy. Data will be gathered from these sensors placed around the city to track pollution at
different times and locations. This information will then be analyzed in the cloud, with alerts sent
automatically if pollution exceeds preset limits. The research involves using air quality sensors, cloud
platforms for analysis, and mobile apps to notify users.

2.1. Dataset

This dataset offers valuable information on air quality by focusing on the detection of pulses
commonly found in various urban locations. This data is collected from IoT sensors that continuously
monitor pollutant levels in real-time. During a minimum 1-day experiment, this dataset can evaluate
important air quality metrics, including PM2.5, PM10, CO2, and NO2. Each entry also includes an air quality
index (AQI) classification based on PM2.5 readings and indicates whether alerts were triggered when certain
thresholds were exceeded and not within reasonable limits. AQI categories and their corresponding PM2.5
concentrations and global air quality frequency distribution (2019-2024) can be seen in Table 1 and Figure 1.

Table 1. AQI Categories and Their Corresponding PM2.5 Concentrations [12]

PM2.5 Concentration

AQI Category Air Quality Description

(ug/m?)
Good PM2.5 < 12 Air quality is considered satlsfactory, and air pollution poses little or
no risk.
Moderate 12.1 -35.4 Air quality is acceptable; however, some pollutants may be a concern

for a few sensitive individuals.
Unhealthy for Members of sensitive groups (e.g., children, elderly, those with
- 355-554 . Lo .
Sensitive Groups respiratory conditions) may experience health effects.
Unhealthy 5551504 Everyone may begin to experience health effects, and members of
sensitive groups may experience more serious effects.
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PM2.5 Concentration

AQI Category (ug/m?) Air Quality Description
Very Unhealthy 150.5 - 250.4 Health alert: everyone may experience more serious health effects.
Hazardous PM2.5 > 2505 Health warning of emergency conditions: the entire population is

more likely to be affected.

Source: Adapted from [12]
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Figure 1. Global Air Quality Frequency Distribution (2019-2024) Source: [25]

2.2. Proposed Method

The experiment began with the deployment of air quality sensors at various locations to collect real-
time data on pollutants such as PM2.5, PM10, CO2, and NO2. The data acquisition module collects this data
and sends it to the data processing unit for initial filtering and preprocessing. Once the data is processed, it is
stored in the cloud storage system, making it accessible for further analysis and long-term storage. This
system ensures continuous collection of air quality data over time, thus creating a comprehensive data set for
monitoring air pollution levels in the area.

Once the data is stored in the cloud, a data analysis engine takes over to analyze the collected data. It
calculates the AQI and detects trends by applying machine learning algorithms that predict future air quality
based on historical and current data. The system conducts regular air quality checks to compare pollutant
levels with predetermined thresholds, determining whether the air quality is still within acceptable limits or is
already dangerous. If the pollutant levels exceed these thresholds, the system will trigger an alert to notify
relevant stakeholders and the public.

The last stage of the system is the alert and notification process. When the pollutant level exceeds the
safe threshold, the system updates the dashboard and sends notifications through various channels, including
SMS, mobile app alerts, and email notifications. These alerts are displayed on a web dashboard, providing
real-time air quality information to city officials, environmental agencies, and the public. The system ensures
continuous monitoring and timely notifications, thus helping users take necessary precautions when air
quality becomes hazardous. This methodology is presented as a comprehensive framework in the following
flowchart in Figure 2.

2.3. Real-time Air Quality Data Acquisition and Sensor Integration

The integration of IoT sensors in real-time air quality monitoring systems plays an important role in
ensuring accurate and continuous data collection. IoT sensors such as gas sensors ( CO2, NO2, O3, PM2.5),
temperature, and humidity sensors are deployed at strategic locations to capture environmental data. The raw
data obtained from these sensors is then transmitted to a cloud platform for processing and storage. This
enables real-time monitoring of air quality over a wide geographical area, providing invaluable insights into
air pollution levels and its impact on public health [1][2].

The sensors used in these systems must have characteristics such as accuracy, response time, and
optimal power consumption to ensure overall system performance. For example, MQ series gas sensors are
often used to detect various gases such as carbon dioxide and nitrogen dioxide. These sensors convert
chemical concentrations into measurable electrical signals [3]. Likewise, the PMS5003 particle sensor is
widely used to detect the concentration of PM2.5 and PM10 particles in the air, which are important
indicators of air quality in urban areas [4].

