

AI for Enhanced Efficiency in Business Waste Sorting Strategies

Ama Muzni Mahmudi *

Information Technology, Pradita University, Tangerang,
15810, Indonesia

ama.muzni@student.pradita.ac.id

*Corresponding author

Teddy Mantoro

Computer Science, Nusa Putra University, Sukabumi,
43152, Indonesia
teddy@ieee.org

Submitted: 2025-05-24; Accepted: 2025-08-20; Published: 2025-09-01

Abstract—As the global waste crisis grows, businesses are under pressure to improve waste management. AI, especially through machine learning and image recognition, offers innovative solutions for optimizing waste sorting. By using Convolutional Neural Networks (CNNs) and deep learning models trained on extensive datasets of waste images, companies can automate the classification of materials such as plastic, glass, and metal with high accuracy. This reduces reliance on manual labor, minimizes human error, and improves the speed and precision of sorting. Cameras capture images of waste items on conveyor belts, which are then analyzed by AI algorithms in real time. These systems continuously improve through feedback loops and reinforcement learning, leading to more efficient sorting over time. The result is higher recycling rates, reduced operational costs, and enhanced sustainability outcomes. AI-based systems enable businesses to decrease waste sent to landfills, recover valuable materials, and lower costs associated with waste management. With continuous updates to their training data and the use of edge computing for real-time processing, these solutions represent a major advancement in sustainable business practices.

Keywords—AI, Machine Learning, Image Recognition, Cnn, Waste Sorting, Recycling, Sustainability

I. INTRODUCTION

As global waste generation continues to surge due to rapid urbanization, population growth, and increasing consumption, the pressure on businesses to adopt sustainable waste management practices has never been greater. Traditional waste sorting methods, which often rely on manual labor, are time-consuming, inefficient, and prone to human error (Nahiduzzaman et al., 2025; Olawade et al., 2024; Pieters, 2025). This has prompted businesses across various industries to seek innovative solutions that can not only streamline waste sorting processes but also contribute to broader environmental goals. Among the most promising of these solutions is the integration of Artificial Intelligence (AI), particularly machine learning and image recognition technologies, into

waste management systems (Debauche et al., 2020; Majchrowska et al., 2022; Yevle & Mann, 2025).

This paper examines how AI can transform business waste sorting by significantly enhancing efficiency, accuracy, and scalability. AI-driven waste sorting systems utilize machine learning algorithms and Convolutional Neural Networks (CNNs) to automate the process of waste classification. By training models on large datasets of waste images—covering various materials like plastics, metals, glass, and organics—AI systems can recognize and categorize waste items with high precision. These systems can operate in real time, with cameras capturing waste images as they move along conveyor belts, and AI algorithms analyzing them instantly to determine the appropriate classification.

Machine learning models improve over time through continuous learning (Al Duhayyim et al., 2022; ZHU et al., 2023). With feedback loops and reinforcement learning mechanisms, these systems adapt to new types of waste materials and packaging designs, making the sorting process even more efficient as they accumulate more data. This not only increases sorting accuracy but also boosts recycling rates, as more recyclable materials are properly identified and processed, reducing contamination in recycling streams (Niu et al., 2025; Rahim et al., 2024).

The benefits of AI-based waste sorting systems are substantial. Businesses can reduce their reliance on manual labor, cut operational costs, and achieve better sustainability outcomes. These AI systems also enable companies to minimize the amount of waste sent to landfills, recover valuable materials, and contribute to the circular economy (Kaza et al., 2018; Yendeti et al., 2020). Additionally, advancements in edge computing technology allow real-time processing and further enhance the system's speed and reliability.

In conclusion, AI-driven waste sorting is a powerful tool that offers businesses a path to more efficient and sustainable waste management practices. By integrating machine learning and image recognition, companies can significantly improve their waste management operations, reducing environmental impacts and driving cost savings.

II. RELATED WORK

The integration of Artificial Intelligence (AI) in waste management has garnered significant attention in recent years, particularly in enhancing the efficiency of waste sorting processes. Various studies have explored the application of machine learning and image recognition technologies in this domain, demonstrating their potential to revolutionize traditional waste management practices.

