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1. Introduction  

Demand planning is a critical component for manufacturers, serving as a 

foundational input for business analysis, sales operations planning, and production 

projection. It is also essential for estimating material supply procurement, which directly 

influences production costs [1]. The connection between demand sales and material supply 

is pivotal in calculating these costs [2]. In today's competitive landscape, particularly 

within the fast-moving consumer goods (FMCG) industry, manufacturers face increasing 

demand uncertainty [3]. This uncertainty complicates sales planning and affects supply 

planning, leading to challenges in determining optimal lot sizes and driving up material 

inventory costs [2]. As a result, effective demand planning must be closely linked to supply 

procurement as a core aspect of operational strategy. 

FMCG companies often rely on statistical forecasting methods, such as moving 

averages, exponential smoothing, time series regression, and autoregressive integrated 
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 The increasing competition in the fast-moving consumer goods 

(FMCG) industry leads to demand fluctuations, negatively 

impacting the accuracy of demand forecasts and determining 

optimal lot sizes in material inventory planning. Many companies 

struggle to adopt appropriate forecasting models, resulting in 

poor accuracy and higher material costs. This study aims to 

develop an integrated model for forecasting and material 

planning using simulation. The artificial neural network (ANN) 

method is proposed to improve forecasting accuracy, with 

performance evaluated through mean percentage error (MAPE), 

mean absolute deviation (MAD), and mean squared error (MSE). 

The forecast results are then applied to optimize material 

inventory using the economic order quantity (EOQ) model, 

considering warehouse capacity constraints. The EOQ model is 

applied to adjust lot sizes under time-varying demand. The 

findings highlight the importance of integrating forecasting with 

inventory planning to provide accurate demand predictions and 

optimal lot sizing, ultimately minimizing material costs in the 

FMCG industry. This research contributes to better decision-

making in supply chain management by enhancing forecasting 

accuracy and inventory optimization. 
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moving average (ARIMA) models, to address demand planning challenges [4],[5]. 

However, these models tend to fall short in environments characterized by high demand 

volatility, resulting in reduced forecasting accuracy [6]. An alternative approach some 

companies use is production capacity projection (judgment-based forecasting), which can 

lead to excess inventory or shortages during planning periods [7]. Overstocking drives up 

costs and strains warehouse capacity, while shortages result in lower customer service 

levels and lost sales opportunities [8]. Additionally, prolonged wait times due to shortages 

can cause customers to switch to competing products, further affecting profitability [9]. 

  Previous research highlights the adoption of forecasting models to address 

demand uncertainty in the fast-moving consumer goods (FMCG) industry, particularly 

using artificial neural networks (ANNs) [10]. ANNs are favoured for their ability to handle 

non-linear data patterns and achieve high accuracy in forecasting through training with 

historical data. Key input factors for these models include previous demand, average 

demand, and backorder quantities. Additionally, studies demonstrate that the results of 

these forecasts can be effectively used to estimate material inventory requirements [11]. 

Many studies have focused on Material inventory management, with critical approaches 

including fundamental economic order quantity (EOQ), heuristic models, and algorithmic 

solutions [12]. Basic EOQ models are commonly used due to their stability over planning 

periods. However, they struggle to adapt to seasonal demand patterns [13]. Heuristic 

models, such as lot-for-lot, periodic order quantity, part period balance, silver meal, and 

least unit cost, are more suited for handling complex material planning scenarios. 

Meanwhile, algorithmic models, such as the Wagner-Within algorithm, provide optimal 

solutions using mathematical techniques [14]. Despite these advancements, inventory 

models must account for capacity limitations. 

Research by Bindewald, et al. [15] and Çalışkan [16] has contributed to the 

development of inventory planning models that utilize mixed integer linear programming 

(MILP) to handle time-varying demand. These models address both deterministic and 

stochastic demand conditions to minimize inventory costs. Wang, et al. [17] further 

developed optimization models, incorporating stochastic demand and integrated order 

distribution within supply chain planning. A simulation-based approach to inventory 

management, considering lot sizing, was introduced by Pooya, et al. [18], emphasizing the 

importance of factors such as bills of materials (BOM), demand, and lead time in 

simulation inputs [19],[20]. Simulation models have demonstrated their effectiveness in 

determining optimal lot sizes while minimizing inventory costs. Numerous studies confirm 

that optimization and simulation-based approaches significantly reduce inventory 

planning costs, effectively addressing stochastic and deterministic demand scenarios. 

