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ABSTRACT. In this article, we introduced a new approach based on graphical method (GPM), maximum likelihood method (MLM), 

energy pattern factor method (EPFM), empirical method of Justus (EMJ), empirical method of Lysen (EML) and moment method 

(MOM) using the even or odd classes of wind speed series distribution histogram with 1 m/s as bin size to estimate the Weibull 

parameters. This new approach is compared on the basis of the resulting mean wind speed and its standard deviation using seven 

reliable statistical indicators (RPE, RMSE, MAPE, MABE, R2, RRMSE and IA). The results indicate that this new approach is adequate 

to estimate Weibull parameters and can outperform GPM, MLM, EPF, EMJ, EML and MOM which uses all wind speed time series data 

collected for one period. The study has also found a linear relationship between the Weibull parameters K and C estimated by MLM, 

EPFM, EMJ, EML and MOM using odd or even class wind speed time series and those obtained by applying these methods to all class 

(both even and odd bins) wind speed time series. Another interesting feature of this approach is the data size reduction which 

eventually leads to a reduced processing time.  
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1. Introduction 

In the last century, several climate changes have 

been observed in regions all over the world. The main 

cause of these climatic changes is the rise in fossil fuel 

use, which is due to the important demographic and 

industrial developments. These negative effects have 

forced scientists to draw attention to renewable energy 

sources such as solar, wind and hydraulic energy, which 

are the most suitable solution in the future (Dahmouni et 

al. 2011). Recently, interest in wind energy has been 

growing and many researchers have attempted to 

develop and to perform reliable wind energy conversion 

systems. 

Wind energy conversion systems design required 

considerable efforts in recognizing a suitable statistical 

model for wind speed frequency distribution. The widely 

used function to model wind speed data is the Weibull 

distribution function(Celik, 2004). Recently it has become 

a reference distribution function in commercially used 

wind energy software i-e the Wind Atlas Analysis and 

Application Program (Sahin, 2004). We characterized the 

Weibull distribution by two parameters, a scale and a 

shape parameter (C and K) (Salami et al., 2016). 

To estimate Weibull parameters several methods 

have been suggested in the literature, such as the 

graphical method (GPM), the maximum likelihood 

method (MLM), the moment method (MOM), the 

empirical method of Justus (EMJ), the empirical method 

of Lysen (EML), the method of the modified maximum 

likelihood (MMLM), the equivalent energy method 

(EQM)(Rocha et al., 2012) and the energy pattern factor 

method (EPFM) (Kasra et al., 2016). 

To estimate Weibull parameters for a site using the 

methods frequently used and cited above, the wind speed 

time series data collected in an interval of one (1) hour in 

a given period are used (Garcia et al., 1998). The recent 

works of (Yuan et al., 2015) aims to compare the 

performance of the MLM and the MOM. The results 

show that for an extreme small data size, the MLM 

slightly outperforms the MOM and generally, the MLM 

has an advantage over medium and large data sizes. In 

conclusion, for life data analysis, it is suggested to use 

MLM for the two-parameter Weibull distribution. Given 

that, wind speed distribution is used in estimating 

Weilbull parameters; we argue that it is possible to 

reduce the length of the input series through filtering. A 

reduced data size will lead to higher computational 

efficiency in estimating Weibull parameters and key 
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wind site characteristics such us mean wind speed and 

wind speed standard deviation. The main question to 

address is what filtering to perform in order to achieve 

this much-desired computational efficiency while 

maintaining acceptable estimation accuracy? To the best 

of our knowledge, no existing work proposed a filtering 

method that allies accuracy and efficiency for Weibull 

parameter estimation in wind energy applications. This 

paper proposes the following contributions. 

In order to reduce data size and therefore parameter 

estimation time, while maintaining a high accuracy of 

mean wind speed and standard deviation, a new 

approach is proposed. Indeed, the series of wind speed is 

grouped in classes (or bins), each class being represented 

by a bin in the distribution histogram. The set of classes 

is divided into two subsets: even and odd order speed 

classes. In this paper, we aim to adequately determine 

the overall Weibull parameters (K and C) using those 

estimated for the subsets of odd and even speed classes. 

For each subset, the Weibull parameters are estimated 

using six well known methods namely graphical method 

(GPM), empirical method of Justus (EMJ), empirical 

method of Lysen (EML), energy pattern factor method 

(EPFM), maximum likelihood method (MLM) and 

moment method (MOM). So in this article eighteen 

methods are used to estimate Weibull parameters for a 

given period at a geographic locality, these are: 

• GPM, EMJ, EML, EPFM, MLM, MOM using all 

bins wind speed time series; 

• GPM, EMJ, EML, EPFM, MLM, MOM using 

Odd Bins wind speed time series (GPOBM, 

EMJOB, EMLOB, EPFOBM, MLOBM, 

MOOBM); 

• GPM, EMJ, EML, EPFM, MLM, MOM using 

Even Bins wind speed time series (GPEBM, 

EMJEB, EMLEB, EPFEBM, MLEBM, 

MOEBM). 