The sensors need to be integrated seamlessly with microcontroller units (MCUs) or single-board
computers (SBCs), such as Raspberry Pi or Arduino, which facilitate the communication between the sensors
and the cloud. This integration ensures that data is captured in real-time and transmitted using

Internet of Things Based Air Quality Monitoring System with... (Azizah et al, 2025) 778



ISSN(P): 2797-2313 | ISSN(E): 2775-8575

communication protocols such as Wi-Fi, LoRa, or ZigBee. As seen in several implementations, MQTT
(Message Queuing Telemetry Transport) is commonly employed for lightweight, real-time messaging in IoT
systems, allowing efficient data transmission with minimal delay [31].
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Figure 2. Real-Time Air Quality Monitoring and Alert System Workflow

The quality of data acquisition is significantly influenced by the calibration of sensors to reduce drift
and enhance measurement accuracy. In practice, the integration process involves multiple steps, including
sensor calibration, data filtering, and pre-processing, before transmitting the data to the cloud. For example,
the data may be processed through noise reduction algorithms to eliminate erroneous readings or irrelevant
fluctuations that might arise from environmental factors such as wind or rain. This step ensures that the data
sent to the cloud is both precise and reliable for further analysis.

Once the data is pre-processed and cleaned, it is transmitted to a cloud platform for storage and further
analysis. Cloud platforms like AWS, Microsoft Azure, or Google Cloud offer scalable solutions to store large
amounts of environmental data. These platforms also allow the integration of machine learning models,
which can process the data and predict future air quality levels. Time-series forecasting techniques, for
example, can be used to predict air quality trends, helping anticipate pollution spikes and initiate necessary
interventions [8][9].

The key advantage of this real-time data acquisition approach is the continuous monitoring of air
quality in multiple locations, providing accurate and up-to-date information to stakeholders. Additionally,
IoT-based air quality monitoring allows for flexible deployment in urban areas, where air quality can
fluctuate dynamically over time [10]. Integration with mobile applications and web dashboards ensures
stakeholders, including government agencies and the general public, stay informed about air quality
conditions in real-time.

Key components in this layer include:

1. Sensor Calibration: Ensures that sensors provide accurate and reliable readings by calibrating sensors

against known standards [11].

2. Real-time Data Transmission: Uses communication protocols such as MQTT or HTTP to transmit

data to the cloud [12].

3. Data Pre-processing Methods: Filtering and cleaning data to remove noise or inconsistencies caused

by environmental factors [13].
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4. Cloud Integration: Storing data on a scalable cloud platform and using machine learning models to
analyze and predict air quality levels [14][15].

5. Power Management: Ensuring that sensor nodes are energy-efficient, especially when installed in
remote areas that do not have direct electrical power sources [16].

Table 2. Parameters for Sensor Integration and Data Acquisition

Parameter Setting
Sensor Type MQ Series, PMS5003, DHT11 (Temperature and Humidity)
Data Transmission Protocol MQTT, HTTP
Communication Frequency 1 minute, 5 minutes
Data Preprocessing Method Noise Filtering, Calibration
Cloud Platform AWS, Azure, Google Cloud
Battery Life 1-2 years
Power Consumption Low (Sensor Power: 5-10mA)
Sampling Rate 1 sample per minute
Sensor Calibration Manual calibration against known gas concentrations
Data Storage Cloud (Scalable solutions for large datasets)
Communication Protocols Wi-Fi, LoRa, ZigBee
Latency Low (Real-time transmission with minimal delay)
Machine Learning Integration Time-Series Forecasting, Air Quality Prediction Models
Environmental Adaptability Ability to handle fluctuations from wind, rain, etc.

Parameters in the table 2 ensure that the system operates efficiently and effectively, with minimal
human intervention. By integrating multiple sensor types and employing real-time data processing
techniques, the IoT-based air quality monitoring system provides a robust and scalable solution to track and
analyze environmental pollutants.