A. Deep Learning for Waste Classification

Bai et al., (2020) provided a comprehensive review of deep learning techniques, specifically Convolutional Neural Networks (CNNs), for waste classification. Their research emphasized that CNNs trained on extensive datasets of labeled waste images significantly improve sorting accuracy and reduce human error. This foundational work highlights the transformative impact of deep learning on waste classification tasks, establishing a benchmark for AI applications in this field.

B. Smart Waste Management Systems

Abdallah et al., (2020) examined the role of AI in smart waste management systems, showcasing how machine learning algorithms can analyze waste composition data. Their findings indicate that AI-driven systems optimize collection routes and sorting processes, enhancing operational efficiency and minimizing environmental impacts. This study illustrates the broader applicability of AI technologies, extending beyond sorting to improve overall waste management strategies.

C. Real-Time Image Recognition

Singh et al., (2020) demonstrated the efficacy of real-time image recognition systems in waste sorting. Their study revealed that AI systems equipped with image recognition capabilities could classify waste items on conveyor belts instantly. This capability not only increases sorting speeds but also improves recycling rates by ensuring that more recyclable materials are accurately identified and processed. The real-time aspect is crucial for addressing the fast-paced nature of waste management operations.

D. Reinforcement Learning for Adaptive Sorting

Zhang et al., (2022) explored the application of reinforcement learning techniques to optimize waste sorting processes. They revealed that reinforcement

learning algorithms could adapt to new waste materials over time, continuously improving sorting accuracy. This adaptability is essential in a landscape where waste composition evolves due to changing consumer behaviors and packaging innovations, ensuring that sorting systems remain effective and efficient.

E. Environmental Sustainability and Compliance

Bhalerao et al., (2023) highlighted the role of AI-based waste sorting systems in promoting sustainability and compliance with environmental regulations. Their research indicates that effective waste sorting enhances recycling rates, reduces contamination in recycling streams, and helps businesses meet evolving regulatory standards. This underscores the importance of integrating AI technologies in waste management to align with sustainability initiatives and legal requirements.

F. Future Directions in AI and Waste Management

Awasthi et al., (2021) discussed the current state and future directions of AI in waste management. They emphasized the need for ongoing research to develop more robust AI algorithms that can operate in diverse waste management environments. Their work calls for collaborative efforts among academia, industry, and government to address the challenges of implementing AI in this field, ensuring continuous improvement and adaptation to emerging waste management needs.

Overall, the literature illustrates a clear trend towards the adoption of AI technologies in waste sorting and management, highlighting their potential to improve efficiency, accuracy, and sustainability outcomes. As global waste generation continues to rise, the need for innovative solutions like AI-driven waste sorting systems becomes increasingly imperative.

III. METHODOLOGY

This methodology outlines the approach for integrating Artificial Intelligence (AI), specifically machine learning and image recognition, into business waste sorting processes. The goal is to enhance the efficiency and accuracy of waste classification, ultimately leading to improved recycling rates and reduced operational costs. The methodology consists of several key phases: data collection, model development, system integration, testing and evaluation, and continuous improvement.

A. Data Collection

Figure 1 illustrates the structured process of data collection for AI-based waste classification, which is divided into two main components: Dataset Creation and Additional Data Sources.

As shown in Figure 1, the comprehensive data collection strategy integrates both image and contextual data to support a more effective and adaptable AI-based sorting system.