Consequently, in this study the capability of eighteen 

parameter estimation methods is evaluated to calculate 

the K and C parameters for adjusting the Weibull 

distribution of wind speeds. The main goal is identifying 

the most appropriate method for computing the mean 

and standard deviation at two sites (Lomé in Togo and 

Ouagadougou in Burkina Faso). To achieve this, a 

comprehensive statistical analysis based upon several 

statistical parameters and approaches is conducted using 

the eighteen parameter estimation methods. 

The rest of this paper is structured as follows. Section 

2 describes numerical methods for determining the 

Weibull parameters. Section 3 presents in detail the 

proposed approaches to estimate Weibull parameters. In 

Section 4, statistical indicators for performance 

evaluation are illustrated. The results and discussions 

along with the underlying case study data are presented 

in Section 5. Finally, conclusions are drawn in Section 6. 

2. Numerical Methods for determining the Weibull 

parameters 

Wind speed is a random variable, and to determine 

the wind potential of a region it is necessary to use 

statistical analysis (Salami et al., 2013). This requires 

the existence of time series records of wind speed. 

Such records are the wind data. Based on the wind 

speed data collected, the Weibull distribution can be 

described as a probability density function f(V) and a 

cumulative distribution function F(V) are respectively 

determined by Eqs. (1) and (2) (Ahmed, 2013): 
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The mean and standard deviation of the wind speed 

series are given by Eq. (3). and Eq. (4).  
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where: C and K are respectively scale and shape 

parameters of the Weibull distribution function andG  

represents the gamma function defined by the Euler 

integral of the second kind. 

Wind power density is an important indicator for 

determining the potential of wind resources and to 

describe the amount of wind energy at various wind 

speeds at a particular location. Knowledge of wind power 

density is also useful to evaluate the performance of wind 

turbines and select the optimum wind turbines. Wind 

power density resembles the level of accessible energy at 

the site which can be converted to electricity by wind 

turbines. Indeed, the mean kinetic energy, available at a 

site per unit of time and per unit area is expressed by Eq. 

(5) (Seguro et al., 2000): 
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where:  

• r  is air density (kg m-3), 

• V is wind speed  

• f(V)  is the Weibull probability distribution 

function (pdf) (Eq. 1),  

• 3
V  is the cubic mean wind speed. 

There are some methods introduced in the literature 

(Dinler et al., 2009) to calculate the K and C parameters 

of the Weibull distribution function. In this study, six 

methods: graphical method (GPM), empirical method of 

Justus (EMJ), empirical method of Lysen (EML), energy 

pattern factor method (EPFM), maximum likelihood 

method (MLM) and moment method (MOM) frequently 

used to compute the K and C parameters are selected for 

comparative evaluation. The descriptions of these six 

methods are provided briefly in what follows. 

 

2.1. Graphical method (GPM) 

The graphical method is achieved through the 

cumulative distribution function. In this distribution 

method, wind speed data are interpolated by a straight 

line, using the concept of least squares. The equation for 
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this method can be represented by a double logarithmic 

transformation (Rocha et al., 2012) as follows, 

 

[ ]{ }ln -ln 1- F(V) = Kln(V) - Kln(C)  (6) 

 

2.2. Empirical method of Justus (EMJ) 

Based on the empirical method introduced by Justus, the 

K and C parameters are computed, respectively by Eq. 

(7) and Eq. (8)(Kasra et al., 2016): 
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where:  

• V

 

is the mean wind speed, 

• s  is the standard deviation of the observed 

data, 

• �(x) is the gamma function. 

2.3. Empirical method of Lysen (EML) 

In the empirical method suggested by Lysen, K is 

calculated by Eq. (7) same as the Justus method. In fact, 

the only difference is the equation of C. In the empirical 

method of Lysen, C is obtained by Eq. (9) (Kasra et al., 

2016): 
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2.4. Energy pattern factor method (EPFM) 

The energy pattern factor method is related to the 

averaged data of wind speed and is defined by the 

following equations (Kasra et al., 2016): 
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and parameter C is also computed similarly as in the 

empirical method of Justus by Equation (8). 

 

2.5. Maximum likelihood method (MLM) 

 

The maximum likelihood estimation method is difficult to 

solve, since numerical iterations are needed to determine 

the parameters of the Weibull distribution (Kidmo et al. 

2015). In this method, the parameters K and C are 

determined according to the equations below: 
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2.6. Moment method (MOM) 

The moment method can be used as an alternative to the 

maximum likelihood method and, in this case, the 

parameters K and C are respectively determined by Eq. 

(14) and Eq. (15) (Mostafaeipour et al. 2011). 
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3. Proposed approaches to Weibull parameter 

estimation 

The information contained in the wind measurements at 

a given site can be represented as a histogram. Given 

(
1 2 3 rV , V , V , ,V ), r  wind speeds measured at a site, this 

sequence can be grouped into m  (m r£ ) classes 

(
0 1 2 m 1Bin , Bin , Bin , ,Bin

-

); let 
j,f be the relative 

frequency of class 
jBin , the graph 

j j,(Bin f )´ represents 

the histogram of the distribution of relative frequencies 

of wind speed at this site.  

Thus, for all n  samples of wind measurements 

(
1 2 3 nV , V , V , ,V ) obtained during a period of time at a 

given site, the application of the 6 selected methods 

(GPM, MLM, EPFM, EMJ, EML and MOM) gives the 

shape K and scale C parameters of the Weibull.   