2.4. IoT-Based Air Quality Monitoring System

The IoT-Based Air Quality Monitoring System is designed to tackle the growing issue of air pollution
in urban environments. The system utilizes a network of IoT sensors placed at strategic locations throughout
the city to measure various pollutants such as PM2.5, PM10, CO2, and NO2. The data collected from these
sensors is transmitted to a cloud platform for processing and analysis, enabling real-time monitoring of air
quality conditions.

1. Data Collection
Each data point collected by the IoT sensors is represented by the notation (x; y,), wherei =1, 2, 3,..
. ,n indicates the total number of data points collected. The available data is denoted as X; € R, ,
where x; = { X1, X2, Xi3,. . . ., Xjq }represents the features for data point i, and the class label y; € {0,
1},where 0 indicates unhealthy air quality and 1 indicateds acceptable air quality.

Data ;pyq = F (Sensor Data) Q)

This equation represents the data collected by the sensors being transmitted to the cloud for further
processing.

2. Data Processing AQI
Once the data is received in the cloud, the next step is to calculate the AQI, which is based on the
concentration of pollutants such as PM2.5, PM10, CO2, and NO2. This function computes the AQI
based on the detected pollutant levels:
Where g is the function that combines the pollutant values to produce the AQI, which reflects the air
quality.

AQI - g(PM2,5,PM10,CO2,NO2) 2)

3. Alert Mechanism
If the AQI exceeds a predefined threshold, an alert is triggered. This mechanism can be described by
the following equation 3.

1 if AQl > Threshold

Alert = { 0if AQI < Threshold 3
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Where the Threshold is the AQI value that has been set to determine whether the air quality is
unhealthy and needs attention.

To ensure the effectiveness of the loT-based air quality monitoring system, several key components
must be integrated. First, sensor calibration plays a crucial role in ensuring that the sensors provide accurate
and reliable readings by calibrating them against known standards (22). Additionally, the system relies on
real-time data transmission, using communication protocols such as MQTT or HTTP to transmit sensor data
to the cloud (23). Once the data is collected, data pre-processing methods are employed to clean and filter the
data, removing noise or inconsistencies caused by environmental factors (24). The processed data is then
stored and analyzed on a cloud platform, which is scalable and supports the use of machine learning models
to predict air quality levels. Furthermore, power management is essential to ensure that sensor nodes are
energy-efficient, especially when deployed in remote locations without direct electrical power sources. With
this architecture, the system can continuously monitor air quality across multiple locations, providing
stakeholders such as government agencies and the general public with real-time updates through mobile
applications and web dashboards. By integrating these components, the system can function effectively,
providing timely and accurate data, while also enabling quick responses to changes in air quality conditions.

2.5. Weighted Class (WC)

The Weighted Class (WC) approach is a widely used technique to mitigate the issue of class
imbalance, which is prevalent in many datasets, including those related to environmental monitoring, such as
air quality assessment systems(2).This method involves assigning specific weights to each class, ensuring
that the model accounts underrepresented classes. The weight for each class is determined by computing the
median of the class frequency distribution and dividing it by the class frequency. The formula for the weight
w, of class c is given by equation 4.

n
Zilxi_c

= median (zfxi—c)

“

We

n
Where w, is the wight for class ¢ , Z x; is the sum of samples in class ¢ and the median is applied

i
to the distribution of all class frequencies [4]. This weighted approach helps to balance the influence of each
class during training, making the model more robust to imbalanced class distributions, thus improving

prediction accuracy for underrepresented classes in the context of air quality monitoring systems(6)

2.6. Confusion Matrix

To assess the performance of the classification model, the Confusion Matrix is used. It provides
detailed insight into the model’s ability to classify correctly and detect misclassifications. Accuracy is
calculated using the formula 5.

TP + TN
Acc= &)
TP + TN +FN + FP

In the context of classification performance evaluation, various metrics can be calculated using four
fundamental counts from a confusion matrix. True Positive (TP) represents the number of positive instances
correctly identified as positive by the model, while True Negative (TN) counts the negative instances
correctly classified as negative. False Positive (FP), also known as Type I error, occurs when the model
incorrectly predicts a negative instance as positive. Conversely, False Negative (FN), or Type II error,
happens when the model fails to identify a positive instance and classifies it as negative.