Integrating simulation models for demand forecasting and material inventory 

management under constraints has received limited attention in the literature. Most 

studies focus on either demand simulation or material inventory optimization without 

addressing both simultaneously. However, integrating demand and supply simulations is 

crucial for improving decision-making in planning and enhancing responsiveness to 

uncertainties [11]. In an integrated model, demand planning must align with supplier 

relationships, where total demand projections drive the lot size of materials purchased. 

Previous studies have shown that artificial neural networks (ANNs) achieve high 

forecasting accuracy, as evidenced by mean percentage error (MAPE) and mean squared 

error (MSE) indicators [21]. Additionally, researchers have employed optimization 

techniques in material inventory models with time-varying demand to handle stochastic 

demand while minimizing inventory costs [2]. These optimization models are often built 

on operational research frameworks, such as mixed integer linear programming (MILP) 

[1]. 
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Although some studies have explored integrated forecasting and material planning 

models, their results often lack the accuracy needed to optimize material planning costs 

under specific constraints [4],[22],[23],[24]. The present study develops an integrated 

model combining ANN-based demand forecasting with MILP-based material inventory 

optimization to address this challenge. This approach aims to improve managerial 

decision-making by enhancing demand forecasting accuracy, optimizing lot sizes under 

warehouse capacity constraints, and reducing inventory costs, including ordering, holding, 

and material costs [25]. The primary objective of this study is to contribute to demand 

planning and material inventory management by developing a simulation-based model 

that integrates ANN forecasting and MILP optimization. This integrated approach 

bridges the gap in existing research by improving forecast accuracy, determining optimal 

lot sizes, and minimizing costs under various constraints.  
 

2. Methods 

A case study in this research is on a bottled water beverage company located in 

Bogor Regency, Indonesia. The distribution supply chain in bottled water beverages 

involves several parties downstream consisting of star outlets, wholesalers, and retailers 

[26]. The first research stage involves observing and identifying the bottled water beverage 

company. Identification was started with the interview process in the sales and operation 

division. Based on the result of the interview, it is found that the company has difficulty 

determining material inventory planning under capacity, which is caused by fluctuating 

and proven by unstable demand patterns histories. The second stage is data collection 

from database sales demand (secondary data) for plotting demand patterns [27]. 

Observation of company condition is conducted as an internal study to understand demand 

planning based on the company approach, the ordering process for material, material lead 

time, horizon planning, lot size material, and warehouse capacity.  

In the next stage, we proposed a forecasting method using historical demand sales 

after the interview process and data collection. Subsequently, data will be processed using 

the software MATLAB 2015 for forecasting artificial neural networks. The stage of 

processing data using the artificial neural network method consists of normalization data, 

determined target data, trial-and-error in the hidden layer, calculation forecast accuracy, 

and forecasting simulation. The selection of optimal neurons using the performance of 

mean squared error (MSE) and regression based on the output. Moreover, we developed 

the result of a forecast artificial neural network to input both optimization and actual 

models. Input lot size model for material inventory is considered condition capacity 

warehouse. The stage of optimization material inventory planning consists of identifying 

the internal study (company), building model mathematics, verification, and validation, 

calculating lot size using economic order quantity (EOQ) under constraint, and solving the 

model under horizon planning using mixed integer linear programming (MILP) in LINGO 

18.0. The selection of lot size is based on a combination of multi-item EOQ concepts [19] 

under warehouse capacity [28] and dependent demand using a bill of material. The 

comparison of model optimization is based on the actual solution of the company in which 

lot size and purchase order are calculated heuristically [11].  

2.1 Normalization and Denormalization 

Stage 1 is the normalization process as input forecasting artificial neural network 

with the change data actual to a range of biner [0,1]. Normalisation aims to increase 

forecasting performance and reduce redundancy [29]. Equation (1) is the formulation of 

the transformation process in actual data to normalization. Normalization data is used as 
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an input model for forecasting ANNs. Equation (2) is the denormalization process to 

change range [0,1] to actual data forecast.   