In order to reduce the number of data to be processed 

while maintaining accurate standard deviation and mean 

wind speed, all samples of n  wind measurements 

(
1 2 3 nV , V , V , ,V ) obtained during a period of time at a 

given site are grouped into classes and represented as a 

histogram (the graph
j j,(Bin f )´ ). The obtained wind 

speed classes can be divided into two groups: the group of 

even speed classes (
2k

Bin ) and the group of odd classes 

(
2k 1

Bin
+

). 

Samples of p  wind speed measurements 

(
1 2 3 pX , X , X , , X ) of the group of even classes group 

(
2k

Bin ), subsets of (
1 2 3 nV , V , V , ,V ), are used to estimate 

the shape parameter K and scale parameter C using 6 

selected methods. So this new approach is referred to as: 

• graphical with Even Bin time series method 

(GPEBM) when GPM is used; 
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• maximum likelihood with Even Bin time series 

method (MLEBM) when MLM is used; 

• energy pattern factor with Even Bin time series 

method (EPFEBM) when EPFM is used; 

• empirical method of Justus with Even Bin time 

series (EMJEB) when EMJ is used; 

• empirical method of Lysen with Even Bin time 

series (EMLEB) when EML is used; 

• moment with Even Bin time series method 

(MOEBM) when MOM is used. 

Likewise, samples of q  wind measurements 

(
1 2 3 qY , Y , Y , ,Y ) of the group of odd classes (

2k 1
Bin

+
), 

subsets of (
1 2 3 nV , V , V , ,V ), are used to estimate K and C 

(shape and scale parameters) using 6 selected methods. 

So this new approach is referred to as: 

• graphical with Odd Bin time series method 

(GPOBM) when GPM is used; 

• maximum likelihood with Odd Bin time series 

method (MLOBM) when MLM is used; 

• energy pattern factor with Odd Bin time series 

method (EPFOBM) when EPFM is used; 

• empirical method of Justus Odd Bin time series 

(EMJOB) when EMJ is used; 

• empirical method of Lysen Odd Bin time series 

(EMLOB) when EML is used; 

• moment with Odd Bin time series method 

(MOOBM) when MOM is used. 

Thus, this study aims to verify if, from each speed 

class group (even or odd) taken individually; it is possible 

to estimate the parameters (K and C) suitable for an 

accurate estimation of the mean wind speed and 

standard deviation at the Lomé and Ouagadougou sites. 

4. Statistical indicators used for performance 

evaluation 

To assess the performance of the eighteen parameter 

estimation methods of the Weibull distribution for 

estimating mean wind speed and standard deviation, 

different statistical approaches including seven reliable 

statistical indicators (Legates et al., 1999) have been 

used in this study. Several statistical parameters 

including relative percentage error (RPE), mean absolute 

percentage error (MAPE), mean absolute bias error 

(MABE), root mean square error (RMSE), relative root 

mean square error (RRMSE), correlation coefficient (R2) 

and index of agreement (IA) (Kasra et al., 2016) along 

with some other statistical tools have been utilized to 

offer an appropriate comparative assessment. In the 

following, a brief description of the considered statistical 

parameters is offered 

4.1. Relative percentage error (RPE) 

The RPE shows the percentage deviation between the 

calculated wind speed and standard deviation from the 

Weibull function xi and those obtained by measured 

values yi and its values ranging between -10% and +10% 

which are usually considered acceptable. RPE is defined 

as: 

æ ö
ç ÷ç ÷
è ø

y - xi iRPE(%)=100×
yi

 (16) 

where:  

• N is the number of observations,  

• iy  is the measured values,  

• 
i

x is the predicted values.  

4.2. Mean absolute percentage error (MAPE) 

The MAPE shows the mean absolute percentage 

difference between the computed mean wind speed and 

standard deviation using the Weibull function and those 

attained by measured values. The MAPE is calculated by 

Eq. (17): 

 

å
N y - x1 i iMAPE= ×100

N yi=1 i

 (17) 

4.3. Mean absolute bias error (MABE) 

The MABE represents the average quantity of total 

absolute bias errors between the calculated mean wind 

speed and standard deviation by Weibull function and 

those obtained by measured values. The MABE is defined 

by Eq. (18): 

 

å
N1

MABE= y - xi i
N i=1

 (18) 

 

4.4. Root mean square error (RMSE) 

The RMSE identifies model accuracy by comparing the 

deviation between the values achieved by the Weibull 

function and those of measured data. The RMSE has 

always a positive value and it is calculated using Eq. 

(19): 

 

( )å
N 21

RMSE= y - xi i
N i=1

 (19) 

4.5. Relative root means square error (RRMSE) 

The RRMSE is obtained by dividing the RMSE by the 

average of mean wind speed and standard deviation 

obtained by measured values as follows: 

 

( )å

å

N 21
y - xi iN i=1

RRMSE(%)= ×100
N1

yiN i=1

 (20) 

 

Different ranges of RRMSE can be defined to 

represent the precision of the model as (Legates et al., 

1999): 

• Excellent for RRMSE < 10%; 

• Good for 10% < RRMSE < 20%; 

• Fair for 20% < RRMSE < 30%; 

• Poor for RRMSE > 30%. 

