

Write to Learn: Investigating the Effectiveness of the 5E Model in Teaching Writing

Septa Aryanika^{1*}, Aulia Salsa Fadhila¹, Yulan Puspitarini¹

¹ Universitas Islam Negeri (UIN) Raden Intan Lampung, Indonesia

Corresponding Author septaaryanika@radenintan.ac.id*

ABSTRACT

This study examines the effect of the 5E instructional model (Engage, Explore, Explain, Elaborate, and Evaluate) on the writing skills in recount texts of junior high school learners. The research focuses on improving students' ability to write recount texts in English classes, where traditional teaching methods are still commonly used. The 5E model encourages active and cooperative learning, helping students stay engaged, explore ideas, understand concepts, enhance their skills, and assess their progress. This research uses a quantitative method with an experimental design. Two classes were randomly chosen—one as the experimental group using the 5E model, and the other as the control group using traditional lectures. Students took both pre-tests and post-tests to measure their writing abilities. The data were analyzed using descriptive statistics and an independent t-test with SPSS. The findings show that students in the experimental group performed significantly better than those in the control group. The N-Gain scores also support this, with the experimental group scoring an average of 0.73 compared to 0.28 in the control group. These results suggest that the 5E instructional model effectively improves students' writing performance, especially in junior high school.

Keywords: 5E Instructional Model, English Language Learning, Recount Text, Writing Ability

Journal Homepage

<https://ojs.staialfurqan.ac.id/IJoASER/>

This is an open access article under the CC BY SA license

<https://creativecommons.org/licenses/by-sa/4.0/>

INTRODUCTION

The increasingly advanced era has significantly impacted various sectors, including the education sector. The education sector focuses at all levels on producing students who are able to compete globally. A key strategy to achieve this goal is ensuring students master English language skills. Integrating English into the curriculum at all levels of education is crucial for this mastery. Among the crucial English language skills to develop, writing is crucial, as it directly impacts overall English proficiency (Suluh, 2018). English writing skills are vital in language learning, as they not only assess students' linguistic abilities but also enhance their critical thinking and creativity in constructing texts (Suluh, 2018).

The importance of writing skills becomes even more evident in the context of English as a Foreign Language (EFL). In many regions, English is not commonly spoken, making mastery of writing skills a significant challenge. Writing fluently in English allows students to articulate their thoughts, feelings, and ideas in a coherent and organized manner. Furthermore, writing serves as an important tool

for deepening students' understanding of English language and culture, as well as serving as a means of communication in various academic and social contexts (Rini & Amaliyah, 2021).

One specific writing skill that can be taught at the secondary school level is composing recount texts. Writing recount texts offers distinct advantages due to their specific structure and communicative purpose. The purpose of recount texts is to recount past events or experiences chronologically, teaching students to organize their stories in a clear chronological order while also familiarizing them with the correct use of tenses. Teaching recount texts at the junior high school level not only improves students' writing skills but also introduces them to various aspects of writing that apply to other text types. Therefore, mastering recount text writing is crucial for equipping students with better English language skills (Glencoe, 2007).

However, developing students' English writing skills, particularly recount texts, presents its own set of challenges. The main problem students face is difficulty generating relevant and engaging ideas for their writing. Many students struggle to identify appropriate topics or experiences to explore, resulting in limited and underdeveloped writing. Furthermore, students often face challenges in organizing their texts chronologically, resulting in unclear and confusing narratives. Grammatical issues, such as tense errors and inappropriate sentence structure, further complicate recount writing (Glencoe, 2007).

Initial observations indicate that students at SMPN 17 Bandar Lampung experience difficulties in learning recount texts. Specific challenges include a lack of understanding of teachers' explanations regarding recount texts, difficulty generating ideas for writing, confusion about how to correctly structure a recount text, misunderstandings regarding tense usage, and inadequate English vocabulary mastery. These problems collectively hinder the development of students' recount writing skills.