௡௢௥௠ݔ   = ௫−௠௜௡(௫)௠௔௫(௫)−௠௜௡(௫)             (1) 

௔௖௧௨௔௟ݔ  = (ݔ)ݔܽ݉]௡௢௥௠ݔ − [(ݔ)݊݅݉  +  (2)         (ݔ)݊݅݉ 
  .௔௖௧௨௔௟ = data transformation output to actual data (denormalization)ݔ Maximum data of x =(ݔ)ݔܽ݉  Minimum data of x = (ݔ)݊݅݉  .௡௢௥௠ = data transformation actual to biner interval (normalization)ݔ 

 

2.2 Proposed Activation Function Model 

The performance of the artificial neural network is determined by MSE 

performance and linear regression on the output layer. We proposed to select a multi-layer 

perceptron using a hidden layer to increase performance output. In this study, the 

activation function on the hidden and output layers using TANSIG (tangent sigmoid). 

TANSIG ߶(. ) is continuous or discontinuous activation to overcome non-linearity in the 

interval between -1 and 1 that can increase performance training data [30]. The activation 

function TANSIG supports better performance under the backpropagation process. The 

activation function TANSIG on the neuron is described using Equation (3) as follows: 
 

 ߶⃗ (௠)(. ) =  21+௘(−2ೌೕ) − 1           (3) 

 

2.3 Proposed Training Algorithm  

The goodness of the output forecast depends on the number of hidden layers 

applied. This study adopts a trial-and-error strategy to obtain the best performance in the 

hidden layer. Strategy trial and error in this study using 1 – 10 to determine the best 

neuron. Data testing is evaluated by analysis of mean squared error (performance). The 

plot data train uses regression based on the theory of linear regression between data 

weights, bias, input, and target. Input multi-layer perceptron on the result of regression 

plot consists of input data training (p) that is converted by normalization (ݔ ௣), weight 

 .[31] (parameter to intercept in linear regression) ( ߠ) and bias ,(estimation parameter) (௣ ݓ⃗⃗)

The Equation for the backpropagation process and multi-layer perceptron are 

referenced by Du, et al. [32]. Equation (4) shows that function input corresponds to layer 

(݉ − 1) as well as output to layer (ܯ). Equation (5) shows the calculation function using 

input, weights, and bias in layer m. Equation (6) is processed to calculate error using the 

result Equation (5) and predicted in neuron j based on the output network ݋ ௣ and target 

data ݕ ௣ in data set training (p) respectively. Furthermore, the model calculates error using 

MSE (ߝ௣) in Equation (7). Meanwhile, Equation (8) changes parameter weight and bias in 

layer M. However, in the backpropagation process, we applied a generalized error term in 

Equation (9) to update the parameter. Subsequently, the consequence of updating weights 

and bias in layer M correspondence with layer m so that applied the rule (chain rule) is 

shown by Equations (10) based on considered the generalized error term ߜ. In this study, 

we use the momentum term in Equation (11) to improve convergence using parameter 

learning rate (ߟ) and momentum factor (ߙ) with ߙ in the range of 0 ≤ ߙ ≤ 1.  
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௣ ݔ ≡ ௣ ݋ ݀݊ܽ ௣(௠−1) ݋ ≡  ௣(ெ)      (4) ݋

  ܽ௣(௠) = ௣(௠−1) ݋்[(௠−1)ࢃ] +  (5)      (௠) ߠ

  ݁௣ ௣ ݕ = −  ௣       (6) ݋

 

௣ߝ = 1ܰ ௣ ݕ‖∑ − ௣‖2ே ݋
௣=1  (7) 

{   
   ∆௣ݓ௜௝(ெ−1)  = ௣,௜݁ߟ ௜௝(ெ−1)ݓ௣,௜߲݋߲ ܽ݊݀ ݁௣,௜ (݀߶௜(ெ)(ܽ)݀ܽ )௔=௔೛,೔(ಾ) ௜(ெ)ߠ௣,௝(ெ−1)∆௣݋  = ௣,௜݁ߟ ௜(ெ−1)ߠ௣,௜߲݋߲ ௣,௜݁ߟ ݀݊ܽ  (݀߶௜(ெ)(ܽ)݀ܽ )௔=௔೛,೔(ಾ) 1

      (8) 