4.6. Correlation coefficient (R2) 

The R2 which indicates the strength of the linear 

relationship between the calculated mean wind speed 
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and standard deviation by the Weibull function and those 

computed using measured values is calculated by Eq. 

(21): 

 

( )( )

( ) ( )

å

å å

N

i i i i
2 i=1

N N2 2

i i i i
i=1 i=1

x - x y - y

R =

x - x y - y

 (21) 

4.7 Index of agreement (IA)  

The IA generally shows the degree of precision of the 

predicted values compared to the measured values. The 

IA which varies from 0 to 1 is calculated by Eq. (22): 

 

( )

å

å

N
y - xi i

i=1IA=
N

x - x + y - yi i i i
i=1

 (22) 

5. Results and discussion 

5.1 Case study and wind speed data 

The data for the two sites, Lomé in Togo and 

Ouagadougou in Burkina Faso were chosen for this study 

because several wind energy projects have become a 

necessity in both countries.  

The demand for electricity in Togo continues to 

increase at an average rate of 8% per year and could 

double in the next 10 years. The country's electricity 

supply is heavily dependent on oil and its derivative 

products (including natural gas), which are subject to 

international price volatility (Kimatu et al., 2011) . Togo 

is ranked among the quiet areas although transient 

spikes wind speed can reach high values up to 4m/s in 

some areas especially in the northern part of the country 

during the harmattan period. Only the coastal area of the 

country has favorable evidence with wind speeds of 3 m/s 

on average. The development of wind power can be 

considered as a viable alternative. A project of two wind 

farms of 12 MW each located near Lomé is undergoing by 

a private company named Eco Delta Development (EDD) 

and its subsidiary Delta Wind Togo. 

In Burkina Faso, renewable energy concerns mainly 

the use of the wood fuel. Indeed, at household level in 

peri-urban and rural areas, biomass is the primary 

energy source for cooking. Due to accelerating 

urbanization in recent decades, services in peri-urban 

areas are collapsing under the strain of rapid 

development, resulting in uncontrolled sanitation 

problems and household energy insecurity. However, the 

further development of renewable energy technologies is 

only marginally supported by the government, despite its 

significant potential (Al-Mulali et al., 2012). Due to the 

western location of Burkina Faso, the potential for wind 

power is very limited. The average wind speed ranges 

between 1 and 3 m/s, with the maximum only obtained in 

the North. However, small-scale generators at suitable 

sites for selective purposes (e.g. water pumping, 

desalination systems etc.) might be feasible(Bugaje, 

2006). Hourly mean wind speed data used for Lomé and 

Ouagadougou were obtained from the meteorological 

database at  

http://weather.uwyo.edu/area/meteorogram/’.  

The coordinates of the two sites in our case study are 

given in Table 1. The data is recorded every day at one 

hour intervals (this is the mean over the 10 minutes 

before the hour) at a height of 10 m above the ground. 

 
Table 1 

Coordinates of the case study sites  

 

Sites Coordinates 

Lomé 6.17N, 1.25E, 25 meters 

Ouagadougou 12.35N, 1.52 °W, 306 meters 

 

Data collected cover the period, from January 2004 to 

December 2015 for the Lomé site (record length of 

approximately twelve (12) years) and from January 2009 

to December 2015 for the Ouagadougou site (record 

length of approximately seven (7) years). 

Using the methodology described earlier, we processed 

the 10-minute averaged hourly wind speed data collected 

at the Lomé and Ouagadougou sites. In order to assess 

the performance of our proposed approach, it is 

important to apply it over several periods. Given the 

importance of the analysis of monthly variations of wind 

characteristics at a given site, our case study covers each 

month (the entire dataset is grouped monthly into 12 

study periods: January, February, March, April, May, 

June, July, August, September, October, November, 

December), each month of each year and the aggregate 

for the whole year. As the data collected at the Lomé site 

covers a period from January 2004 to December 2015, the 

total number of periods of the study is 157 for the Lomé 

site. Total study periods considered for the Ouagadougou 

site is 97, since the data collected on this site covers a 

period from January 2009 to December 2015. For each 

given period and each of the two sites considered, we 

classified wind speeds in bins of size 1 m/s each according 

to Table 2. 

For each period and each site, the results are 

presented and analyzed. Table 3 and 4 present some 

descriptive statistics including maximum, mean, 

standard deviation, skewness and kurtosis of the used 

wind speed data at the two sites for even, odd and all 

classes of wind speed data subset.  

 
Table 2 

Wind speed classes adopted for the two sites. 

Wind speed (m/s) Bins Type 

]0, 1[ Bin0 Even bin 

[1, 2[ Bin1 Odd bin 

[2, 3[ Bin2 Even bin 

… … … 

… … … 

]21, 22[ Bin21 Odd bin 
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Table 3 

Descriptive statistics of the used wind speed data according to wind speed classes for the Lomé site 2004-2015. 

 

Wind speed 

classes (Bins) 

Rel. Freq. 

(%) 

Max. 

(m/s) 

Mean  

(m/s) 

Std. Dev.  

(m/s) Kurt. Skew. 