To enhance students' writing skills, particularly in composing recount texts, an effective instructional method is essential. However, many educators still rely on traditional teaching methods, which often prove inadequate in addressing these challenges. Conventional approaches to writing instruction typically emphasize theoretical knowledge and fail to provide students with opportunities for hands-on practice. For instance, methods that focus solely on memorizing grammar rules or constructing sentences without encouraging creative and practical writing can hinder the development of students' writing abilities. This limitation makes it challenging for

students to apply the theories they have learned in their writing (Farhana, 2019).

Previous research has highlighted the reality of these difficulties. For example, a study by Andayani revealed that numerous junior high school students struggle with planning and organizing their recount texts, leading to poorly structured writing (Emisari, 2020). Additionally, Septia's research indicated that incorrect grammar usage, particularly in applying the past tense, often poses a significant barrier to writing recount texts (Septia, 2020). These findings suggest that a more interactive and practice-oriented teaching approach is necessary to help students overcome these obstacles. Thus, it is evident that enhancing recount text writing skills requires effective learning methods and models.

One promising instructional model for improving English writing skills is the 5E model (Engage, Explore, Explain, Elaborate, and Evaluate). This constructivist-based

approach can enhance students' understanding and writing abilities, particularly in recount texts. The 5E model positions students as active participants in the learning process, encouraging them to engage in knowledge exploration and skill development. It emphasizes interaction, collaboration, and idea exploration, which fosters critical and creative thinking skills. In writing, this model aids students in grasping the structure and essential elements of texts, thereby improving the quality of their writing through a systematic and comprehensive learning process (Cruse, 1986).

Each phase of the 5E instructional model plays a crucial role in supporting students in writing recount texts. During the Engage phase, students are motivated to take an interest in the topic through activities such as sharing personal experiences or examining examples of recount texts. The Explore phase allows students to delve deeper into their ideas through discussions or activities that enhance their understanding of recount text structure, including event sequencing and appropriate tense usage. In the Explain phase, the teacher clarifies key concepts, such as the grammar relevant to recount texts and how to construct coherent sentences. The Elaborate phase provides students with the chance to develop and refine their writing by adding details and enriching their narratives. Finally, the Evaluate phase encourages students to reflect on their writing and receive feedback, enabling them to assess and enhance the quality of their work further (Karakul, 2015).

Research supports the effectiveness of the 5E model in improving student outcomes in English language instruction. For instance, a study by Susanti found that students who utilized the 5E instructional model demonstrated significant improvements in their skills compared to those who followed traditional methods (Susanti, 2019). Furthermore, Andayani's research indicated that the 5E model aids students in structuring their writing more effectively, enhancing their language use, and boosting their creativity in idea development (Melalolin et al., 2020). These findings suggest that the 5E learning model is quite effective in addressing students' challenges in English instruction.

Although several studies affirm the general effectiveness of the 5E model in English language instruction in improving language use, creativity, and organization. These studies do not isolate writing recount texts as a specific focus among junior and senior high school students. There is a clear research gap concerning its application to the teaching of recount text writing among secondary school students. This highlights the need for focused research to explore how the 5E model can specifically enhance students' competence in writing recount texts.

This study aims to determine whether the 5E model positively impacts the organization of ideas, the use of correct grammar, and students' overall writing skills. The results will provide a clearer picture of the effectiveness of the 5E approach in improving students' writing quality, particularly in recount texts, which require a chronological sequence of events. The researcher is interested in further examining whether the use of the 5E learning model affects the writing skills of eighth-grade students at SMPN 17 Bandar Lampung in writing recount texts.

METHOD

Population and Sampling

The population of this study comprised all eighth-grade students at [School Name], totaling 133 students from two classes. The sample was selected using cluster random sampling, which provides each naturally occurring group (in this case, each

class) an equal opportunity to be chosen (Sugiyono, 2017). One class was randomly assigned as the experimental group, and the other as the control group.

Validity and Reliability

The content and construct validity of the instrument were established through expert judgment involving English language education lecturers. A pilot test was also conducted with students from a different class to ensure item clarity and suitability. To test the reliability, Cronbach's Alpha was used, with a result of $\alpha > 0.70$ indicating acceptable internal consistency (Paltridge, B., & Phakiti, A. (2021).