݁௣,௜ (݀߶௜(ெ)(ܽ)݀ܽ )௔=௔೛,೔(ಾ)  ௣,௜(ெ)      (9)ߜ ≡

 ∆௣ݓ௨௩(௠−1)  = ௨(௠)ߠ௣,௩(௠−1)ܽ݊݀ ∆௣݋௣,௨(௠)ߜߟ  =  ௣,௨(௠)1ߜߟ

   

(10) 

 ∆௣ݓ௜௝(௧+1)(ெ−1) = ߟ− ௜௝(௧)(ெ−1)ݓ௣߲ߝ߲ + ௜(௧+1)(ெ)ߠ௜௝(௧)(ெ−1) ܽ݊݀ ∆௣ݓ௣∆ߙ = ߟ− ௜(௧)(ெ)ߠ௣߲ߝ߲ + ௜௝(௧)(ெ−1)ߠ௣∆ߙ
 

  

(11) 

 

Subsequently, we use acceleration backpropagation in momentum using globally 

adapted learning with function  ⃗⃗ݐ) ݓ + 1) = (ݐ) ݓ⃗⃗ − ௧ߟ ݃ where ,(ݐ)݃  (ݐ)  = డఌ(௪⃗⃗ )డ௪⃗⃗  is the gradient 

function to fast convergence in the training process which is terms of LEARNGDM. 

Furthermore, this study uses mathematics interpretation in the Levenberg-Marquardt 

algorithm second-order acceleration for training data in the artificial neural network. 

(ݐ)ߝ∇   = (ݐ) ݓ߲⃗⃗(ݐ)ߝ߲ = (ݐ)݁  (ݐ) ݓ߲⃗⃗(ݐ)߲݁ = (ݐ)்ࡶ  (12) (ݐ)݁ 

(ݐ)ߝ2∇ =  (13) (ݐ)ࡶ(ݐ)்ࡶ

ݐ) ݓ⃗⃗  + 1) = (ݐ)ࢃ − (ݐ)ࡶ(ݐ)்ࡶ] + (ݐ)்ࡶ1−[ࡵߪ  (14) (ݐ)݁ 

 

Gradient function or Newton methods in Equation (12), where J is the Jacobian 

matrix of the first derivative of the error function with considering weight vector for the 

time (t), (ݐ)ࡶ = ((࢚) ݓ⃗⃗)ࡶ = డ௘ (௪⃗⃗ )డ௪⃗⃗ . when the error function approach is the minimum value, 

then updating the Equation in (13) for the second method based on the Gauss-newton 

method. The function modified the Gauss-newton method in Equation (14) where ߪ >0,  ℎ݁ small number or coefficient size of a trust region. I identity matrix for updatingݐ

inverse hessian matrix. This formula defined by the Levenberg-Marquardt algorithm is 

invertible for the backpropagation process or in terms of TRAINLM [33].       
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2.4 Forecast Accuracy  

The difference between forecast (ܨ௧) and actual data (ܣ௧) is a forecasting error. The 

mean absolute deviation (MAD) is the average absolute error for the original series data 

in Equation (15). Mean percentage error (MAPE) is the percentage using absolute error 

for evaluation forecasting in Equation (16) [34].  

 

MAD =
௧ܣ|∑1ܶ − ்|௧ܨ
௧=1  (15) 

MAPE =
௧ܣ)|∑1ܶ − ௧ܣ௧ܨ ) × 100|்
௧=1  (16) 

 

2.5 Model EOQ Under Constraint 

The EOQ model was developed by adopted research Çalışkan [16],[35]. We 

proposed the EOQ model approach by combining some items managed in a particular 

location supplier with purchasing multiple items [36]. Constraints are obtained by the 

problem conditions of the bottled water beverage company, where the capacity of the 

warehouse is essential in consideration of the volume size limit [35],[37]. The model uses 

concept-dependent demand that needs to be calculated based on the bill of material (part).  

We use the Lagrange multiplier in an optimization model to determine the partial 

differential of the proportion optimal value maximum and minimum local to the equality 

problem. The objective function for the partial differential in EOQ lot size is defined by డொ[ೕ]డఒ  where to find ߣ proportion using GOAL SEEK in MS Excel. In Equation (17) the result 

of the forecast is converted to the gross requirement based on the bill of material. The 

gross requirement for each material is calculated by quantity for each item in Equation 

(18). Furthermore, lot sizing technically uses economic order quantity with capacity 

constraint and proportion in Equation (19). The capacity warehouse for each material is 

less than the capacity warehouse in Equation (20). Meanwhile, the company purchase 

material exceeds the minimum order quantity in Equation (21).   

