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1. Introduction

Demand planning is a critical component for manufacturers, serving as a
foundational input for business analysis, sales operations planning, and production
projection. It is also essential for estimating material supply procurement, which directly
influences production costs [1]. The connection between demand sales and material supply
is pivotal in calculating these costs [2]. In today's competitive landscape, particularly
within the fast-moving consumer goods (FMCG) industry, manufacturers face increasing
demand uncertainty [3]. This uncertainty complicates sales planning and affects supply
planning, leading to challenges in determining optimal lot sizes and driving up material
inventory costs [2]. As a result, effective demand planning must be closely linked to supply
procurement as a core aspect of operational strategy.

FMCG companies often rely on statistical forecasting methods, such as moving
averages, exponential smoothing, time series regression, and autoregressive integrated
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moving average (ARIMA) models, to address demand planning challenges [4],[5].
However, these models tend to fall short in environments characterized by high demand
volatility, resulting in reduced forecasting accuracy [6]. An alternative approach some
companies use is production capacity projection Judgment-based forecasting), which can
lead to excess inventory or shortages during planning periods [7]. Overstocking drives up
costs and strains warehouse capacity, while shortages result in lower customer service
levels and lost sales opportunities [8]. Additionally, prolonged wait times due to shortages
can cause customers to switch to competing products, further affecting profitability [9].

Previous research highlights the adoption of forecasting models to address
demand uncertainty in the fast-moving consumer goods (FMCG) industry, particularly
using artificial neural networks (ANNs) [10]. ANNs are favoured for their ability to handle
non-linear data patterns and achieve high accuracy in forecasting through training with
historical data. Key input factors for these models include previous demand, average
demand, and backorder quantities. Additionally, studies demonstrate that the results of
these forecasts can be effectively used to estimate material inventory requirements [11].
Many studies have focused on Material inventory management, with critical approaches
including fundamental economic order quantity (EOQ), heuristic models, and algorithmic
solutions [12]. Basic EOQ models are commonly used due to their stability over planning
periods. However, they struggle to adapt to seasonal demand patterns [13]. Heuristic
models, such as lot-for-lot, periodic order quantity, part period balance, silver meal, and
least unit cost, are more suited for handling complex material planning scenarios.
Meanwhile, algorithmic models, such as the Wagner-Within algorithm, provide optimal
solutions using mathematical techniques [14]. Despite these advancements, inventory
models must account for capacity limitations.

Research by Bindewald, et al. [15] and Caliskan [16] has contributed to the
development of inventory planning models that utilize mixed integer linear programming
(MILP) to handle time-varying demand. These models address both deterministic and
stochastic demand conditions to minimize inventory costs. Wang, et al. [17] further
developed optimization models, incorporating stochastic demand and integrated order
distribution within supply chain planning. A simulation-based approach to inventory
management, considering lot sizing, was introduced by Pooya, et al. [18], emphasizing the
importance of factors such as bills of materials (BOM), demand, and lead time in
simulation inputs [19],[20]. Simulation models have demonstrated their effectiveness in
determining optimal lot sizes while minimizing inventory costs. Numerous studies confirm
that optimization and simulation-based approaches significantly reduce inventory
planning costs, effectively addressing stochastic and deterministic demand scenarios.

Integrating simulation models for demand forecasting and material inventory
management under constraints has received limited attention in the literature. Most
studies focus on either demand simulation or material inventory optimization without
addressing both simultaneously. However, integrating demand and supply simulations is
crucial for improving decision-making in planning and enhancing responsiveness to
uncertainties [11]. In an integrated model, demand planning must align with supplier
relationships, where total demand projections drive the lot size of materials purchased.
Previous studies have shown that artificial neural networks (ANNs) achieve high
forecasting accuracy, as evidenced by mean percentage error (MAPE) and mean squared
error (MSE) indicators [21]. Additionally, researchers have employed optimization
techniques in material inventory models with time-varying demand to handle stochastic
demand while minimizing inventory costs [2]. These optimization models are often built
on operational research frameworks, such as mixed integer linear programming (MILP)

[1].
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Although some studies have explored integrated forecasting and material planning
models, their results often lack the accuracy needed to optimize material planning costs
under specific constraints [4],[22],[23],[24]. The present study develops an integrated
model combining ANN-based demand forecasting with MILP-based material inventory
optimization to address this challenge. This approach aims to improve managerial
decision-making by enhancing demand forecasting accuracy, optimizing lot sizes under
warehouse capacity constraints, and reducing inventory costs, including ordering, holding,
and material costs [25]. The primary objective of this study is to contribute to demand
planning and material inventory management by developing a simulation-based model
that integrates ANN forecasting and MILP optimization. This integrated approach
bridges the gap in existing research by improving forecast accuracy, determining optimal
lot sizes, and minimizing costs under various constraints.