All  100 16 3.52870 2.02964 2.33358 0.26247 

Odd  51.46085 13 3.52034 2.03017 2.19198 0.32246 

Even  48.53915 16 3.53756 2.02906 2.48615 0.19880 

Table 4 

Descriptive statistics of the used wind speed data according to wind speed classes for the Ouagadougou site 2009-2015 

 

Wind speed 

classes (Bins) Rel. Freq. (%) 

Max. 

(m/s) 

Mean  

(m/s) 

Std. Dev.  

(m/s) Kurt. Skew. 

All  100 22 2.99562 1.66267 4.59290 0.78947 

Odd  49.59290 15 3.06272 1.63272 4.40914 0.79136 

Even  50.40710 22 2.92961 1.68904 4.76355 0.79843 

The mean wind speed and standard deviation are 

similar for all three data classes considered for each site. 

This is a preliminary indication that the Weibull 

parameters estimated from either even or odd class speed 

data subset might yield similar mean wind speed and 

standard deviation as the entire dataset (all class data). 

As noticed, Lomé has the highest mean wind speed of 

3.5287 m/s and Ouagadougou has the lowest wind speed 

of 2.99562 m/s. Moreover, for the Ouagadougou site, the 

coefficient of Kurtosis is significantly higher than the 

Lomé site. 
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Fig. 1. Histograms of wind speed data according to the wind 

speed classes at the Lomé site. 
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Fig. 2 Histograms of wind speed data according to the wind 

speed classes at the Ouagadougou site. 

 

 

 

Fig. 1 and Fig. 2 show the probability densities of the 

utilized wind speed data according to the wind speed 

classes for two selected sites, respectively. 

Also in order to show that the Weibull parameters 

can be estimated from even or odd class wind speed data 

for the periods considered at a site, we checked if there is 

a linear correlation between all class wind speed data 

characteristics (means and standard deviations of wind 

speed time series for chosen periods) calculated, and even 

or odd class wind speed data characteristics (means and 

standard deviations of wind speed time series for chosen 

periods) calculated. 

The results in Fig. 3 and Fig. 4, show that there is:  

• a strong linear correlation (R2 = 0.95735) between the 

means of wind speed time series calculated 

considering all class data and the means of wind 

speed time series calculated considering the even 

class data first, against a linear correlation (R2 = 

0.80231) considering odd class data when the data 

collected at the Lomé site are used; 

• a strong linear correlation (R2 = 0.98234) between the 

means of wind speed time series calculated 

considering all class data and the means of wind 

speed time series calculated considering the even 

class data first, against a linear correlation ( R2 = 

0.9705) considering odd class data when the data 

collected at the Ouagadougou site are used. 
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Fig. 3 Scatter plots of computed mean wind speed values 

using all bin time series versus those computed using even bin 

or odd bin wind speed time series for Lomé. 
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Fig. 4 Scatter plots of computed mean wind speed values 

using all bin time series versus those computed using even bin 

or odd bin wind speed time series for Ouagadougou. 

 

From the results of Fig. 5 and Fig. 6, we note that 

there is: 

• a strong linear correlation (R2 = 0.95469) between the 

standard deviations of wind speed time series 

calculated considering all class data and standard 

deviations of wind speed time series calculated 

considering the even class data first, against low 

linear correlation (R2 = 0.23878) considering odd  

class data when the data collected at the Lomé site 

are used; 

• a strong linear correlation (R2 = 0.96961) between the 

standard deviations of wind speed time series 

calculated considering all class data and standard 

deviations of wind speed time series calculated 

considering the even class data first, against a linear 

correlation (R2 = 0.93225) considering odd class data 

when the data collected at the Ouagadougou site are 

used. 
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Fig. 5 Scatter plots of computed wind speed standard 

deviation values using all bin time series versus those computed 

using even bin or odd bin wind speed time series for Lomé. 

 

From the results of Figs. 3, 4, 5 and 6, we can hope 

that we can estimate the Weibull parameters at two (02) 

study Sites by using only odd or even bin wind speed 

time series. This is true when we use the moment 

method which consists in solving equations of the mean 

(Eq. 14) and standard deviation (Eq. 5). 
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Fig. 6 Scatter plots of computed wind speed standard 

deviation values using all bin time series versus those computed 

using even bin or odd bin wind speed time series for 

Ouagadougou. 

 

5.2 Fitting histogram to Weibull functions 

Our goal in this article is to identify the most appropriate 

method for fitting wind speed probability distribution 

histograms for wind energy applications at two sites: 

Lomé (Togo) and Ouagadougou (Burkina Faso). From 

Fig. 7 and Fig. 8 it is possible to verify how the curves 

representing the Weibull probability density function, for 

each of the eighteen numerical methods considered in the 

analysis, match the histograms, giving an idea of which 

method yields the best fit to the data of wind speed 

collected. 
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Fig. 7 Weibull distribution functions for the Lomé site (years 

2004-2015). 

 

Graphically, it is observed that, all methods present a 

better curve fit with the histogram of wind speed at the 

two sites, excepted GPM, GPOBM and GPEBM. 