 [ܺ௝]∗ = ܺ[௝]ܯܱܤ[௝] , ∀݆ = 1,2, … ,  (17)                   ܬ
 

[ܺ௝]∗ = [ܺ௝]∗ܵܫ[௝]   , ∀݆ = 1,2, … ,  (18)                                                                                                                               ܬ

 ܳ[௝] = √ 2 [ܺ௝]∗ [௝]ܥ௢௝݅ܥ + [௝]ܵߣ  , ∀݆ = 1,2,… ,  (19)                                                                                                              ܬ

 ∑ܳ[௝]ܵ[௝] ≤ ܵ௃
௝=1 , ∀݆ = 1,2, … ,  (20)                                                                                                                         ܬ

 ܳ[௝] ≥ , [௝]ܱܳܯ ∀݆ = 1,2,… ,  (21)                                                                                                                           ܬ
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2.6 Proposed Optimization Material Inventory Model   

Model development in this study is a material inventory with time-varying demand 

based on research by V. Bindewald et al. We proposed a method for solving the problem 

using mixed integer linear programming (MILP) [38].  

The objective function in the mathematical model is presented in Equation (22), 

which is also used to minimise the total cost of material inventory planning. Equation (23) 

shows that planned order release is obtained by EOQ calculation. Equation (24), the 

inventory model is obtained by considering the gross requirement and planned order 

release with the beginning inventory. Equation (25) is the proportion for EOQ lot size. 

Furthermore, Equation (26) considers lead time for each material and planned order and 

inventory greater than the gross requirement in the total planning period. Meanwhile, 

decision variables in model material inventory planning consist of Equations (27), (28), 

(29), and (30) to solve the optimization model.  

ܥܶ݊݅݉ ்[௧][௝]ܫ)∑∑=
௧−1

௃
௝=1 [௝]ܥ݅ + [ܻ௝][௧]ܥை[௝] + ܱܴܲ[௝][௧]ܥ[௝])                                                                     (22) 

 ܱܴܲ[௝][௧] = ܳ[௝] [ܻ௝][௧]                             , ∀݆ = 1,2,… , ;ܬ ݐ∀  = 1,2, … , ܶ       (23) 
 ܱܴܲ[௝][௧] + [௧−1][௝]ܫ − [ܺ௝][௧]∗ = , [௧][௝]ܫ ∀݆ = 1,2, … , ;ܬ ݐ∀  = 1,2,… , ܶ            (24) 
ߣ  ≥ 0                      (25) 
 ∑(ܱܴܲ[௝] + ([௜]ܫ ≥ ∑ [ܺ௝]∗்

௧=1
்−௅೔
௧=1             , ∀݆ = 1,2, … ,  (26)                                                                                   ܬ

 ܳ[௝] ≥ 0, ,                                   ݎ݁݃݁ݐ݊ܫ ∀݆ = 1,2, … ,  (27)        ܬ
 ܱܴܲ[௝][௧] ≥ 0, ,                         ݎ݁݃݁ݐ݊ܫ ∀݆ = 1,2, … , ;ܬ ݐ∀  = 1,2,… , ܶ              (28) 
[௧][௝]ܫ  ≥ 0, ,                                ݎ݁݃݁ݐ݊݅ ∀݆ = 1,2,… , ;ܬ ݐ∀  = 1,2,… , ܶ              (29) 
 [ܻ௝][௧] = [௧−1][௝]ܫ ݂݅ 1} < ,0[௧][௝]ݔ ݁ݏ݅ݓݎℎ݁ݐ݋          , ∀݆ = 1,2, … , ;ܬ ݐ∀  = 1,2,… , ܶ              (30) 
 

2.7 Model Indices, Parameters, and Decision Variables 

Notations formulation model EOQ under constraint and material inventory is 

shown in Table 1. The notation consists of indices, parameters, and decision variables.  

