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Abstract: This article introduces a novel blind image quality metric (BIQM)
for color images which is designed taking into account human visual system
characteristics. The BIQM has a four-stage framework: RGB to YUV
transformation, denoising with convolutional neural network , quality
evaluation, and weighting to make it compatible with the human visual
system. Experimental results, including Spearman's rank-order correlation
coefficient, confirm BIQM's effectiveness, particularly in scenarios involving
white noise and its compatibility with the human visual system. Furthermore,
a survey involving 100 participants ranks images based on three distinct
qualities, validating the method's alignment with the human visual system.
The comparative analysis reveals that the proposed BIQM can compete with
commonly used non-referenced quality measures and is more accurate than
some of them. The MATLAB codes for the development of the BIQM are

human vision system made available through the provided link: https://bit.ly/49MrbFX
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1. INTRODUCTION

The determination of perceived image quality by the human eye holds significant importance in
visual communication and image processing. In communication systems, digital images undergo a series of
processes including digitization, compression, and transmission before reaching the end-user [1]. Moreover,
image quality plays a crucial role in the concept of object identification within biomedical imaging, which
represents one of the most prevalent applications of image processing [2].

Quality metrics for digital images encompass three distinct measurement methodologies: full-
reference (FR), no-reference (NR), and reduced-reference (RR) [3]. RR studies employ partial image
information or specific features to assess image quality. FR metrics, widely documented in the literature [4],
rely on numerical comparisons but face challenges in integration with the human visual system (HVS).
Additionally, a significant limitation of FR studies is their dependence on a reference image for comparison.
Prominent examples of FR metrics include Peak Signal to Noise Ratio (PSNR), Structural Similarity (SSIM)
[5], and Universal Quality Index (UQI) [6].

In the literature, the frequency of proposals for no-reference (NR) metrics is comparatively lower.
Mathematical comparison methods are dysfunctional because there is no reference image in the NR metrics.
From this point of view, in the field of NR quality metrics, various studies have been carried out with pattern
recognition algorithms and feature extraction methods. For example, Blind Image Quality Index (BIQI) [7],
Perception based Image Quality Evaluator (PIQUE) [8], and Blind/Referenceless Image Spatial Quality
Evaluator (BRISQUE) [9] have been developed in recent years. One approach utilized in IQAs is the
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incorporation of features into the assessment architecture [10]. This approach is supported by existing
literature highlighting the significant impact of local or structural features on the determination of image
quality [11], [12]. For clarity, the working principles and the NR-IQA categories of some methods used in
this study are summarized in Table 1.

Table 1. Working Principles of NR-IQA Metrics Included in the Evaluation

Metric Category Working Principle
BLIINDS-IT Transform Domain-based Uses statistical features of DCT coefficients. Distortions
alter DCT statistics, and these changes are used to predict
quality.
BRISQUE Traditional ML (NSS-based) Extracts Natural Scene Statistics (NSS) features in the

spatial domain. Quality scores are predicted using
Support Vector Regression (SVR).

BIQI Early NSS-based Divides the image into sub-bands, extracts NSS features
from each band, and maps them to quality scores via
regression.

DIIVINE Traditional ML (NSS-based) Extracts NSS-based features, classifies the distortion type

first, and then predicts quality using a regression model
trained for that distortion category.

NIQE Traditional ML (NSS-based) A completely opinion-unaware model. Learns a
multivariate Gaussian model of NSS features from
natural images and predicts quality without training on
human opinion scores.

IL-NIQE Traditional ML (NSS-based) An improved version of NIQE with an extended set of
NSS features and multiple image categories for better
generalization.

In the presented study, the deep convolutional neural network is used. By employing the residual
learning method, the proposed approach effectively estimates and removes various types of noise in the
image, including gaussian, sharpen, salt and pepper, poisson, and JPEG compression [13]. The image
obtained as a result of denoising is accepted as a reference image. Thus, the quality of the image can be
determined by using the image and its estimated version. In addition, during the comparison of two images
for quality determination, YUV color space is used in order to be more compatible with the HVS.