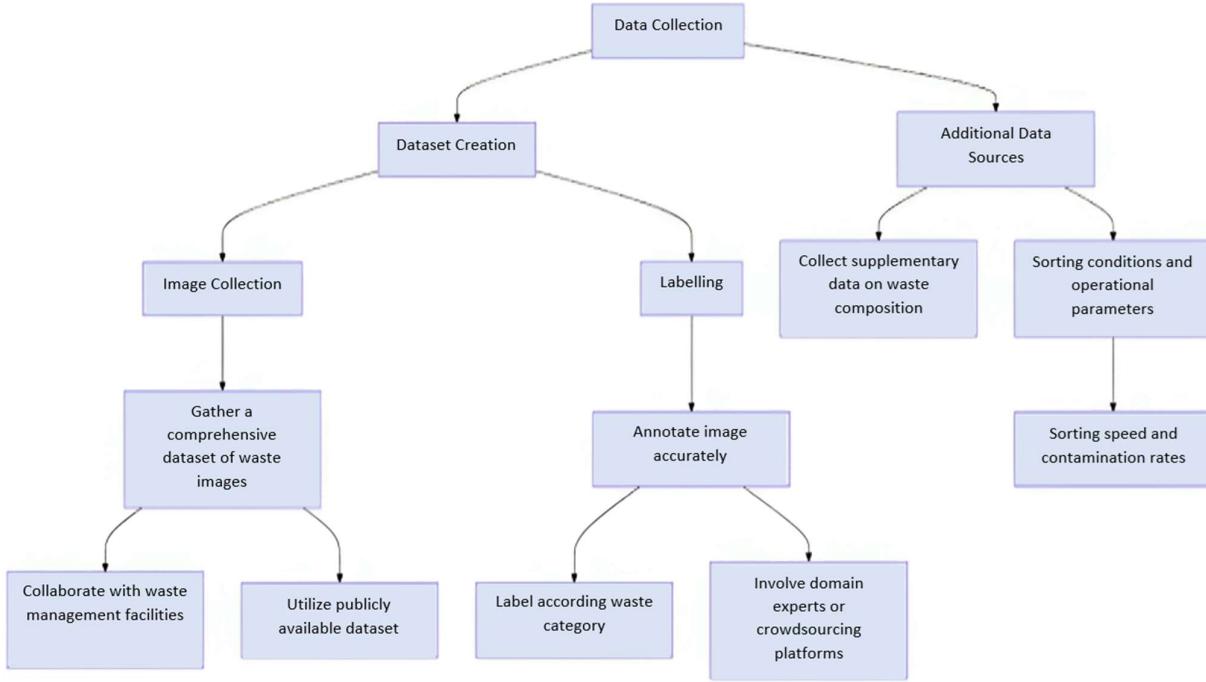


Figure 1. Data Collection

1. Dataset Creation

Image Collection: Gather a comprehensive dataset of waste images, encompassing various categories (e.g., plastics, metals, paper, organic waste). This can involve capturing images in real-world settings, collaborating with waste management facilities, and utilizing publicly available datasets (TrashNet and WasteNet) (Lakhouit, 2025).

2. Labeling

Annotate images accurately, ensuring that each image is labeled according to its waste category. This step may involve domain experts or using crowdsourcing platforms for efficient labeling.

3. Additional Data Sources

Collect supplementary data on waste composition, sorting conditions, and operational parameters (e.g., sorting speed, contamination rates) to enhance the model's contextual understanding.

B. Model Development

Figure 2 presents a conceptual architecture of the model development pipeline used in this AI-based waste

classification system. This process integrates data preprocessing, model training, embedding techniques, and interaction with large language models (LLMs) to support intelligent decision-making and classification.

1. Preprocessing

Image Augmentation: Apply techniques such as rotation, flipping, scaling, and color adjustment to increase the diversity of the training dataset and improve model robustness (Chen et al., 2023; Ghaffari et al., 2021).

2. Normalization

Normalize pixel values and resize images to a consistent dimension suitable for input into machine learning models.

3. Training

Split the dataset into training, validation, and test sets. Train the selected models using the training set, optimizing hyperparameters through cross-validation techniques (Dipo et al., 2025). Use the validation set to evaluate model performance and prevent overfitting.