2.8 Data and Case Studies 

This study uses historical data on sales demand based on 24 periods (long-term) of 

bottled water beverage companies. The historical data is used to analyze data demand 

patterns. Data from the historical 24 periods and result normalization is shown in Table 

2. 

In addition, the company purchased material that consisted of cups, labels, and 

straws in supplier 1, whereas opp tape and cartons in supplier 2 [39]. Subsequently, the 
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company orders material with a lead time of 1 week for each supplier. This study's EOQ 

model under constraint is determined to obtain optimal lot size with warehouse limit [36]. 

The following data on bottled water beverage companies is shown in  

Table 3. 
 

3. Results and Discussion 

3.1 Training Data 

Process training data is conducted to determine the best performance neuron and 

regression between data output and target. In this study, a multi-layer perceptron is 

applied to increase performance accuracy. In addition, the training data process uses the 

Levenberg-Marquardt algorithm for fitting and improving weight and bias [40]. 

 

Table 1. Indices, parameters, and decision variables of the material inventory model 

Notations Descriptions Measurements ௝ܺ∗ Demand for item j based on BOM Unit 

t Period (t = 1,2,…T) Unit of time ݆ Item (j = 1,2,…,J)  Item ܥை௝ Ordering cost for item j Cost/ order ܥ௝ Material cost for item j Cost/ item ݅ Percentage of holding fraction Dimensionless ௝ܵ Warehouse capacity for item j Volume ݉3/ warehouse ܱܳܯ௝  Minimum Order Quantity for item j Item ܯܱܤ௝ Bill of material Item ܵܫ௝ Quantity for item j Item ܳ௝  Capacity optimal quantity for item j Item ܱܲ ௝ܴ௧ Planned order release Item ߣ Proportion Dimensionless ௝ܻ௧ Decision Dimensionless ܫ௝௧ Inventory Item 

 

Table 2. Normalization data 

Period 
Actual 

demand 
Normalization Period 

Actual 

demand 
Normalization 

Jul-20 90641 0.000 Jul-21 132142 0.641 

Aug-20 95898 0.081 Aug-21 141658 0.788 

Sep-20 94841 0.065 Sep-21 126575 0.555 

Oct-20 98834 0.127 Oct-21 120044 0.454 

Nov-20 93783 0.049 Nov-21 153128 0.966 

Dec-20 104671 0.217 Dec-21 130062 0.609 

Jan-21 106353 0.243 Jan-22 132607 0.648 

Feb-21 110943 0.314 Feb-22 143070 0.810 

Mar-21 106298 0.242 Mar-22 119742 0.450 

Apr-21 100261 0.149 Apr-22 123180 0.503 

May-21 101250 0.164 May-22 155358 1.000 

Jun-21 110393 0.305 Jun-22 131829 0.636 
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The network type uses feed-forward backpropagation to train the network to 

recognize patterns from the input to the output layer, as shown in Figure 1. We use 

learning adaption LEARNGDM, a learning rate process using gradient descent with 

momentum (Constanta) on weight function and bias [32]. This function is applied to speed 

up the learning process to find solutions. The solution search algorithm is repeated based 

on epoch in each iteration, and this study uses plot interval 1000 epochs. The epoch used 

is 9 iterations to achieve optimal training neurons. Meanwhile, data division divides data 

into training, testing, and validation. Data is tested using analysis regression in data 

division respectively in Figure 2. The regression between the data target and output is 

tested based on fitting. In this study, we select and test data regression approach > 0.95 

on each neuron to obtain a high accuracy of output forecast. The robust regression can 

indicate that the error in MSE has decreased and that the data is fitting. 

 

Table 3. Data model EOQ under constraint and material inventory 
Item Cup Label Straw Opp tape Carton 

Quantity/ unit 5000 160000 153600 72 50 

Material cost/ 

unit (Rp) 
500.000.00 5.500.000.00 900.000.00 500.000.00 200.000.00 

Ordering cost 

(Rp) 
50.000.00 50.000.00 50.000.00 50.000.00 50.000.00 

Fraction 

holding 
0.1% 0.1% 0.1% 0.1% 0.1% 

MOQ 60 20 10 20 100 

The total box 

volume 

70 cm x 60 

cm x 70 cm 

90 cm x 50 

cm x 50 cm 

100 cm x 50 

cm x 50 cm 

35 cm x 24 

cm x 20 cm 

70 cm x 80 cm 

x 80 cm 

The volume of 

the box/ unit 
0.3 0.2 0.3 0.02 0.4 

 
Figure 1. Neural network training 
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3.2 Trial and Error Hidden Layer 

The data training process on the artificial neural network model is conducted by 

assessing the accuracy performance. The level of performance is determined by trials and 

errors on each neuron as shown in Table 4. The neuron selection is based on best 

performance (mean squared error) and substantial regression > 0.95, respectively.  