The novelty of the proposed BIQM lies in the integration of a DnCNN-based denoising stage with

HVS-driven feature weighting in the YUV domain. Unlike existing NR-IQA metrics that rely solely on NSS-
based or handcrafted features, proposed BIQM first reconstructs a pseudo-reference image through residual
learning, and then incorporates the biological sensitivity of the human eye in the final quality estimation. This
dual design bridges the gap between deep learning-based denoising and perceptual modeling, providing a
more reliable no-reference image quality metric.
The second section of the paper outlines the key components of the proposed blind quality metric, including
Deep convolutional neural networks (CNN), HVS, and SSIM. The third section provides a detailed
examination of how the quality metric operates. In the fourth section, experimental results are presented,
along with comparisons to other methods. The paper concludes with the final section, which offers
conclusive findings and perspectives.

2. FUNDAMENTAL THEMES
2.1. Human Vision System (HVS)

Due to certain characteristics of the human visual system (HVS), measuring image quality using the
RGB color space may hinder the attainment of accurate results. Figure 1 illustrates the two types of
photoreceptors in the human eye, known as rods and cones, which are responsible for detecting light and
color, respectively.
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Figure 1. View of the human eye, rod, and cone cells

The retina consists of approximately 120 million rod cells sensitive to luminance, while the number
of color-sensitive cone cells is around 7 million. This distribution indicates that approximately 95% of the
total cells in the retina are primarily sensitive to luminance, with the remaining 5% dedicated to color
perception [14]. Consequently, the impact of luminance on visual perception is more pronounced than that of
colors. By conducting quality measurements in the YUV color space, which allows for the separation of light
and color information, the measurement results can be aligned with the characteristics of the HVS [15].

2.2. Deep CNN

In the proposed BIQM framework, the denoiser is implemented using the DnCNN (Denoising
Convolutional Neural Network) architecture introduced by Zhang et al. [13]. In this model, DnCNN employs
a deep convolutional structure with 17-20 layers, which makes it capable of capturing more complex
statistical dependencies in image structures (Figure 2). The network design is inspired by the VGG (Visual
Geometry Group) architecture and is specifically tailored for image denoising tasks [20].
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Figure 2. Residue Learning by using DnCNN
The input detoriated image is defined as:
y=x+v €8

where y is the distorted image, x is the original clean image, and v denotes the additive noise.
Traditional discriminative denoising models aim to learn the mapping function F(y) = x, directly predicting
the clean image. Instead, DnCNN adopts a residual learning strategy, where the network is trained to
approximate the residual mapping (Figure 3):

RG) ~ v )
v=y-R(©) 3)
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Figure 3. Denoising with DnCNN

This formulation simplifies the optimization task, as learning the noise component is generally
casier than directly predicting the clean image. To further improve convergence speed and stability, batch
normalization (BN) has been integrated into each convolutional block [17]. The combination of residual
learning and batch normalization accelerates training and enhances denoising performance.

The objective function is defined as the mean squared error (MSE) between the estimated and the
ground-truth residuals:

N
L©) =5 > IRG ©) — (i~ x) I “
i=1

where O represents the trainable parameters of the CNN, and N is the number of training samples.
This loss guides the network to minimize the discrepancy between the predicted noise and the actual noise,
thereby indirectly enhancing the reconstruction quality of the clean image [13].

The success of DnCNN lies in its ability to generalize to various distortion levels, including blind
Gaussian denoising, thanks to its deep residual learning design. Although training deep CNNs from scratch
can be computationally demanding [16], the use of pre-trained networks significantly reduces the training
cost and makes such models practical for real-world applications [18]. Furthermore, utilizing fine-tuning in
conjunction with pre-trained networks has been shown in some studies to lead to more favorable outcomes
[19].

While DnCNN itself is not the primary contribution of this work, it plays a critical role as a
preprocessing stage. By producing denoised images, it ensures that the proposed BIQM can extract human
visual system (HVS)-based features more reliably. Consequently, the originality of this study is not in
developing a new denoiser, but in integrating the denoised outputs into a novel HVS-driven blind image
quality metric.

2.3. Peak Signal to Noise Ratio

PSNR is a ratio obtained by comparing two numerical sequences. During PSNR calculation, the
Mean Squared Error (MSE) is first calculated (Eq. (5)). MSE has a long history predating PSNR and has
been widely used as a quality metric in signal processing for many years. Originally used for signal fidelity,
MSE has also been applied to digital signals with the advent of the computer age [21]. The calculation of
MSE involves determining the mean squared differences between two images of size M x N, as defined by:

M N
1
MSE ZWEE(XU—}’”)Z, (5)

i=1j=1

x and y can be two different images. The farther these two images are numerically from each other,
the MSE will be higher. Based on this, the PSNR can be defined as:

2552
PSNR(x,y) = 10logso (3= (6)
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The reason 255 is used here is that the bit depth of the image is assumed to be 8, corresponding to 8
bits per pixel. Moreover, it is important to note that higher MSE values result in lower PSNR values [22].
However, PSNR has been subject to scrutiny and ongoing research due to its limited similarity to the human
visual system. Consequently, considerable efforts in quality metric research in recent decades have been
focused on addressing this limitation [23].