Instrument

The research instrument consisted of a writing test developed to assess students' recount text writing ability. The instrument was structured based on the Indonesian junior high school English curriculum and assessed using a scoring rubric covering five key aspects: text structure, language use, coherence, creativity, and grammar (Jamaludin, 2019). This rubric aimed to ensure consistency, objectivity, and fairness in evaluating the students' writing performances.

Procedures and Time Frame

This study followed a quasi-experimental design with a pre-test and post-test non-equivalent group design (Creswell, 2018). Both groups were administered a pre-test to determine their initial abilities. The experimental group was then taught using the 5E learning model (Engage, Explore, Explain, Elaborate, Evaluate), while the control group received instruction through traditional methods. After a four-week intervention period, both groups completed a post-test to measure learning outcomes.

Data Analysis

Data were analyzed using descriptive and inferential statistical methods. Initially, the data were subjected to normality and homogeneity tests to assess whether parametric tests were appropriate. As the data did not meet normality assumptions, the Mann-Whitney U test, a non-parametric alternative to the t-test, was used to compare the mean scores of both groups (Cohen et. al, 2018). The test aimed to determine whether the 5E model had a significant impact on students' writing performance.

RESULTS AND DISCUSSION

1. Data Description of Pre-Test and Post-Test Research Results for Experimental Classes

Based on the current research conducted in the experimental class (A) through the application of the 5E learning model, the results of the pre-test and post-test are as follows:

Table 1.1. Experimental Class Pre-Test and Post-Test Results

No	Name	Pre-test	Post-test	N-Gain Score	N-Gain
1	AKH	57	99	0.97	High
2	AN	55	86	0.69	Medium
3	AR	50	93	0.65	Medium
4	CC	54	94	0.77	High
5	MIR	42	83	0.71	High
6	FEY	58	99	0.95	High
7	HNP	46	91	0.83	High
8	KRC	44	96	0.89	High
9	AF	45	90	0.71	High

10	MKZ	41	87	0.41	Medium
11	MKA A	67	86	0.58	Medium
12	MAP	46	94	0.89	High
13	MP	47	98	0.96	High
14	MRA	54	92	0.69	Medium
15	MI	56	96	0.91	High
16	MAM N	60	97	0.85	High
17	RM	60	89	0.72	High
18	UF	48	90	0.69	Medium
19	RAF	45	81	0.46	Medium
20	RR	55	87	0.52	Medium
21	RPA	55	93	0.72	High
22	RPA	40	90	0.67	Medium
23	AZ	53	80	0.57	Medium
24	AAZ	51	99	0.97	High
25	ACP	55	90	0.60	Medium
26	A	48	95	0.77	High
27	AFM	63	93	0.81	High
28	C	54	96	0.89	High
29	JA	43	97	0.89	High
30	KDH	58	87	0.59	Medium
31	JAY	64	89	0.69	Medium
32	CAA	64	80	0.44	Medium
Rata-rata		52,44	91,16	0.73	High

(Source: Organised research data 2025)

Moreover, the descriptive analysis of the pre-test and post-test data in the experimental class, processed using SPSS, yields the following results:

Table 1. 2. Descriptive Analysis of Experimental Class Statistics

	Pre-Test Eksperimen	Post-Test Eksperimen
N	Valid	32
	Missing	0
Mean	52.44	91.16
Median	53.50	91.50
Std. Deviation	7.255	7.189
Variance	52.641	51.676
Minimum	40	65
Maximum	67	99

(Source: Organised research data 2025)

Referring to the data shown in Tables 1.1 and 1.2, the pre-test and post-test results for the experimental class are outlined as follows:

a. Experimental Class Pre-Test

Based on the number of students in the experimental class (N = 32), the pre-test results show a minimum score of 40 and a maximum score of 67. The standard deviation is 7.255, and the mean score of the 32 students is 52.44.

b. Experimental Class Post-Test

Based on the same number of students (N=32), the post-test results indicate a minimum score of 65 and a maximum score of 99. The standard deviation is 7.189, and the mean score is 91.16.

Based on the data analysis presented in Tables 1.1 and 1.2 above, it is evident that 32 students in the experimental class (Class A) participated in both the pre-test and post-test. The results of these tests yielded an average N-Gain score of 0.73, which falls into the 'high' category. This indicates a significant improvement in student learning outcomes through the use of the 5E learning model.