 

 
Figure 2. Plot regression 

 

Table 4. Trial and error neuron 

Neuron Performance 

1 0.0240 

2 0.0277 

3 0.0258 

4 0.0259 

5 0.0103 

6 0.0225 

7 0.0064 

8 0.0047 

9 0.0010 

10 0.0021 

3.3 Forecast Accuracy  

The best performance in 9 neurons is conducted testing of accuracy using mean 

squared error based on output using Equation (6) in  

Table 3, whereas in mean absolute deviation and mean percentage error using 

Equations (11) and (13). Process testing accuracy using comparing data output on a model 

artificial neural network with data actual (target) on periods 13 to 24. The result of the 

calculation accuracy forecast is shown in Table 5.   
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Table 5. Accuracy forecast 

Accuracy MSE (performance) MAD MAPE 

Result 0.0010    2483.7955 2% 

 

3.4 Forecast Simulation  

 The result of the multi-layer backpropagation in the hidden layer with 9 neurons 

and 1 neuron in the output layer, was selected to build an optimal model forecast for 12 

periods. Subsequently, forecasting artificial neural networks is conducted using 

simulations based on function periods 1 = sim (network9, input1) continuously up to 

function periods 12. The result of the simulation of the artificial neural network is shown 

in Figure 3. 

 
Figure 3. Sales forecast 

 

3.5 Verification Model 

Verification is conducted to check that the model developed follows conceptual logic 

and is mathematically correct. The verification process checks the units (measurement) 

on the objective functions and constraint. The verification consists of EOQ and material 

inventory models, shown in Table 6. 

 

Table 6. Verification model 

Component model 
Measurement 

Left section Right section 

Objective function (22) Cost Cost 

Constraint 1 (17) Unit Unit 

Constraint 2 (18) Unit Unit 

Constraint 3 (19) Unit Unit 

Constraint 4 (20) Volume Volume 

Constraint 5 (21) Unit Unit 

Constraint 6 (23) Unit Unit 

Constraint 7 (24) Unit Unit 

Constraint 8 (26) Unit Unit 

 

3.6 Validation and Result  

Model validation is conducted on item material to demonstrate that the model can 

reflect actual conditions in bottled water beverage companies. Validation was conducted 

in the actual conditions of item material planning with capacity evaluation (internal 

validity) and based on research by Bindewald, et al. [15] and San-José, et al. [35] as well 

as (external validity) in bottled water beverage company conditions. To solve the problem, 

0
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200000
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this study uses hypothetical data on bottled water beverage companies. Subsequently, 

system characteristics are obtained based on observation and discussion with the material 

and sales department (internal validity).  

Table 7. Validation model material inventory 

Item Cup Label Straw Opp tape Carton 

Total MPS (BOM) 87098688 87098688 87098688 1814556 1814556 

Material/unit 17420 544 567 110 36291 

EOQ 1761 94 237 140 4019 

Capacity total 518 21 59 2 1800 

EOQ optimal 829 93 214 110 1071 

Lagrange value 3.8142 1.6312 

Warehouse capacity 320 480 

Quantity (Input) 4143649 14919699 32885509 1821600 53571 

 

Table 7 shows the result of lot size EOQ under constraint based on the concept of 

multi-item. The findings in this study reveal that integration demand forecast and 

material inventory significantly impact encountering uncertainty in procurement 

planning. The result shows that forecasts can recognize patterns and can be used as a 

basis for input material inventory [11]. On the other hand, optimal decisions for 

determining lot size can reduce inventory costs under particular conditions. For instance, 

the model EOQ proposed in this study can overcome adjusted material based on 

warehouse capacity. In addition, lot size optimal can reduce possible overstock in the 

warehouse so that holding costs can be pressed. However, the lot size proposed in the 

optimization model can lead to increasing ordering costs. This is because the lot size 

material proposed is lower than the actual company model (heuristically). The company 

determines the lot size model using a projection demand approach so that purchase 

materials tend to over capacity to overcome uncertainty. Consequently, the ordering cost 

can be minimal with the larger lot size material (reduced frequency order). This condition 

is aligned based on study A. Mubin et al used a lot size technique under constraint [13]. 