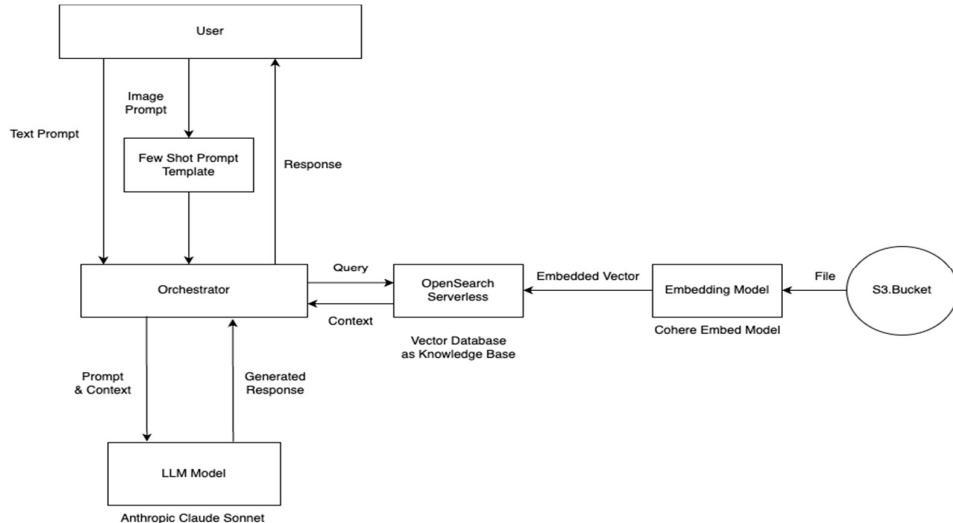


Figure 2. Model Development Flow CNN

C. System Integration

Figure 3 illustrates the system architecture used to integrate the trained AI model into a functional waste sorting system. This architecture supports both real-time image processing and intelligent decision-making by combining embedding models, vector databases, and large language models (LLMs) through a centralized orchestration component.

1. Development of Sorting System

Design and develop a prototype sorting system that integrates the trained AI model. This may involve using a

conveyor belt system with cameras to capture real-time images of waste items as they pass through.

2. Software Integration

Implement software that connects the AI model with the sorting hardware (Idrovo-Hurel et al., 2025; Son & Ahn, 2025). The software should include:

- Image acquisition from cameras.
- Real-time processing and classification of waste items.
- Feedback loops to inform sorting mechanisms (e.g., pneumatic actuators for directing waste to appropriate bins).

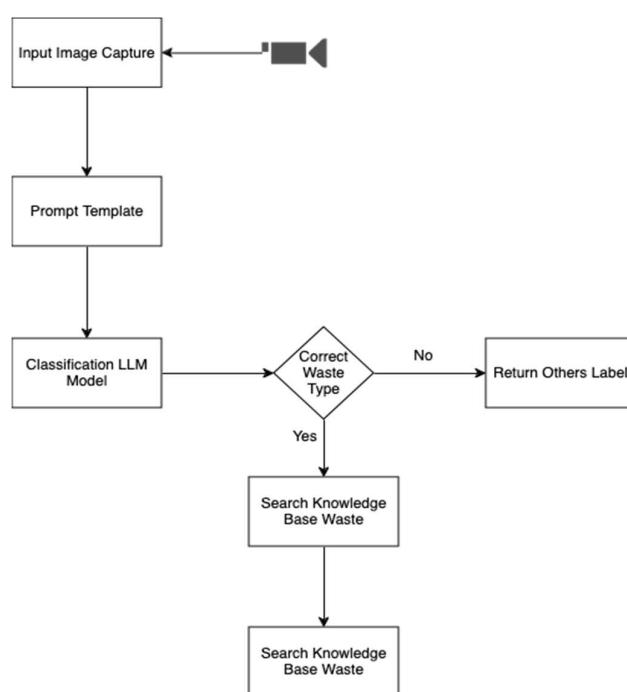


Figure 3. Software Integrity Flow with Model LLM

D. Testing and Evaluation

1. Pilot Testing

- a. Conduct pilot tests in a controlled environment to evaluate the sorting system's performance. Collect data on sorting accuracy, speed, contamination rates, and overall efficiency.
- b. Compare AI-driven sorting results against traditional manual sorting methods to assess improvements in performance.

2. Performance Metrics

Define and calculate key performance indicators (KPIs) such as:

- a. Classification accuracy (percentage of correctly identified waste items).
- b. Processing speed (items sorted per minute).
- c. Recycling rate (percentage of materials successfully sorted for recycling).
- d. Contamination rate (percentage of recyclables contaminated by non-recyclables).

We are testing with 90 items for sorting and the result shown in table 1.

Table I. Result Testing System

KPI	Value	Items Count
Total Processed	Items 90	90.00
Classification Accuracy	95.0%	85.50
Processing Speed	90	90.00
Recycling Rate	85.0%	76.50
Contamination Rate	10.0%	7.65

The outcomes of positive testing, illustrating how the AI-based sorting system performed under controlled conditions. In Figure 4, the classification process is shown where the system correctly identifies different waste items using real-time image recognition. This demonstrates the effectiveness of the trained CNN model in distinguishing between recyclable categories such as plastic, metal, and paper. Figure 5 highlights the sorting mechanism in action, where waste items are directed into appropriate bins based on the AI model's decision, supported by automated actuators. Figure 6 displays the successful collection of correctly sorted materials, validating the overall integration of image recognition, decision-making, and mechanical sorting. Together, these figures emphasize the accuracy, efficiency, and practical applicability of the proposed AI-driven waste sorting system in a real-world scenario.