To choose an adequate method that better adjusts the 

wind speed histogram at each site, we calculated the 

RMSE and R2. The results in Tables 5 and 6 show that: 

• at the Lomé site, only five methods (MLOBM, 

EMLEB, EMJEB, EML and EMJ) have RMSE lower 

and equal to 0.0200 and R2 which is above 0.9665; the 

adequate method is MLOBM; 

• on Ouagadougou site, only five methods (MLM, 

EMJOB, EMLOB, MLOBM, and EPFOBM) have 
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RMSE lower and equal to 0.01477 and R2 which is 

above 0.9840; and the adequate method is MLM. 

The results show that:  

• there is a strong linear correlation between the shapes 

parameters (K) estimated using all bin speed time 

series and the estimate using even bin or odd bin wind 

speed time series; unless the GPM method is used;  

• there is a strong linear correlation between the scale 

parameters (C) estimated using all bin speed time 

series and the estimate using even bin or odd bin wind 

speed time series. 

Thus we can conclude that the Weibull parameters can 

be estimated at the two sites using anyone of five 

methods (EMJ, EML, EPFM, MLM, MOM) with even or 

odd bin wind speed time series and then we used a linear 

function to estimate the Weibull parameters when the 

entire series of wind speed data is used 
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Fig. 8 Weibull distribution functions for the Ouagadougou 

site (years 2009-2015). 

 

 
Table 5 

Statistical analysis of Weibull parameters estimated for the Lomé site (years 2004-2016). 

Methods K C RMSE R2 

GPM 1.89612 3.24713 0.04074 0.90607 

GPOBM 1.56804 2.58127 0.05951 0.80298 

GPEBM 1.99766 3.11241 0.04805 0.88165 

MLM 2.03100 4.17884 0.02134 0.96206 

MLOBM 1.79134 3.96250 0.01967 0.96612 

MLEBM 2.38769 4.41967 0.03054 0.92621 

EPFM 1.88456 3.97553 0.02075 0.96515 

EPFOBM 1.86990 3.96502 0.02067 0.96518 

EPFEBM 1.90034 3.98662 0.02085 0.96503 

EMJ 1.82327 3.97037 0.01989 0.96619 

EMJOB 1.81807 3.96046 0.02000 0.96590 

EMJEB 1.82882 3.98088 0.01979 0.96647 

EML 1.82327 3.97318 0.01985 0.96628 

EMLOB 1.81807 3.96328 0.01995 0.96600 

EMLEB 1.82882 3.98368 0.01974 0.96656 

MOM 1.88656 3.97561 0.02078 0.96510 

MOOBM 1.87190 3.96509 0.02071 0.96514 

MOEBM 1.90234 3.98669 0.02089 0.96497 

 

 

Table 6 

Statistical analysis of Weibull parameters estimated for the Ouagadougou site (years 2009-2015). 

 

Methods K C RMSE R2 

GPM 1.56205 2.91854 0.03393 0.91999 

GPOBM 1.37146 2.33153 0.05464 0.81172 

GPEBM 1.43075 2.42168 0.05131 0.83444 

MLM 2.10118 3.53456 0.01409 0.98608 

MLOBM 1.97528 3.46123 0.01433 0.98538 

MLEBM 2.24057 3.61116 0.01681 0.98075 

EPFM 1.87026 3.37404 0.01670 0.98008 

EPFOBM 1.94847 3.45396 0.01477 0.98442 

EPFEBM 1.79813 3.29417 0.01949 0.97289 

EMJ 1.89527 3.37560 0.01605 0.98168 

EMJOB 1.98012 3.45524 0.01423 0.98562 

EMJEB 1.81861 3.29592 0.01885 0.97471 

EML 1.89527 3.37781 0.01604 0.98170 

EMLOB 1.98012 3.45727 0.01424 0.98560 

EMLEB 1.81861 3.29826 0.01883 0.97478 

MOM 1.87126 3.37404 0.01668 0.98015 

MOOBM 1.95747 3.45431 0.01461 0.98479 

MOEBM 1.80013 3.29426 0.01943 0.97307 
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5.3 Comparison between the mean wind speed predicted 

by the methods and the observed data 

The statistical indicators introduced in Section 4 are 

utilized to evaluate the performances of the eighteen 

parameter estimation methods. Tables 7 and 8 provide 

the results of the performance evaluation of the eighteen 

methods in terms of MAPE, MABE, RMSE, RRMSE 

RPE, R2 and IA, respectively for the Lomé and 

Ouagadougou sites. It is significant to note that each 

statistical parameter offers different useful way of 

comparing the methods. Thus, the combination of all of 

these statistical indicators provides a possibility to 

compare the differences between the calculated mean 

wind speed from measured data and those from the 

Weibull distribution function within different 

perspectives with much higher reliability.  

The results show that the accuracy of computed mean 

wind speed values changes when the parameter 

estimation method changes. It is clear that for the Lomé 

site when eight methods EPF, EMJ, EML, MOM, 

EPFEBM, EMJEB, EMLEB and MOEBM, and for the 

Ouagadougou site when fifteen methods of EPF, EMJ, 

EML, MOM, EPFEBM, EMJEB, EMLEB, MOEBM, 

MOOBM, EPFOBM, EMLOB, EMJOB, MLOBM, MLM 

and MLEBM are used to compute the Weibull 

parameters, the calculated mean wind speed values by 

the Weibull distribution function are in good agreement 

with the mean wind speed values computed from 

measured data. This conclusion is drawn because of the 

low values of MAPE, MABE, RMSE, RRMSE, RPE (RPE 

whose histograms are shown in Figs 9 and 10) and the 

high values of R2 and IA. On the other hand, it is found 

that the lowest agreements are attained when the 

GPOBM, GPEBM and GPM methods are applied for K 

and C parameter calculations 

 
Table 7 

Performance evaluation of mean wind speed calculated by all 18 methods using different statistical indicators for the Lomé site. 