Furthermore, material inventory with time-varying demand is proposed to calculate 

material lot sizing alignment based on the planning period and under lead time conditions 

for each part of the material. The result of the total cost of material inventory for overall 

period planning is shown in Table 8.  

Table 8. Comparison of cost optimization and actual 

Component cost Optimization model Actual Model Saving 

Material cost (Rp) 18.290.568.024.87 18.316.351.524.76 0.14% 

Holding cost (Rp) 40.472.623.58 42.297.358.82 4% 

Ordering cost  (Rp) 3.300.000.00 3.250.000.00 -2% 

Total cost 18.334.340.648.45 18.361.898.883.58 0.15% 

3.7 Research Implications 

This study's implications have significant theoretical and practical findings in 

artificial neural networks for material inventory integration problems. The theoretical 

approach provides holistic insight into artificial neural network models, consisting of 

multi-layer perceptron, momentum, backpropagation process, and training algorithms 

using Levenberg-Marquardt in a mathematical approach. Moreover, this study 

contributed to the literature by implementing a simulation forecast to determine the cost 

of material inventory planning with time-varying demand. It also highlighted the 

importance of simulation forecasts to help companies recognize patterns and enhance 
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performance accuracy in dealing with material inventory problems. On the other hand, 

the applied material inventory model can achieve aims that minimize cost with optimized 

lot size under a capacity warehouse. In the management approach, this study can help 

production managers improve tactical-operational planning efficiency, enhance 

responsiveness, and encounter uncertainty challenges in the era of competition.  

This study also provides practical implications for forecasting material inventory. 

The result shows the importance of determining lot size, including holding, ordering, and 

material costs. It also confirms that companies should understand data patterns that 

impact material cost, warehouse capacity, and planning time-varying material. Moreover, 

the result of the study shows that in a multiple supplier environment, companies can apply 

planning order quantity with EOQ multi-item to calculate the total requirement for each 

material simultaneously. This technique can optimize lot size under warehouse capacity 

for multi-item and is used as the basis for material planning.   Furthermore, the model 

integration using simulation forecast and optimization of material inventory can also be 

applied to industries with difficulty calculating material inventory cost under demand 

fluctuation. In addition, the model development can be used to plan supply and demand 

in industries that encounter uncertain demand sales, which are interconnected with 

material procurement. Therefore, the findings suggest that integration demand 

forecasting and material inventory are vital for basis planning, contributing to minimizing 

inventory costs with better performance accuracy. 

4. Conclusion 

In conclusion, this research is developing an artificial neural network with the 10-

neuron trial for sales demand forecasting. The selected neuron used 9 neurons with a 

performance output is 0.0010. Based on the result, the artificial neural network obtains 

an accuracy forecast with MAPE is 2% and MAD is 2483. The output regression with 9 

neurons has a strong correlation of 0.95, which can improve the output data sales forecast. 

Furthermore, the result of the forecast we used to determine material inventory planning. 

The model includes various costs, such as holding, ordering, and material costs. We select 

optimal lot sizes in material inventory planning using model EOQ for planned order 

release (POR). The objective of model material inventory has successfully achieved an 

optimal solution with a reduction of 0.15% compared to the actual model (heuristically).  

However, the limitation of this study in artificial neural networks is that they only 

use one layer in the hidden layer. In contrast, inventory material is restricted, considering 

warehouse capacity. Therefore, suggestions for future studies can extend to model 

artificial neural networks using more hidden layers and varying trial and error algorithms 

to obtain the best solution performance. Meanwhile, the model can develop in material 

inventory by adding constraints such as shortage (probability) when the supplier is not 

fulfilling the material, truck capacity for delivering material, discount factor, limited 

budget cost, and reverse material. In summary, this study can provide valuable by offering 

contributions to theoretical and practical solutions in demand-material planning 

challenges in industries that deal with demand fluctuations while minimizing material 

inventory costs. 
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