2. Methods

A case study in this research is on a bottled water beverage company located in
Bogor Regency, Indonesia. The distribution supply chain in bottled water beverages
involves several parties downstream consisting of star outlets, wholesalers, and retailers
[26]. The first research stage involves observing and identifying the bottled water beverage
company. Identification was started with the interview process in the sales and operation
division. Based on the result of the interview, it is found that the company has difficulty
determining material inventory planning under capacity, which is caused by fluctuating
and proven by unstable demand patterns histories. The second stage is data collection
from database sales demand (secondary data) for plotting demand patterns [27].
Observation of company condition is conducted as an internal study to understand demand
planning based on the company approach, the ordering process for material, material lead
time, horizon planning, lot size material, and warehouse capacity.

In the next stage, we proposed a forecasting method using historical demand sales
after the interview process and data collection. Subsequently, data will be processed using
the software MATLAB 2015 for forecasting artificial neural networks. The stage of
processing data using the artificial neural network method consists of normalization data,
determined target data, trial-and-error in the hidden layer, calculation forecast accuracy,
and forecasting simulation. The selection of optimal neurons using the performance of
mean squared error (MSE) and regression based on the output. Moreover, we developed
the result of a forecast artificial neural network to input both optimization and actual
models. Input lot size model for material inventory is considered condition capacity
warehouse. The stage of optimization material inventory planning consists of identifying
the internal study (company), building model mathematics, verification, and validation,
calculating lot size using economic order quantity (EOQ) under constraint, and solving the
model under horizon planning using mixed integer linear programming (MILP) in LINGO
18.0. The selection of lot size is based on a combination of multi-item EOQ concepts [19]
under warehouse capacity [28] and dependent demand using a bill of material. The
comparison of model optimization is based on the actual solution of the company in which
lot size and purchase order are calculated heuristically [11].

2.1 Normalization and Denormalization

Stage 1 is the normalization process as input forecasting artificial neural network
with the change data actual to a range of biner [0,1]. Normalisation aims to increase
forecasting performance and reduce redundancy [29]. Equation (1) is the formulation of
the transformation process in actual data to normalization. Normalization data is used as
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an input model for forecasting ANNs. Equation (2) is the denormalization process to
change range [0,1] to actual data forecast.

_ x—min(x)
Xnorm = max(x)—-min(x) (1)
Xactual = Xnorm [max(x) - min(x)] + min(x) 2)

Xnorm = data transformation actual to biner interval (normalization).
min(x) = Minimum data of x
max(x)= Maximum data of x
Xactuar = data transformation output to actual data (denormalization).

2.2 Proposed Activation Function Model

The performance of the artificial neural network is determined by MSE
performance and linear regression on the output layer. We proposed to select a multi-layer
perceptron using a hidden layer to increase performance output. In this study, the
activation function on the hidden and output layers using TANSIG (tangent sigmoid).
TANSIG ¢(.) is continuous or discontinuous activation to overcome non-linearity in the
interval between -1 and 1 that can increase performance training data [30]. The activation
function TANSIG supports better performance under the backpropagation process. The
activation function TANSIG on the neuron is described using Equation (3) as follows:

P )= —2
FM() = —E—1 ®)

2.3 Proposed Training Algorithm

The goodness of the output forecast depends on the number of hidden layers
applied. This study adopts a trial-and-error strategy to obtain the best performance in the
hidden layer. Strategy trial and error in this study using 1 — 10 to determine the best
neuron. Data testing is evaluated by analysis of mean squared error (performance). The
plot data train uses regression based on the theory of linear regression between data
weights, bias, input, and target. Input multi-layer perceptron on the result of regression
plot consists of input data training (p) that is converted by normalization (¥,), weight
(W) (estimation parameter), and bias (5) (parameter to intercept in linear regression) [31].