 

Methods 

MAPE 

(%) MABE RMSE 

RRMSE 

(%) R2 IA 

GPM 16.555 0.605 0.623 17.017 0.978 0.574 

GPOBM 25.454 0.945 1.021 27.889 0.788 0.509 

GPEBM 24.655 0.893 0.910 24.855 0.968 0.519 

MLM 8.726 0.271 0.463 12.659 0.812 0.734 

MLOBM 7.077 0.219 0.429 11.733 0.803 0.786 

MLEBM 11.830 0.377 0.534 14.588 0.806 0.637 

EPFM 0.0000 0.000 0.000 0.000 1.000 1.000 

EPFOBM 7.101 0.220 0.431 11.791 0.802 0.787 

EPFEBM 5.197 0.165 0.289 7.897 0.957 0.875 

EMJ 0.000 0.000 0.000 0.000 1.000 1.000 

EMJOB 7.101 0.220 0.431 11.791 0.802 0.787 

EMJEB 5.197 0.165 0.289 7.897 0.957 0.875 

EML 0.053 0.001 0.001 0.053 1.000 0.998 

EMLOB 7.108 0.220 0.432 11.802 0.802 0.787 

EMLEB 5.211 0.165 0.290 7.930 0.956 0.875 

MOM 0.002 0.000 0.000 0.003 1.000 0.999 

MOOBM 7.101 0.220 0.431 11.791 0.802 0.787 

MOEBM 5.200 0.165 0.289 7.903 0.957 0.875 

 
 

Table 8 

Performance evaluation of mean wind speed calculated by all 18 methods using different statistical indicators for the Ouagadougou site 

 

Methods 

MAPE 

(%) MABE RMSE 

RRMSE 

(%) R2 IA 

GPM 16.555 0.605 0.623 17.017 0.978 0.574 

GPOBM 25.454 0.945 1.021 27.889 0.788 0.509 

GPEBM 24.655 0.893 0.910 24.855 0.968 0.519 

MLM 8.726 0.271 0.463 12.659 0.812 0.734 

MLOBM 7.077 0.219 0.429 11.733 0.803 0.786 

MLEBM 11.834 0.377 0.534 14.588 0.806 0.637 

EPFM 0.000 0.000 0.000 0.000 1.000 1.000 

EPFOBM 7.101 0.220 0.431 11.791 0.802 0.787 

EPFEBM 5.197 0.165 0.289 7.897 0.957 0.875 

EMJ 0.000 0.000 0.000 0.000 1.000 1.000 

EMJOB 7.101 0.220 0.431 11.791 0.802 0.787 

EMJEB 5.197 0.165 0.289 7.897 0.957 0.875 

EML 0.053 0.001 0.001 0.053 1.000 0.998 

EMLOB 7.108 0.220 0.432 11.802 0.802 0.787 

EMLEB 5.211 0.165 0.290 7.930 0.956 0.875 

MOM 0.002 0.000 0.000 0.003 1.000 0.999 

MOOBM 7.101 0.220 0.431 11.791 0.802 0.787 

MOEBM 5.200 0.165 0.289 7.903 0.957 0.875 
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5.4. Comparison between wind speed standard deviation 

predicted by the methods and measured data 

The same statistical analyses to compare the mean wind 

speed predicted by the methods to that calculated from 

collected data are made here. 
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Fig. 9 Histograms of RPE (%) of mean wind speed predicted 

with 18 methods for Lomé. 

 

 

Tables 9 and 10 provide the results of the 

performance evaluation for the eighteen methods in 

terms of MAPE, MABE, RMSE, RRMSE, R2 and IA, 

respectively for the Lomé and Ouagadougou sites. The 

results show that the accuracy of computed wind speed 

standard deviation values changes when the parameter 

estimation method changes. It is clear that for the Lomé 

site when four methods namely EML, EMJ, EMLEB and 

EMJEB, and for the Ouagadougou site when six methods 

namely EML, EMJ, MOM, EPF, EMJEB, EMLEB and 

MOEBM are used to compute the Weibull parameters, 

the calculated wind speed standard deviation by the 

Weibull distribution function are in good agreement with 

the wind speed standard deviation values computed from 

measured data. This conclusion is drawn because of the 

low values of MAPE, MABE, RMSE, RRMSE, RPE (RPE 

whose histograms are shown in Figs 11 and 12). On the 

other hand, it is found that the lowest agreements are 

obtained when the GPOBM, GPEBM and GPM methods 

are applied for K and C parameter calculation. 
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Fig. 10 Histograms of RPE (%) of mean wind speed predicted 

with 18 methods for Ouagadougou. 