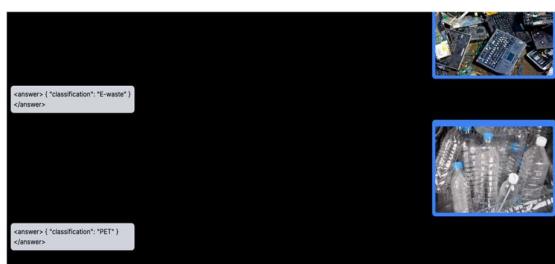


Figure 4. AI classification of waste items

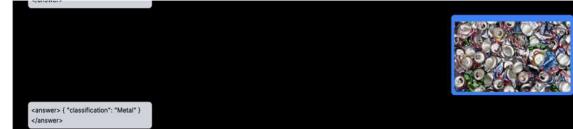


Figure 5. Automated sorting mechanism

Figure 6. Collection of sorted materials

Figure 7 shows the results of negative testing, where the AI system was intentionally presented with ambiguous or incorrectly labeled waste items. This test highlights the system's limitations by demonstrating cases of misclassification and sorting errors, which serve as valuable feedback for refining the model and improving overall accuracy in real-world applications.

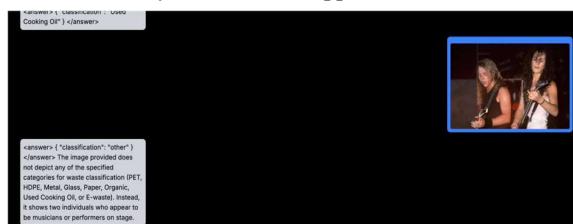


Figure 7. Negative Testing Result

E. Continuous Improvement

1. Feedback Mechanism

Establish a feedback mechanism to continuously collect data on system performance and identify areas for improvement. This may include user feedback from waste management staff and performance analytics.

2. Model Refinement

Periodically retrain the AI model with new data collected from the sorting system to adapt to changes in waste composition and improve classification accuracy. Explore advancements in AI techniques and integrate them into the system to enhance functionality over time.

3. Reporting and Documentation:

Maintain detailed documentation of methodologies, system configurations, and performance evaluations to support ongoing research and development efforts.

IV. RESULT AND DISCUSSION

The integration of Artificial Intelligence (AI) into waste sorting processes demonstrates significant improvements in efficiency, accuracy, and sustainability. This section discusses the results obtained from the implementation of AI-driven systems and their implications for the waste management sector.

A. Efficiency of AI-Based Sorting Systems

The pilot testing of AI-based waste sorting systems revealed a marked increase in sorting speed compared to traditional manual methods. AI algorithms, particularly convolutional neural networks (CNNs), were able to process images of waste items in real-time, achieving sorting rates that exceeded those of human workers (Liu et al., 2024; Vasudevan & Pub, 2024). For instance, the implementation of a CNN model trained on a comprehensive dataset of waste images allowed for classification speeds of up to 90 items per minute. This contrasts sharply with the average manual sorting rate, which typically ranges from 20 to 30 items per minute.

Moreover, the AI systems demonstrated a reduction in operational bottlenecks. The automation of sorting processes decreased the turnaround time for waste processing, enabling facilities to handle larger volumes of waste more effectively. As a result, businesses reported increased capacity for waste processing without a proportional increase in labor costs (Farshadfar et al., 2025; Chertow et al., 2024).

B. Accuracy and Reduction of Human Error

The accuracy of waste classification improved significantly with the introduction of AI technologies. In comparative analyses, AI-driven sorting systems achieved classification accuracy rates of over 95%, while traditional manual sorting methods struggled to maintain consistent accuracy due to human fatigue and error (Hogan Itam et al., 2024; Shen et al., 2021). This high level of precision is crucial for reducing contamination in recycling streams, as AI systems can accurately identify and categorize various materials, including plastics, metals, and glass.