2. Description Data of Pre-Test and Post-Test Results in the Control Class

Based on the findings from the control class (Class B), in which the 5E learning model is applied, the results of the pre-test and post-test are as follows:

Table 1. 3. Control Class Pre-Test and Post-Test Results

No	Name	Pre-test	Post-test	N-Gain Score	N-Gain
1	ARU	45	58	0.24	Low
2	AM	52	66	0.29	Low
3	AW	60	75	0.38	Medium
4	ARR	78	89	0.50	Medium
5	AS	40	56	0.27	Low
6	NR	70	80	0.33	Medium
7	CPF	55	64	0.20	Low
8	FR	66	77	0.32	Medium
9	FA	58	70	0.29	Low
10	F	48	60	0.23	Low
11	KRA	62	73	0.29	Low
12	LH	75	85	0.40	Medium
13	ANF	50	65	0.30	Medium
14	MFS	53	61	0.17	Low
15	VA	47	55	0.15	Low
16	MN	59	68	0.22	Low
17	MRS	69	78	0.29	Low
18	MAS	65	76	0.31	Medium
19	MHAF	46	59	0.24	Low
20	MRA	60	73	0.33	Medium
21	CH	50	64	0.28	Low
22	NR	68	79	0.34	Medium
23	KTA	49	63	0.27	Low
24	MB	72	80	0.29	Low
25	MRAF	55	67	0.27	Low
26	MGM	51	60	0.18	Low
27	CS	64	75	0.31	Medium
28	MA	43	57	0.25	Low
29	MB	56	65	0.20	Low
30	MRAB	67	76	0.27	Low
31	MAP	59	71	0.29	Low
32	CA	45	60	0.29	Low

33	NAJ	61	73	0.31	Medium
34	NTW	57	69	0.28	Low
Rata-rata		58.32	69.00	0.28	Low

(Source: Organised research data 2025)

Furthermore, based on the descriptive analysis of the data from the pre-test and post-test results in the control class using SPSS, the following findings are obtained:

Table 1. 4. Descriptive Analysis of Control Class Statistics

	Pre-Test Eksperimen	Post-Test Eksperimen
N	Valid	32
	Missing	0
Mean	52.44	91.16
Median	53.50	91.50
Std. Deviation	7.255	7.189
Variance	52.641	51.676
Minimum	40	65
Maximum	67	99

(Source: Organised research data 2025)

Referring to the data in Tables 1.3 and 1.4 above, the results of the pre-test and post-test in the control class are summarised as follows:

a. Control Class Pre-Test

Referring to the number of students in the control class (N=34), the pre-test results show a minimum score of 44 and a maximum score of 78. The standard deviation is 10.022, and the mean score of the 34 students is 58.32.

b. Control Class Post-Test

With the same number of students in the control class (N = 34), the post-test results indicate a minimum score of 55 and a maximum score of 89. The standard deviation is 9.014, and the average score of the 34 students is 69.00.

Based on the results of the data analysis presented in Tables 4.3 and 4.4 above, it is evident that 34 students in the control class (Class B) take both the pre-test and post-test. Based on the students' scores in the pre-test and post-test, the N-Gain value reaches an average of 0.28, which falls into the 'Low' category. This indicates that there is no significant improvement in student learning outcomes, as the 5E learning model is not implemented.

Data Analysis Normality Test

Based on the results of the normality test using the Kolmogorov-Smirnov test with the assistance of SPSS, the following output is obtained:

Table 1. 5. Normality Test Result

	Kolmogorov-Smirnov ^a			Shapiro-Wilk		
	Statistic	Df	Sig.	Statistic	df	Sig.
Pretest Kontrol	.082	32	.200*	.976	32	.667
Posttest Kontrol	.105	32	.200*	.961	32	.292
New Posttest Eksperimen	.101	34	.200*	.970	34	.513
Pretest Eksperimen	.105	34	.200*	.973	34	.575

(Source: Organised research data 2025)

Based on the results of the normality test presented in Table 1.5, it is evident that all data from the experimental and control classes in both the pre-test and post-test

are normally distributed, as indicated by Kolmogorov-Smirnov values exceeding the alpha level of 0.05. Therefore, the research data are considered to exhibit a normal distribution. As a result, the data fulfill the assumption of normality and may proceed to the subsequent prerequisite test, namely the homogeneity test.