The Equation for the backpropagation process and multi-layer perceptron are
referenced by Du, et al. [32]. Equation (4) shows that function input corresponds to layer
(m — 1) as well as output to layer (M). Equation (5) shows the calculation function using
input, weights, and bias in layer m. Equation (6) is processed to calculate error using the
result Equation (5) and predicted in neuron j based on the output network 6, and target
data y, in data set training (p) respectively. Furthermore, the model calculates error using
MSE (g,) in Equation (7). Meanwhile, Equation (8) changes parameter weight and bias in
layer M. However, in the backpropagation process, we applied a generalized error term in
Equation (9) to update the parameter. Subsequently, the consequence of updating weights
and bias in layer M correspondence with layer m so that applied the rule (chain rule) is
shown by Equations (10) based on considered the generalized error term &. In this study,
we use the momentum term in Equation (11) to improve convergence using parameter
learning rate (n) and momentum factor () with @ in the range of 0 < a < 1.
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Subsequently, we use acceleration backpropagation in momentum using globally
E(W)

adapted learning with function w(t + 1) = w(t) — n.g(t), where g(t) = —==1is the gradient

function to fast convergence in the training process which is terms of LEARNGDM.
Furthermore, this study uses mathematics interpretation in the Levenberg-Marquardt
algorithm second-order acceleration for training data in the artificial neural network.

de(t) de(t) R (12)

Ve() = g = 80 gy =1 WEWD)
V2e(t) = JT ()] () (13)
(14)

wit+1) =we) - @®J@) +al] T (1)e(t)

Gradient function or Newton methods in Equation (12), where J is the Jacobian
matrix of the first derivative of the error function with considering weight vector for the

time (t), J(t) =] (W(t)) = %. when the error function approach is the minimum value,

then updating the Equation in (13) for the second method based on the Gauss-newton
method. The function modified the Gauss-newton method in Equation (14) where o >
0,the small number or coefficient size of a trust region. I identity matrix for updating
inverse hessian matrix. This formula defined by the Levenberg-Marquardt algorithm is
invertible for the backpropagation process or in terms of TRAINLM [33].

]
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2.4 Forecast Accuracy

The difference between forecast (F;) and actual data (4;) is a forecasting error. The
mean absolute deviation (MAD) is the average absolute error for the original series data
in Equation (15). Mean percentage error (MAPE) is the percentage using absolute error
for evaluation forecasting in Equation (16) [34].

T
1
MAD :?th _ R (15)
t=1
1< /4, — F
MAPE :—Z |(¥> X 100| (16)
TLI\TA

2.5 Model EOQ Under Constraint

The EOQ model was developed by adopted research Caliskan [16],[35]. We
proposed the EOQ model approach by combining some items managed in a particular
location supplier with purchasing multiple items [36]|. Constraints are obtained by the
problem conditions of the bottled water beverage company, where the capacity of the
warehouse is essential in consideration of the volume size limit [35],[37]. The model uses
concept-dependent demand that needs to be calculated based on the bill of material (part).

We use the Lagrange multiplier in an optimization model to determine the partial
differential of the proportion optimal value maximum and minimum local to the equality
problem. The objective function for the partial differential in EOQ lot size is defined by

% where to find A proportion using GOAL SEEK in MS Excel. In Equation (17) the result

of the forecast is converted to the gross requirement based on the bill of material. The
gross requirement for each material is calculated by quantity for each item in Equation
(18). Furthermore, lot sizing technically uses economic order quantity with capacity
constraint and proportion in Equation (19). The capacity warehouse for each material is
less than the capacity warehouse in Equation (20). Meanwhile, the company purchase
material exceeds the minimum order quantity in Equation (21).

X[j) = X;jBOMj) Vi =12, ...,] an
. _ XD vi=12..] .
Ul s,

2X*C,:
[j1~0J

Q1= |[— < VY =12,..] (19)
! iCpj) + ASpj
]

Z QS =S,vi=12,....] (20)

=

Qrj1 =2 M0Q;,vji=12,..,] @1)

E———— |
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2.6 Proposed Optimization Material Inventory Model

Model development in this study is a material inventory with time-varying demand
based on research by V. Bindewald et al. We proposed a method for solving the problem
using mixed integer linear programming (MILP) [38].

The objective function in the mathematical model is presented in Equation (22),
which is also used to minimise the total cost of material inventory planning. Equation (23)
shows that planned order release is obtained by EOQ calculation. Equation (24), the
inventory model is obtained by considering the gross requirement and planned order
release with the beginning inventory. Equation (25) is the proportion for EOQ lot size.
Furthermore, Equation (26) considers lead time for each material and planned order and
inventory greater than the gross requirement in the total planning period. Meanwhile,
decision variables in model material inventory planning consist of Equations (27), (28),
(29), and (30) to solve the optimization model.