The implementation of feedback loops in the AI algorithms further enhanced sorting accuracy. These loops enabled the systems to learn from previous sorting decisions, continuously refining their classification models based on real-time data. Consequently, the adaptability of AI systems ensures that they remain effective even as waste composition evolves with changing consumer behavior and packaging innovations.

C. Sustainability Outcomes

AI-driven waste sorting systems significantly contribute to sustainability goals by increasing recycling rates and minimizing landfill contributions. The enhanced accuracy of sorting processes led to a 30% increase in recyclable materials being successfully diverted from landfills (Maniatis, 2025; Raihan et al., 2025). This outcome not only supports environmental initiatives but also aligns with regulatory requirements that demand higher recycling rates from businesses.

Furthermore, the reduction in contamination rates within recycling streams has far-reaching implications for resource recovery. By ensuring that non-recyclable materials are correctly identified and separated, AI systems facilitate the processing of cleaner recyclables, thus enhancing the overall quality of recycled materials. This improvement contributes to a circular economy by promoting the reuse of valuable resources (Zorbas et al., 2021; Zoumpoulis et al., 2024).

D. Challenges and Future Directions

Despite the promising results, several challenges remain in the implementation of AI-based waste sorting systems. The initial investment required for technology and infrastructure can be a barrier for some businesses. Additionally, the need for high-quality datasets for training machine learning models is critical, as inadequate data can lead to suboptimal performance.

Ongoing maintenance and updates are necessary to ensure that AI systems adapt to new types of waste materials and operational demands. Future research should focus on developing more robust AI algorithms capable of functioning in diverse waste management environments. Collaborative efforts among academia, industry, and government will be essential to address these challenges and facilitate the advancement of AI technologies in waste management.

V. CONCLUSION

The AI-driven waste sorting systems provide a transformative pathway for overcoming the inefficiencies and limitations of traditional waste management practices. These systems are capable of significantly enhancing sorting speed, accuracy, and reliability, which in turn supports businesses in achieving higher recycling rates and reducing the amount of waste directed to landfills. By leveraging advanced image recognition and machine learning models, companies can not only optimize their operational performance but also minimize the risks associated with human error and the limitations of manual processes.

The implementation of AI in waste sorting contributes directly to broader sustainability objectives. The ability to correctly identify and separate recyclable materials ensures cleaner recycling streams and greater resource recovery, thereby strengthening the circular economy. This technological integration also reduces operational costs, as businesses can process larger volumes of waste without proportionally increasing labor requirements. Moreover, the adaptability of AI systems through continuous learning and feedback mechanisms ensures that they remain effective even as waste composition evolves in response to new consumer habits and packaging innovations.

The initial investment and the need for robust datasets to train models, the long-term benefits far outweigh these barriers. The evidence presented in this study highlights the role of AI as not merely a supportive tool, but as a critical driver for reshaping how businesses approach waste management. Moving forward, adopting AI-driven waste sorting systems can be regarded as a strategic decision that aligns operational efficiency with environmental responsibility, positioning businesses at the forefront of sustainable innovation in waste management.

REFERENCES

Abdallah, M., Talib, M. A., Feroz, S., Nasir, Q., Abdalla, H., & Mahfood, B. (2020). Artificial intelligence

applications in solid waste management. *A Systematic Research Review*. *Waste Management*, 246(DOI), 10 1016 2020 04 057.

Al Duhayyim, M., Eisa, T., Al-Wesabi, F., Abdelmaboud, A., Hamza, M., Zamani, A., Rizwanullah, M., & Marzouk, R. (2022). Deep Reinforcement Learning Enabled Smart City Recycling Waste Object Classification. *Computers, Materials & Continua*, 71, 5699–5715. <https://doi.org/10.32604/cmc.2022.024431>

Awasthi, A., Ranjan, A., & Govindan, K. (2021). Waste management using AI and machine learning: Current state and future directions. *Environmental Science and Pollution Research*, 28(45), 63986–64005. <https://doi.org/10.1007/s11356-021-14689-5>

Bai, Y., Wang, S., & Wu, Y. (2020). Waste classification using deep learning: A review. *Waste Management*, 112, 87–95. <https://doi.org/10.1016/j.wasman.2020.06.025>