Homogeneity Test

Based on the results of the homogeneity test that has been conducted, the outcomes of the homogeneity analysis are presented in the following table:

Table 1. 6. Homogeneity Test Result

		Levene Statistic	df1	df2	Sig.
Result	Based on Mean	2.351	3	128	.075
	Based on Median	2.345	3	128	.076
	Based on Median and with adjusted df	2.345	3	123.799	.076
	Based on the trimmed mean	2.369	3	128	.074

(Source: Organised research data 2025)

Based on the results of the homogeneity test, it is concluded that the variance of the data in the post-test of both the experimental and control classes is equal or homogeneous, as indicated by a significance value of 0.075. This result is considered statistically significant, as it exceeds the alpha level of 0.05, and therefore the data are deemed suitable for further analysis.

Hypothesis Test

Hypothesis testing in this study aims to determine whether the use of the 5E learning model influences the ability of Year Eight students at SMPN 17 Bandar Lampung to write recount texts. The results of the test are as follows:

Table 1. 7. Paired Samples Statistics

		Mean	N	Std. Deviation	Std. Error Mean
Pair 1	Pre-test Eksperimen	52.44	32	7.255	1.283
	Post-test Eksperimen	91.16	32	5.536	.979
Pair 2	Pre-test Kontrol	58.32	34	9.734	1.669
	Post-test Kontrol	69.00	34	8.765	1.503

(Source: Organised research data 2025)

Based on the results of the paired sample statistics test conducted on both samples - namely the pre-test and post-test of the experimental class - the mean score of the pre-test is 52.44, while the mean score of the post-test is 91.16. The standard deviation of the pre-test is 7.255, and that of the post-test is 5.536. The number of respondents in the experimental class is 32 students. Since the mean post-test score (91.16) is higher than the mean pre-test score (52.44), it can be concluded that there is a difference in the average learning outcomes between the pre-test and post-test.

Meanwhile, the results of the paired sample statistics test in the control class show that the mean score for the pre-test is 58.32, and for the post-test is 69.00. The standard deviation for the pre-test is 9.734, and for the post-test is 8.765. The number of respondents in the control class is 34 students. Since the mean post-test score (69.00) is higher than the mean pre-test score (58.32), it can also be concluded that there is a difference in the average learning outcomes between the pre-test and post-test.

Furthermore, to determine whether there is a statistically significant difference between the experimental and control classes, the results of the paired sample t-test are interpreted through the 'paired sample correlations' table as follows:

Table 1. 8. Paired Samples Correlations

		N	Correlation	Sig.
Pair 1	Pre-test Eksperimen & Post-test Eksperimen	32	.050	.786
Pair 2	Pre-test Kontrol & Post-test Kontrol	34	.974	.000

(Source: Organised research data 2025)

Based on the output for Pair 1 in the correlation test above, the correlation coefficient is 0.050 with a significance value of 0.786. As the significance value of 0.786 is greater than 0.05, it is concluded that there is no significant relationship between the pre- test and post-test variables.

Meanwhile, the output for Pair 2 shows a correlation coefficient of 0.974 with a significance value of 0.000. Since the significance value of 0.000 is less than 0.05, it is concluded that there is a significant relationship between the pre-test and post-test variables.

Furthermore, based on the results of the paired samples test conducted to compare the mean scores of the pre-test and post-test in both the experimental and control classes, the following results are obtained:

Table 1. 9. Paired Samples Test

	Paired Differences						t	df	Sig. (2-tailed)			
	Mean	Std. Deviation	Std. Error Mean	95% Confidence Interval of the Difference								
				Lower	Upper							
Pair 1	Pre-Eksperimen	-38.719	9.344	1.652	-42.088	-35.350	-23.441	31	.000			
Pair 2	Post-Eksperimen	-11.559	2.325	.399	-12.370	-10.748	-28.989	33	.000			
	Pre-Kontrol											
	Post-Kontrol											

(Source: Organised research data 2025)

Based on the output for Pair 1, a significance value of 0.000 is obtained, which is less than 0.05. Therefore, it is concluded that there is a difference in the mean learning outcomes of students in the pre-test and post-test for the experimental class that applies the 5E learning model.