J T
minTC = z 2(1 pte Lo + Y Coriy + POR(j11a Cin) 22)
j=1t-1
PORpj\ie) + ijite-11 = X{jpe = Tt V) = 120 Js VE = 12,0, T 24)
A=0 (25)
T—-L; T
Z (PORyj + Iy = ZX[*J-] Vji=12,..,] (26)
t=1 t=1
Qrj) = 0, Integer Vji=1.2,..,] (27)
POR[jjie 2 0, Integer Vi=12,...; vt =12,..,T (28)

Lif Ifjjie-11 < X[j1e] -
Y ={ J J Vi=12...;vt=12,..,T 30
Llle] 0, otherwise J J (30)

2.7 Model Indices, Parameters, and Decision Variables

Notations formulation model EOQ under constraint and material inventory is
shown in Table 1. The notation consists of indices, parameters, and decision variables.

2.8 Data and Case Studies

This study uses historical data on sales demand based on 24 periods (long-term) of
bottled water beverage companies. The historical data is used to analyze data demand
patterns. Data from the historical 24 periods and result normalization is shown in Table
2.

In addition, the company purchased material that consisted of cups, labels, and

straws in supplier 1, whereas opp tape and cartons in supplier 2 [39]. Subsequently, the
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company orders material with a lead time of 1 week for each supplier. This study's EOQ
model under constraint is determined to obtain optimal lot size with warehouse limit [36].
The following data on bottled water beverage companies is shown in

Table 3.

3. Results and Discussion
3.1 Training Data

Process training data is conducted to determine the best performance neuron and
regression between data output and target. In this study, a multi-layer perceptron is
applied to increase performance accuracy. In addition, the training data process uses the
Levenberg-Marquardt algorithm for fitting and improving weight and bias [40].

Table 1. Indices, parameters, and decision variables of the material inventory model

Notations Descriptions Measurements
X" Demand for item j based on BOM Unit
t Period (¢ =1,2,...T) Unit of time
j Item (j =1,2,...,d) Item
Coj Ordering cost for item j Cost/ order
C; Material cost for item j Cost/ item
i Percentage of holding fraction Dimensionless
S; Warehouse capacity for item j Volume m3/ warehouse
MOQ; Minimum Order Quantity for item j Item
BOM; Bill of material Ttem
S Quantity for item j Item
Q; Capacity optimal quantity for item j Item
POR;; Planned order release Item
A Proportion Dimensionless
Y Decision Dimensionless
Li¢ Inventory Item

Table 2. Normalization data

Period  Actual o malization Period  A2ctual N malization
demand demand
Jul-20 90641 0.000 Jul-21 132142 0.641
Aug-20 95398 0.081 Aug-21 141658 0.788
Sep-20 94841 0.065 Sep-21 126575 0.555
Oct-20 98834 0.127 Oct-21 120044 0.454
Nov-20 93783 0.049 Nov-21 153128 0.966
Dec-20 104671 0.217 Dec-21 130062 0.609
Jan-21 106353 0.243 Jan-22 132607 0.648
Feb-21 110943 0.314 Feb-22 143070 0.810
Mar-21 106298 0.242 Mar-22 119742 0.450
Apr-21 100261 0.149 Apr-22 123180 0.503
May-21 101250 0.164 May-22 155358 1.000
Jun-21 110393 0.305 Jun-22 131829 0.636
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The network type uses feed-forward backpropagation to train the network to
recognize patterns from the input to the output layer, as shown in Figure 1. We use
learning adaption LEARNGDM, a learning rate process using gradient descent with
momentum (Constanta) on weight function and bias [32]. This function is applied to speed
up the learning process to find solutions. The solution search algorithm is repeated based
on epoch in each iteration, and this study uses plot interval 1000 epochs. The epoch used
is 9 iterations to achieve optimal training neurons. Meanwhile, data division divides data
into training, testing, and validation. Data is tested using analysis regression in data
division respectively in Figure 2. The regression between the data target and output is
tested based on fitting. In this study, we select and test data regression approach > 0.95
on each neuron to obtain a high accuracy of output forecast. The robust regression can
indicate that the error in MSE has decreased and that the data is fitting.