 

 

Table 9 

 Performance evaluation of the standard deviation of wind speed calculated by all 18 methods using different statistical indicators for 

the Lomé site 

 

Methods MAPE(%) MABE RMSE RRMSE(%) R2 IA 

GPM 19.407 0.397 0.490 24.424 0.238 0.500 

GPOBM 19.059 0.387 0.514 25.637 0.234 0.516 

GPEBM 26.328 0.535 0.628 31.309 0.186 0.498 

MLM 8.175 0.176 0.272 13.601 0.309 0.534 

MLOBM 6.601 0.143 0.237 11.839 0.234 0.500 

MLEBM 13.863 0.287 0.358 17.889 0.327 0.495 

EPFM 4.260 0.089 0.111 5.552 0.944 0.666 

EPFOBM 6.632 0.145 0.242 12.099 0.284 0.515 

EPFEBM 6.256 0.129 0.172 8.605 0.760 0.576 

EMJ 0.994 0.020 0.021 1.059 0.999 0.932 

EMJOB 6.177 0.134 0.234 11.707 0.257 0.518 

EMJEB 3.606 0.071 0.084 4.204 0.957 0.810 

EML 0.942 0.019 0.020 1.002 0.999 0.935 

EMLOB 6.189 0.134 0.234 11.701 0.256 0.517 

EMLEB 3.564 0.070 0.083 4.173 0.957 0.812 

MOM 4.154 0.087 0.112 5.591 0.956 0.683 

MOOBM 6.661 0.145 0.244 12.169 0.306 0.531 

MOEBM 6.225 0.128 0.173 8.666 0.771 0.588 
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Table 10 

Performance evaluation of the standard deviation of wind speed calculated by all 18 methods using different statistical indicators for 

the Ouagadougou site. 

 

Methods MAPE (%) MABE RMSE RRMSE (%) R2 IA 

GPM 12.385 0.203 0.281 17.765 0.326 0.513 

GPOBM 15.291 0.247 0.319 20.144 0.469 0.539 

GPEBM 18.570 0.299 0.370 23.350 0.421 0.530 

MLM 5.679 0.093 0.110 6.987 0.959 0.673 

MLOBM 3.481 0.058 0.077 4.916 0.935 0.770 

MLEBM 10.464 0.167 0.189 11.986 0.881 0.590 

EPFM 1.929 0.030 0.036 2.334 0.985 0.887 

EPFOBM 4.743 0.075 0.099 6.281 0.855 0.684 

EPFEBM 3.111 0.048 0.063 3.983 0.951 0.848 

EMJ 1.010 0.016 0.017 1.090 0.999 0.945 

EMJOB 3.670 0.061 0.079 5.004 0.933 0.763 

EMJEB 3.028 0.048 0.060 3.832 0.969 0.864 

EML 0.955 0.015 0.016 1.029 0.999 0.948 

EMLOB 3.658 0.061 0.078 4.980 0.933 0.764 

EMLEB 3.027 0.048 0.060 3.832 0.969 0.864 

MOM 0.769 0.013 0.025 1.577 0.995 0.952 

MOOBM 3.588 0.059 0.078 4.967 0.927 0.765 

MOEBM 2.928 0.046 0.060 3.825 0.960 0.860 
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Fig. 11 Histograms of RPE (%) for wind speed standard deviations predicted with 18 methods for Lomé.
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Fig. 12 Histograms of RPE (%) for wind speed standard 

deviations predicted with 18 methods for Ouagadougou. 

 

 

 

6. Conclusion 

The following conclusions can be drawn from the 

preceding analysis: 

• the approaches based on odd or even class wind speed 

time series with 1 m/s as bin size using Maximum 

Likelihood Method (MLM), the Energy Pattern Factor 

Method (EPFM), the Empirical Method of Justus 

(EMJ), the Empirical Method of Lysen (EML) and the 

Moment method (MOM) are efficient methods for 

determining the K and C parameters to fit Weibull 

distribution curves to wind speed data collected in 

Lomé, Togo and Ouagadougou, Burkina Faso 

analyzed using statistical tests; 

• the maximum likelihood with the odd bin time series 

method (MLOBM) is an adequate method that gave 

lower RMSE value of Weibull parameters K = 1.79134 

and C = 3.96250 m/s at the Lomé site using the whole 

data collected; 
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• the MLM is an adequate method that yields lower 

RMSE value of the Weibull parameters K = 2.10118 

and C = 3.53456 m/s at the Ouagadougou site using 

the whole data collected; 

• the accuracy of computed mean and standard 

deviation of wind speed values changes when the 

parameter estimation method changes at the Lomé 

and Ouagadougou sites; 

• in the evaluation of the mean and standard deviation, 

the GPM, the Graphical with Even Bin time series 

Method (GPEBM) and the Graphical with Odd Bin 

time series Method (GPOBM) are the least effective 

methods for fitting Weibull distribution curves to the 

wind speed using the data analyzed for the Lomé and 

Ouagadougou sites; 

• there is a linear relationship between the Weibull 

parameters K and C estimated by MLM, EPFM, EMJ, 

EML and MOM using odd or even class wind speed 

time series and all class wind speed time series; this 

result empowers one to compress wind data by 

removing either even or odd bins (depending on the 

site) prior to any available energy assessment while 

still expecting the same outcome as when the entire 

data is used. 
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