The results of the paired samples test indicate that there is a significant effect before (pre-test) and after (post-test) the implementation of the 5E learning model on students' learning outcomes in the English subject material 'recount text.' This suggests that the use of the 5E learning model positively affects the improvement of eighth-grade students' ability at SMPN 17 Bandar Lampung to write recount texts.

DISCUSSION

The results of this study clearly indicate that the 5E (Engage, Explore, Explain, Elaborate, and Evaluate) learning model significantly enhances the ability of Year 8 students to write recount texts, as evidenced by the substantial improvement in learning outcomes in the experimental class compared to the control class. The increase in the experimental group's average post-test score (from 52.44 to 91.16) and its N-Gain value of 0.73 demonstrates that the 5E model is highly effective in supporting the development of students' writing skills, particularly in recount text.

This finding supports the work of Vestia (2022), who concluded that the 5E learning model facilitates student engagement and improves academic achievement across various literacy tasks. The model's strength lies in its structured phases, which promote active participation, conceptual understanding, and reflective learning. In the context of this research, the Engage phase stimulated students' curiosity with contextual prompts, while the Explore and Explain stages allowed learners to collaboratively analyze and construct knowledge about recount text structures and language features. The Elaborate phase encouraged further practice through writing tasks, and the Evaluate stage allowed both peer and teacher feedback, reinforcing learning and self-assessment.

The effectiveness of this model is consistent with findings by Astuti et al. (2021), who reported that students taught using the 5E model demonstrated better comprehension and written expression in narrative texts than those taught through traditional methods. Similarly, Prasetyo & Ardi (2020) emphasized that the 5E approach supports critical thinking and autonomy, especially in EFL contexts, where learners often struggle with productive skills such as writing.

The statistical analysis strengthens these claims. The use of pre-test and post-test comparisons, along with normality and homogeneity tests, confirms the reliability of the data. The significance value of 0.000 in the paired sample t-test ($p < 0.05$) for the experimental class indicates that the improvement is not due to chance, but rather the result of targeted pedagogical intervention. Although the control class also showed improvement, its lower mean gain (11.559) and N-Gain score (0.28) suggest that the traditional lecture-based method was far less effective.

Moreover, the results contribute to the growing body of evidence that 5E model is well-suited for language instruction, particularly in developing higher-order thinking and communicative competence. According to Yulia & Sari (2019), students learn more effectively when they are actively engaged in constructing knowledge rather than passively receiving information.

It is also worth noting that the initial disadvantage of the experimental class in the pre-test (mean score 52.44 vs. 58.32) highlights the 5E model's role in closing achievement gaps. Despite starting at a lower point, the experimental group eventually outperformed the control group by a large margin, indicating that the model can be particularly beneficial for students who may initially struggle.

In short, it shows that the 5E learning model is a powerful instructional model for improving students' recount text writing skills. Not only does it lead to better performance, but it also fosters engagement, autonomy, and deeper understanding-key factors in successful language learning. These findings have implications for teaching practice and teacher training in EFL settings, particularly at the junior secondary level.

CONCLUSION

This study concludes that the 5E learning model significantly improves eighth-grade students' ability to write recount texts in English. The experimental group showed greater learning gains (N-Gain = 0.73) compared to the control group (N-Gain = 0.28), supported by a significant difference in post-test scores. These results confirm the effectiveness of the 5E model in enhancing student writing performance. This finding is important as it offers a practical, student-centered approach to improve writing skills—an area often seen as challenging in EFL (English as a Foreign Language) contexts. Unlike ordinary methods, the 5E model actively engages learners and supports deeper cognitive processing. By aligning with and extending previous research on inquiry-based and constructivist learning models, this study provides strong evidence for integrating the 5E model into English instruction. The implications recommend that educators should encourage the implementation of the 5E learning model as an alternative strategy to enhance students' engagement and improve their writing competence and develop critical thinking in recount texts.