Table 3. Data model EOQ under constraint and material inventory

Item Cup Label Straw Opp tape Carton
Quantity/ unit 5000 160000 153600 72 50
Material cost/ 555 000,00 5.500.000.00  900.000.00  500.000.00  200.000.00

unit (Rp)

Ordegg oSt 50.000.00 50.000.00 50.000.00 50.000.00 50.000.00
Fraction 0.1% 0.1% 0.1% 0.1% 0.1%
holding

MOQ 60 20 10 20 100
The total box 70 cm x 60 90 cm x 50 100 cm x 50 35ecmx24 70 cmx80cm

volume cmx 70 cm cm x 50 cm cm x 50 cm cm x 20 cm x 80 cm

The volume of

the box/ unit 0.3 0.2 0.3 0.02 0.4

Mewural Network
Hidden Layer
e
Algorithms
Drata Division: Randeom (dividerand]
Training: Levenberg-Marquardt (trainimj
Performance: Mean Squared Error  (misel
Calculations:  MATLAEB
Progress
Epoch: o | S iterations 1000
Time: 0:00:00
Performance: 0.0136 |8 ooato7 0.00
Gradient: 0.0664 [ L T.00e-07
M 000700 1.00e+10
Validation Checks: o 6
Plots
Performance (plotpeform)
Training State tplottrainstate)
Regression (plotregression)
Plot Interval: ' 100 epochs
¢ Opening Regression Plot
@ stop Training @ cancal
Figure 1. Neural network training
EE— ]
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3.2 Trial and Error Hidden Layer

The data training process on the artificial neural network model is conducted by
assessing the accuracy performance. The level of performance is determined by trials and
errors on each neuron as shown in Table 4. The neuron selection is based on best

performance (mean squared error) and substantial regression > 0.95, respectively.
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Figure 2. Plot regression

Table 4. Trial and error neuron

Performance
0.0240
0.0277
0.0258
0.0259
0.0103
0.0225
0.0064
0.0047
0.0010

Ju—y
]

0.0021

3.3 Forecast Accuracy

The best performance in 9 neurons is conducted testing of accuracy using mean
squared error based on output using Equation (6) in

Table 3, whereas in mean absolute deviation and mean percentage error using
Equations (11) and (13). Process testing accuracy using comparing data output on a model
artificial neural network with data actual (target) on periods 13 to 24. The result of the
calculation accuracy forecast is shown in Table 5.
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E—
Table 5. Accuracy forecast
Accuracy MSE (performance) MAD MAPE
Result 0.0010 2483.7955 2%

3.4 Forecast Simulation

The result of the multi-layer backpropagation in the hidden layer with 9 neurons
and 1 neuron in the output layer, was selected to build an optimal model forecast for 12
periods. Subsequently, forecasting artificial neural networks is conducted using
simulations based on function periods 1 = sim (network9, inputl) continuously up to
function periods 12. The result of the simulation of the artificial neural network is shown
in Figure 3.
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Figure 3. Sales forecast

3.5 Verification Model

Verification is conducted to check that the model developed follows conceptual logic
and is mathematically correct. The verification process checks the units (measurement)
on the objective functions and constraint. The verification consists of EOQ and material
inventory models, shown in Table 6.

Table 6. Verification model

Component model feHioeny
Left section Right section

Objective function (22) Cost Cost
Constraint 1 (17) Unit Unit
Constraint 2 (18) Unit Unit
Constraint 3 (19) Unit Unit
Constraint 4 (20) Volume Volume
Constraint 5 (21) Unit Unit
Constraint 6 (23) Unit Unit
Constraint 7 (24) Unit Unit
Constraint 8 (26) Unit Unit

3.6 Validation and Result

Model validation is conducted on item material to demonstrate that the model can
reflect actual conditions in bottled water beverage companies. Validation was conducted
in the actual conditions of item material planning with capacity evaluation (internal
validity) and based on research by Bindewald, et al. [15] and San-José, et al. [35] as well
as (external validity) in bottled water beverage company conditions. To solve the problem,
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this study uses hypothetical data on bottled water beverage companies. Subsequently,
system characteristics are obtained based on observation and discussion with the material
and sales department (internal validity).

Table 7. Validation model material inventory

Item Cup Label Straw Opp tape Carton
Total MPS (BOM) 87098688 87098688 87098688 1814556 1814556
Material/unit 17420 544 567 110 36291
EOQ 1761 94 237 140 4019
Capacity total 518 21 59 2 1800
EOQ optimal 829 93 214 110 1071
Lagrange value 3.8142 1.6312
Warehouse capacity 320 480
Quantity (Input) 4143649 14919699 32885509 1821600 53571