This matrix helps evaluate how well the model differentiates between actual and predicted labels,
particularly in cases of imbalanced data, which is common in environmental monitoring applications (28).
The confusion matrix for air quality prediction might look like the Table 3.

Table 3. Confusion Matrix for Air Quality Prediction

Label/Class PREDICTED (Output)
ACTUAL (Target) Positive (P)

Positive (P) True Positive (TP)

Negative (N) False Positive (FP)

Using the confusion matrix, we can understand model performance and identify potential areas for
improvement, especially in terms of sensitivity and specificity for environmental data (25). By incorporating
techniques like WC, DA, and using evaluation metrics such as the confusion matrix, this research improves
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the accuracy and robustness of IoT-based air quality monitoring systems. These methods are fundamental in
real-time applications, where sensor data can be noisy, imbalanced, and require constant adaptation to
changing environmental conditions (8)

3. RESULTS AND DISCUSSION
This section consists of modeling, evaluation, comparison, and discussion.

3.1. Modeling

The modeling framework for the IoT-based air quality monitoring system is designed to effectively
address the challenges of real-time air quality assessment in urban environments. This framework includes
several critical components: data collection, data processing, alert mechanisms, and machine learning
integration, all aimed at providing accurate and timely information to stakeholders for informed decision-
making.

1. Data Collection
The first step in the modeling process is the collection of air quality data from a network of IoT
sensors that are strategically deployed throughout the city. These sensors measure various pollutants such as
PM2.5, PM10, CO2, and NO2, as well as environmental parameters like temperature and humidity. The data
collected is time-stamped and location-based, which helps in continuous, real-time monitoring of air quality
across urban areas. The sensors used in this system include at table 4.

Table 4. Data Collection for IoT sensors

Pollutant Measurement Unit Description
PM2.5 pg/m?3 Particulate matter with a diameter of 2.5 micrometers or less.
PM10 pg/m?3 Particulate matter with a diameter of 10 micrometers or less.
CO2 ppm Carbon dioxide concentration in parts per million.
NO2 ppb Nitrogen dioxide concentration in parts per billion.
Temperature °C Ambient temperature.
Humidity % Relative humidity percentage.

The data collected in Table 4 is represented as a dataset D, where each data point consists of pollutant
concentrations and environmental conditions at a specific time. This structured data allows for
comprehensive monitoring of air quality across different locations and times, enabling accurate and up-to-
date analysis (Chen & Li, 2020) [28].

2. Data Processing AQI
Once the data is collected, it undergoes processing to calculate the AQI. The AQI serves as a
standardized measure of air quality, reflecting the potential health impacts of various pollutants. The AQI
calculation combines the concentrations of pollutants into a single numerical value, which can then be
categorized into different air quality levels (e.g., Good, Moderate, Unhealthy). The AQI calculation process
can be expressed as a function g,where:

AQI — g (Concentrations of Pollutants) (6)
The function ggg uses established formulas and thresholds to convert pollutant concentrations into an
AQI value. Once the AQI value is computed, it is categorized into one of the levels can be seen in the Table

5.

Table 5. AQI Categories and Corresponding Health Impacts

AQI Category AQI Range Health Impacts
Good 0-50 Air quality is considered satisfactory.
Moderate 51-100 Air quality is acceptfll.)le;.sor.rlf% pollutants may affect
sensitive individuals.

Unhealthy for Sensitive 101-150  Members of sensitive groups may experience health effects.

Groups
Unhealthy 151 - 200 Everyone may begin to experience health effects.
Very Unhealthy 201 - 300 Health alert: everyone mazfz(i:rlence more serious health
Hazardous 301 - 500 Health warning of emergency conditions.
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3. Machine Learning Integration

To enhance the predictive capabilities of the air quality monitoring system, machine learning
algorithms are integrated into the modeling framework. These algorithms analyze both historical and real-
time data to forecast future air quality levels. The machine learning models use historical pollutant data,
environmental conditions, and AQI data to predict future AQI values, which can help in anticipating poor air
quality conditions and taking proactive measures.