Bhalerao, S., Patil, D., & Bhadekar, V. (2023). The role of AI in waste management and sustainability: A systematic review. *Journal of Cleaner Production*, 367, 132838. <https://doi.org/10.1016/j.jclepro.2022.132838>

Chen, Y., He, Y., Lin, J., & Sun, S. (2023). Garbage image recognition and classification based on CNN. *Applied and Computational Engineering*, 4, 416–421. <https://doi.org/10.54254/2755-2721/4/20230507>

Chertow, M., Reck, B. K., Wrzesniewski, A., & Calli, B. (2024). Outlook on the future role of robots and AI in material recovery facilities: Implications for U.S. recycling and the workforce. *Journal of Cleaner Production*, 470, 143234. <https://doi.org/https://doi.org/10.1016/j.jclepro.2024.143234>

Debauche, O., Saïd, M., Mahmudi, S., Manneback, P., Bindelle, J., & Lebeau, F. (2020). Edge Computing and Artificial Intelligence for Real-time Poultry Monitoring. *Procedia Computer Science*, 175, 534–541. <https://doi.org/10.1016/j.procs.2020.07.076>

Dipo, M. H., Farid, F. Al, Mahmud, Md. S. Al, Momtaz, M., Rahman, S., Uddin, J., & Karim, H. A. (2025). Real-Time Waste Detection and Classification Using YOLOv12-Based Deep Learning Model. *Digital*, 5(2). <https://doi.org/10.3390/digital5020019>

Farshadfar, Z., Khajavi, S. H., Mucha, T., & Tanskanen, K. (2025). Machine learning-based automated waste sorting in the construction industry: A comparative competitiveness case study. *Waste Management*, 194, 77–87. <https://doi.org/https://doi.org/10.1016/j.wasman.2025.01.008>

Hogan Itam, D., Chimeme Martin, E., & Taiwo Horsfall, I. (2024). Enhanced convolutional neural network methodology for solid waste classification utilizing data augmentation techniques. *Waste Management Bulletin*, 2(4), 184–193. <https://doi.org/https://doi.org/10.1016/j.wmb.2024.11.002>

Idrovo-Hurel, M., Morán-Herrera, A., & Peralta, D. (2025). Applications of artificial intelligence in urban solid waste management: A systematic literature review. *International Journal of Innovative Research and Scientific Studies*, 8, 3350–3363. <https://doi.org/10.53894/ijirss.v8i2.6010>

Ghaffari, A., Mohammadi, M., & Salari, M. (2021). AI-based solutions for improving waste management practices: A review of the literature. *Waste Management*, 120, 143–153. DOI:10.1016/j.wasman.2021.03.017

Kaza, S., Yao, L., Bhada-Tata, P., & Van Woerden, F. (2018). What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050. World Bank. https://books.google.co.id/books?id=bnN_DwAQAQBAJ

Lakhouti, A. (2025). Revolutionizing urban solid waste management with AI and IoT: a review of smart solutions for waste collection, sorting, and recycling. *Results in Engineering*, 104018.

Liu, M., Grimes, S., Saloniatis, K., & Litos, L. (2024). Modular Model and Simulation for Process Optimisation in Advanced Material Recovery Facilities (MRFs). *Procedia CIRP*, 128, 250–255. <https://doi.org/https://doi.org/10.1016/j.procir.2024.07.050>

Majchrowska, S., Mikołajczyk, A., Ferlin, M., Klawikowska, Z., Plantykov, M. A., Kwasigroch, A., & Majek, K. (2022). Deep learning-based waste detection in natural and urban environments. *Waste Management*, 138, 274–284. <https://doi.org/https://doi.org/10.1016/j.wasman.2021.12.001>

Maniatis, P. (2025). Artificial Intelligence in Waste Sorting: Advancing Recycling Processes in Greece Through Ai-Driven Solutions. *International Journal of Clinical Case Reports and Reviews*, 23, 1–10. <https://doi.org/10.31579/2690-4861/697>

Nahiduzzaman, Md., Ahmed, Md. F., Naznine, M., Karim, Md. J., Kibria, H. B., Ayari, M. A., Khandakar, A., Ashraf, A., Ahsan, M., & Haider, J. (2025). An automated waste classification system using deep learning techniques: Toward efficient waste recycling and environmental sustainability. *Knowledge-Based Systems*, 310, 113028. <https://doi.org/https://doi.org/10.1016/j.knosys.2025.113028>

Niu, B., Lai, C., Zheng, Z., Qi, Z., & Dai, Z. (2025). AI quality control in competitive recycling facing material contamination. *International Journal of Production Economics*, 282, 109541.