Table 7 shows the result of lot size EOQ under constraint based on the concept of
multi-item. The findings in this study reveal that integration demand forecast and
material inventory significantly impact encountering uncertainty in procurement
planning. The result shows that forecasts can recognize patterns and can be used as a
basis for input material inventory [11]. On the other hand, optimal decisions for
determining lot size can reduce inventory costs under particular conditions. For instance,
the model EOQ proposed in this study can overcome adjusted material based on
warehouse capacity. In addition, lot size optimal can reduce possible overstock in the
warehouse so that holding costs can be pressed. However, the lot size proposed in the
optimization model can lead to increasing ordering costs. This is because the lot size
material proposed is lower than the actual company model (heuristically). The company
determines the lot size model using a projection demand approach so that purchase
materials tend to over capacity to overcome uncertainty. Consequently, the ordering cost
can be minimal with the larger lot size material (reduced frequency order). This condition
is aligned based on study A. Mubin et al used a lot size technique under constraint [13].
Furthermore, material inventory with time-varying demand is proposed to calculate
material lot sizing alignment based on the planning period and under lead time conditions
for each part of the material. The result of the total cost of material inventory for overall
period planning is shown in Table 8.

Table 8. Comparison of cost optimization and actual

Component cost Optimization model Actual Model Saving
Material cost (Rp) 18.290.568.024.87 18.316.351.524.76 0.14%
Holding cost (Rp) 40.472.623.58 42.297.358.82 4%
Ordering cost (Rp) 3.300.000.00 3.250.000.00 -2%
Total cost 18.334.340.648.45 18.361.898.883.58 0.15%

3.7 Research Implications

This study's implications have significant theoretical and practical findings in
artificial neural networks for material inventory integration problems. The theoretical
approach provides holistic insight into artificial neural network models, consisting of
multi-layer perceptron, momentum, backpropagation process, and training algorithms
using Levenberg-Marquardt in a mathematical approach. Moreover, this study
contributed to the literature by implementing a simulation forecast to determine the cost
of material inventory planning with time-varying demand. It also highlighted the
importance of simulation forecasts to help companies recognize patterns and enhance
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performance accuracy in dealing with material inventory problems. On the other hand,
the applied material inventory model can achieve aims that minimize cost with optimized
lot size under a capacity warehouse. In the management approach, this study can help
production managers improve tactical-operational planning efficiency, enhance
responsiveness, and encounter uncertainty challenges in the era of competition.

This study also provides practical implications for forecasting material inventory.
The result shows the importance of determining lot size, including holding, ordering, and
material costs. It also confirms that companies should understand data patterns that
impact material cost, warehouse capacity, and planning time-varying material. Moreover,
the result of the study shows that in a multiple supplier environment, companies can apply
planning order quantity with EOQ multi-item to calculate the total requirement for each
material simultaneously. This technique can optimize lot size under warehouse capacity
for multi-item and is used as the basis for material planning. Furthermore, the model
integration using simulation forecast and optimization of material inventory can also be
applied to industries with difficulty calculating material inventory cost under demand
fluctuation. In addition, the model development can be used to plan supply and demand
in industries that encounter uncertain demand sales, which are interconnected with
material procurement. Therefore, the findings suggest that integration demand
forecasting and material inventory are vital for basis planning, contributing to minimizing
inventory costs with better performance accuracy.

4. Conclusion

In conclusion, this research is developing an artificial neural network with the 10-
neuron trial for sales demand forecasting. The selected neuron used 9 neurons with a
performance output is 0.0010. Based on the result, the artificial neural network obtains
an accuracy forecast with MAPE is 2% and MAD is 2483. The output regression with 9
neurons has a strong correlation of 0.95, which can improve the output data sales forecast.
Furthermore, the result of the forecast we used to determine material inventory planning.
The model includes various costs, such as holding, ordering, and material costs. We select
optimal lot sizes in material inventory planning using model EOQ for planned order
release (POR). The objective of model material inventory has successfully achieved an
optimal solution with a reduction of 0.15% compared to the actual model (heuristically).

However, the limitation of this study in artificial neural networks is that they only
use one layer in the hidden layer. In contrast, inventory material is restricted, considering
warehouse capacity. Therefore, suggestions for future studies can extend to model
artificial neural networks using more hidden layers and varying trial and error algorithms
to obtain the best solution performance. Meanwhile, the model can develop in material
inventory by adding constraints such as shortage (probability) when the supplier is not
fulfilling the material, truck capacity for delivering material, discount factor, limited
budget cost, and reverse material. In summary, this study can provide valuable by offering
contributions to theoretical and practical solutions in demand-material planning
challenges in industries that deal with demand fluctuations while minimizing material
inventory costs.
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