By leveraging machine learning techniques, such as time-series forecasting and regression analysis,
the system becomes more robust in predicting air quality trends and potential pollution spikes. This allows
authorities and the public to take preventative actions ahead of time, especially during pollution events like
industrial emissions, wildfires, or urban traffic congestion (Gupta & Sharma, 2020) [30].

4. System Architecture
The overall architecture of the IoT-based air quality monitoring system is structured to facilitate
seamless data flow and processing. The system is composed of several layers, each of which plays a critical
role in ensuring the efficiency and reliability of the monitoring process.

Figure 3. Wiring Air Quality Monitoring System

The wiring mechanism of the IoT-based air quality monitoring system in Figure 3 facilitates smooth
communication and data flow among its components. Sensors, including PM2.5, PM10, CO2, and NO?2,
collect air quality data and send it to the microcontroller unit (MCU) via MQTT and HTTP protocols. The
cloud processes this data for cleaning, AQI calculation, and machine learning prediction, and stores the
results in a database. An alert mechanism monitors the AQI, triggering notifications when thresholds are
exceeded. Finally, user interfaces, including web dashboards and mobile apps, provide real-time access to air
quality information, improving public health and safety in urban environments.

3.2  Performance Evaluation and Comparison

The IoT-based air quality monitoring system described in this program utilizes various sensors to
measure key pollutants such as PM2.5, PM10, CO2, as well as environmental parameters such as temperature
and humidity. The system calculates the AQI and publishes the data through an MQTT broker for remote
access. Below is an evaluation of the system's performance, which includes key aspects such as sensor
accuracy, system efficiency, data reliability, and communication performance. In addition, a comparison with
similar existing systems is also provided to highlight strengths and areas for improvement. In Figure 4, it can
be seen that air quality monitoring screen display.

Current AQI

75

Moderate

#} Temperature

28.5°C

65 Humidity

65%

[y CO2

850 ppm

Figure 4. Air Quality Monitoring Screen Display
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The DHT?22 sensor, used for measuring temperature and humidity, provides reasonable accuracy with
temperature readings accurate to +0.5°C and humidity measurements accurate to +2-5%. It operates within a
broad temperature range of -40 to 80°C and a humidity range of 0-100%. While the DHT22 is generally
reliable within these specified limits, its performance can degrade when exposed to extreme environmental
fluctuations. For maintaining long-term reliability, calibration and proper placement are essential, particularly
in environments with rapid temperature changes or high humidity levels.

The PMS sensor, which measures particulate matter concentrations like PM2.5 and PM10, offers good
accuracy with a resolution of 0.1 pg/m3 for PM2.5 and an operating range of 0-1000 pg/m3. Its performance,
however, is heavily dependent on regular calibration. Over time, sensor drift may occur, potentially affecting
the accuracy of the readings. The PM25_CALIBRATION_FACTOR and PM10_CALIBRATION_FACTOR
are used to correct for this drift, but they require periodic verification to ensure optimal performance and
reliable data. In Figure 5, it can be seen that PM2.5 and PM10 Accuracy Charts.

The MH-Z19 CO2 sensor, measuring CO2 concentrations between 0 to 5000 ppm with an accuracy of
+50 ppm or £5% of the reading, is suitable for most indoor air quality monitoring applications. However, like
the PMS sensor, the MH-Z19 may experience calibration drift over time. This drift necessitates periodic
recalibration to ensure accurate CO2 readings over extended periods, particularly in environments where the
sensor is in continuous use.

PM2.5 & PM10 Trends

60

45

30

0 T !
12:00 12:05 1210

Figure 5. PM2.5 and PM10 Accuracy Charts

To enhance the reliability of sensor data, the system employs a moving average technique to smooth
the raw readings, especially for PM2.5 and PM10. This helps to reduce the impact of transient fluctuations
and noise, leading to more stable and reliable air quality assessments. Calibration factors, including those for
temperature, humidity, PM2.5, and PM 10, are applied to further improve the accuracy of the sensor readings.
However, despite these measures, periodic manual calibration is still recommended to account for sensor
aging and ensure the long-term accuracy of the system. In Figure 6, it can be seen that Air Quality
Accumulation Chart.