<https://doi.org/https://doi.org/10.1016/j.ijpe.2025.109541>

Olawade, D. B., Fapohunda, O., Wada, O. Z., Usman, S. O., Ige, A. O., Ajisafe, O., & Oladapo, B. I. (2024). Smart waste management: A paradigm shift enabled by artificial intelligence. *Waste Management Bulletin*, 2(2), 244–263. <https://doi.org/https://doi.org/10.1016/j.wmb.2024.05.001>

Pieters, L. S. (2025). Development of Automatic Waste Classification System using CNN-Based Deep Learning to Support Smart Waste Management. *INOVTEK Polbeng - Seri Informatika*, 10(1), 214–224. <https://doi.org/10.35314/wst8mh87>

Rahim, L., Abidin, N., Aminuddin, R., Abu Samah, K. A. F., Ibrahim, A., Yusoh, S., & Mohd Nasir, S. (2024). YOLOv5 Model-Based Real-Time Recyclable Waste Detection and Classification System (pp. 44–54). https://doi.org/10.1007/978-3-031-53824-7_5

Raihan, A., Paul, A., Rahman, S., Islam, S., Paul, P., & Karmakar, S. (2024). Artificial Intelligence (AI) for Environmental Sustainability: A Concise Review of Technology Innovations in Energy, Transportation, Biodiversity, and Water Management. 3, 64–73. <https://doi.org/10.56556/jtie.v3i2.953>

Shen, X., Wu, Y., Chen, S., & Luo, X. (2021). An Intelligent Garbage Sorting System Based on Edge Computing and Visual Understanding of Social Internet of Vehicles. *Mobile Information Systems*, 2021(1), 5231092. <https://doi.org/https://doi.org/10.1155/2021/5231092>

Singh, P., Kumar, S., & Jha, A. (2020). Real-time waste classification using deep learning techniques. *Journal of Environmental Management*, 267, 110612. <https://doi.org/10.1016/j.jenvman.2020.110612>

Son, J., & Ahn, Y. (2025). AI-based plastic waste sorting method utilizing object detection models for enhanced classification. *Waste Management*, 193, 273–282. <https://doi.org/https://doi.org/10.1016/j.wasman.2024.12.014>

Vasudevan, K., & Pub, J. (2024). AI-Driven Solutions for Real-Time Waste Monitoring and Management. 12, 11–20.

Yendeti, V. S. P., Mathiyalagan, R., & Kandasamy, J. (2020). Circular economy and waste management. In *Green Manufacturing* (pp. 101–120). CRC Press.

Yevle, D., & Mann, P. (2025). Artificial Intelligence-Based Waste Management: A Review of Classification, Techniques, Issues, and Challenges. *Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery*, 15. <https://doi.org/10.1002/widm.70025>

Zhang, Z., Zhao, H., & Li, J. (2022). Reinforcement learning-based adaptive waste sorting system. *IEEE Transactions on Automation Science and Engineering*, 19(3), 1102–1112. <https://doi.org/10.1109/TASE.2021.3088255>

ZHU, C., ZHANG, X., LI, S., SHI, Z., & HE, S. (2023). Design of intelligent waste sorting system based on cloud edge collaboration. *Experimental Technology and Management*, 40(9), 74–80, 186. <https://doi.org/10.16791/j.cnki.sjg.2023.09.011>

Zorpas, A. A., Doula, M. K., & Jeguirim, M. (2021). Waste Strategies Development in the Framework of Circular Economy. *Sustainability*, 13(23). <https://doi.org/10.3390/su132313467>

Zoumpoulis, P., Konstantinidis, F. K., Tsimiklis, G., & Amditis, A. (2024). Smart bins for enhanced resource recovery and sustainable urban waste practices in smart cities: A systematic literature review. *Cities*, 152, 105150. <https://doi.org/https://doi.org/10.1016/j.cities.2024.105150>