REFERENCES

Astuti, R., Pranowo, D., & Hapsari, S. N. (2021). *The Effectiveness of the 5E Learning Model in Teaching Narrative Text to Junior High School Students*. *Journal of English Language Teaching Studies*, 3(2), 120-130.

Creswell, John W. (2018). *Research Design: Qualitative, Quantitative, and Mixed Methods Approaches*. Thousand Oaks, CA: SAGE Publications

Cohen, L., Manion, L., & Morrison, K. (2018). *Research methods in education* (8th ed.). Routledge

Dörnyei, Z., & Taguchi, T. (2021). *Questionnaires in second language research: Construction, administration, and processing* (3rd ed.). Routledge.

Cruse. (1986). *Lexical Semantics*. Cambridge University. Cambridge University Press.

Emisari. (2020). Improving English Language Proficiency in Writing Recount Texts by Using Personal Photographs in Senior High School Students. *Jurnal Guru Indonesia*, 355-363.

Farhana. (2019). Improvement of students' ability to write recount texts using the semantic mapping technique. *Jurnal Instruksional*, 1(1), 66-75.

Glencoe. (2007). *Rubrics for Assessing Student Writing, Listening, and Speaking Middle School*. McGraw-Hill.

Jaedun, A. (2001). *Experimental Research Methods, Scientific Article*. Universitas Negeri Yogyakarta.

Jamaludin, D. (2019). *The Implementation of Research Methodology in Education*. IAIN Kudus.

Karakul, D. (2015). Effectiveness of the 5E Model of Instruction in Teaching Writing to EFL Learners. *International Journal of Education and Research*, 3(9), 123-134., 3(9), 123-134

Mackey, A., & Gass, S. M. (2023). *Second language research: Methodology and design* (3rd ed.). Routledge.

Melalolin, L. M., Hartini, N. M. S. A., & Mahayanti, N. W. S. (2020). Peningkatan Keterampilan Menulis Recount Text Melalui Pendekatan Genre Based. *Indonesian Journal of Instruction*, 1(1), 29-36. <https://doi.org/10.23887/iji.v1i1.27825>

Paltridge, B., & Phakiti, A. (2021). *Research methods in applied linguistics: A practical resource* (2nd ed.). Bloomsbury Academic.

Prasetyo, A. W., & Ardi, P. (2020). *Developing Writing Skills through the 5E Instructional Model in EFL Classrooms*. Jurnal Pendidikan Bahasa Inggris, 8(1), 35-45.

Rini, C. P., & Amaliyah, A. (2021). The Effect of the 5E Learning Cycle Model (Engagement, Exploration, Explanation, Elaboration, Evaluation) on the Naturalist Intelligence of 4th Grade Students of MI Al Fitroh Cipondoh Tangerang City. *Indonesian Journal of Elementary Education (IJOEE)*, 1(2), 1-14. <https://doi.org/10.31000/ijoe.v1i2.4292>

Septia. (2020). *Analisis kesalahan penggunaan simple past tense dalam karangan Recount teks siswa kelas X SMK AP Al-Wahyu*. Universitas Indraprasta PGRI.

Sugiyono. (2017). *Metode penelitian kualitatif, kuantitatif dan R&D*. PT. Rosda Karya.

Suluh, M. (2018). Perspektif Pendidikan Nasional. *Jurnal Penelitian dan Pengkajian Ilmu Pendidikan: e-Saintika*, 2(1), 1-9.

Susanti, R. (2019). The Implementation of 5E Learning Cycle to Improve Students' Recount Text Writing Ability at SMPN 15 Jakarta. *Journal of English Language Teaching*, 5(2), 47-60.

Vestia, E. (2022). Developing Creativity and Activeness of Learners in Schools Through the Learning Cycle 5E Learning Model". *Sustainable Journal*, 5(1), 177.

Vestia, R. L. (2022). *Enhancing Students' Writing Ability through 5E Learning Cycle Model*. *Journal of English Teaching and Linguistics*, 5(1), 78-89

Yulia, M., & Sari, R. N. (2019). *Constructivist Approaches in EFL Writing: A Review on 5E and Project-Based Learning Models*. *International Journal of Language and Literacy Studies*, 2(1), 44-53.