AQI Trend

60+

40+
12:10
204 AQI:75

0 T 1
12:00 12:05 12:10

< AQI

Figure 6. Air Quality Accumulation Chart

The system uses sensor readings from PM2.5 and PM10 sensors to calculate the AQI, which is
categorized into levels such as Good, Moderate, and Unhealthy. The AQI calculation is based on EPA
standards, ensuring that the results conform to globally recognized air quality classifications. The use of well-
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defined thresholds for classification ensures that AQI values are meaningful and provide a reliable indicator
of air quality.

To further improve data accuracy, the system incorporates moving averages to smoothen sensor
readings, preventing temporary spikes in particulate matter concentrations that could misrepresent AQI
levels. This makes AQI calculations more stable and reliable over time.

Current Readings

PM2.5 PM10
35.2 pg/m? 45.6 pg/m?

Temperature Humidity
28.5°C 65%
Cco2 AQl
850 ppm 75

Figure 7. Currents Reading of IoT Based Air Quality Monitoring System

In Figure 7, the IoT-based air quality monitoring system uses the ESP32 microcontroller, which is
energy efficient, especially in low-power mode, thus enabling long-term use. Although power consumption
increases during Wi-Fi and MQTT data transmission, the system collects sensor readings every 2 seconds
and sends data to the MQTT broker every 30 seconds, thus optimizing power usage and real-time updates.
The system's 2-second data sampling interval provides detailed air quality monitoring, while the 30-second
publication interval balances efficient data transmission and network load.

Communication relies on Wi-Fi, offering sufficient bandwidth in urban environments, with the MQTT
protocol providing lightweight and efficient data transmission. Reconnection logic ensures automatic
recovery from connectivity interruptions. However, Wi-Fi may not be ideal for remote areas with limited
access, and alternative technologies are available.

The system's LCD display provides real-time air quality updates, with clear AQI categorization,
making it easy for users to monitor air quality on site. This feature, together with cost-effective sensors such
as DHT22, PMS, and MH-Z19, makes the system suitable for urban air quality monitoring. While it excels in
accuracy and efficiency, its reliance on Wi-Fi may limit its use in regions with unreliable connectivity.

1 L

Accuracy Precision Recall

B0 Test Results B0 Predictions

Figure 8. Bar Chart of Prediction and Reality Comparison

In Figure 8 maximum accuracy performance in the model training process can often reach 100% for
all trial options or methods used. However, the accuracy performance in the prediction process (using all
data) generally shows better results compared to the testing or evaluation process. This indicates that the
training data is able to provide optimal results for the model training process, so that the model can predict
well on different data.

4. CONCLUSION

The integration of IoT technologies in air quality monitoring systems represents a transformative
advancement in urban environmental management. This research has successfully proven that the
implementation of real-time data collection, automatic warning mechanisms, and machine learning
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algorithms can significantly improve the effectiveness of air quality monitoring, in accordance with the main
objectives of the research. The analysis results confirm that although optimal accuracy is achieved during the
training process, the predictive capability of the model shows substantial potential, enabling relevant
authorities and the public to respond quickly to air quality fluctuations.

In the context of the second research objective, this study identified that the Weighted Class (WC)
approach significantly contributed to the improvement of accuracy in the testing and prediction process,
emphasizing the urgency of addressing class imbalance in environmental datasets. However, in contrast to
the initial hypothesis, Data Augmentation (DA) techniques did not result in the projected accuracy
improvement, possibly due to the intrinsic characteristics of air quality data. These findings provide an
empirical foundation for algorithm selection in future implementations of similar environmental monitoring
systems.

The IoT-based air quality monitoring system developed through this research not only provides a
comprehensive perspective on pollutant concentrations, but also empowers the public to take proactive steps
in response to air quality alerts, fulfilling the third research objective of creating public-oriented applicative
solutions. Further research should be directed at improving the system by integrating more diversified sensor
technologies, expanding the geographical coverage of the monitoring network, as well as developing more
sophisticated predictive algorithms capable of accommodating seasonal variability and climate change
implications. In addition, exploration of methodologies for intensification of community engagement through
optimized user interfaces and personalized notification systems will strengthen the practical implementation
of these technologies. Longitudinal studies on the impact of the system on public health and policy
formulation are also prospective directions for further research.
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