2.4. Structural Similarity

Over the past decades, researchers have explored alternatives to the purely numerical comparison
offered by MSE to better align with the characteristics of the human visual system (HVS). In addition to the
transmitter, channel, and receiver variables associated with numerical comparison, the HVS, as described in
Section 2.2, incorporates visual perception phenomena studied in psychology. Notably, Bovik et al.
conducted significant research on this aspect, resulting in the development of SSIM [5]. The SSIM can be
expressed in the following formula:

SSIM(x,y) = (1663) (e ) (s, )", ™

In this expression, /, ¢, and s correspond to luminance, contrast, and structural components, respectively.
When these statements are examined one by one, the luminance is expressed as:

2 +C
1xy) = By 21 )
px +uy + G
Uy and p,, are the mean of the image x and y, respectively. The constant C; is added to avoid instability when
the 2Zu, ., expression is too close to zero. The contrast in the second component of Eq. (7) is expressed as:

20,0, + C;
o +0i+C’

c(x,y) = 9)

Covariances of x and y images are specified as g, and g,,. Finally, the structural component is expressed as:

Oxy + Cs
0,0y + C3’

s(x,y) = (10)

As it draws attention, the numerator of the contrast element and the denominator of the structural component
are shared by the 0,0, expression. Therefore, if @ = f =y =1 and C3 = C,/2 are considered to simplify
Eq. (7), the result is [5]:

SSIM(x,y) = (hatty + ) 200y + C;) (11)
' 2+ +C)(o2+a2+C,)’

SSIM gained prominence upon its initial proposal due to several advantages it offered over PSNR. However,
it is important to note that SSIM, as a full-reference image quality metric, requires two images for
computation. It assesses the structural similarity between the two images to determine the quality relationship
between them.

3.  THE PROPOSED METRIC: BIQM
The proposed BIQM comprises four distinct phases, which are outlined below and visualized in
Figure 4:
e Phase 1: Image which quality is to be measured is transformed into YUV space,
e Phase 2: CNN is determined according to the file type (.jpeg or .bmp) of the image,
e Phase 3: Denoising is performed by using CNN specified for each color channel. The obtained
denoised color channels (Yy, Uy, V;) are assumed as reference image color channels,
e Phase 4: Pre-quality results are calculated by comparing the original Y, U, V channels and the Y,
U,, V4 channels via the SSIM. Considering the biological properties of the HVS, the pre-quality
results are weighted and the final BIQM quality result is obtained.

Blind Image Quality Metric for Color Images Based on Human Vision System ... (Ali Erdem Altinbas et al)
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Figure 4. Flowchart of the proposed BIQM

3.1. Phase 1: YUV Transformation Process

In this phase, the image whose quality is to be measured is transformed into YUV space. The decision to
transform the image into the YUV color space is based on the understanding that the Y channel, which
represents the luminance information, holds greater importance in terms of human visual perception [24].
The equation used to separate (or make independent) luminance information from color information is
expressed as:

Y = 0.257R 4+ 0.504G + 0.098B + 16
U= —0.148R — 0.291G + 0.439B + 128 (12)
V = 0.439R — 0.386G — 0.071B + 128

The process of returning from YUYV space to RGB space involves utilizing specific transformation
formulas. These formulas, which are given in [25], facilitate the conversion of the YUV representation back
to the RGB color space:

1.1644(Y — 16) + 1.596(V — 128)
= 1.164(Y — 16) — 0.813(V —128) — 0.391(U — 128) (13)
B =1.164(Y — 16) + 2.018(U — 128)

QD

The constants used in Eq. (9) and Eq. (10) correspond to the standard coefficients of the RGB to YUV color
space conversion as defined in widely adopted video and image processing standards ITU-R BT.601

[52]. In this study, the transformation was performed to prioritize the luminance information, as it plays a
crucial role in visual perception. The purpose of this conversion was to ensure that the luminance channel
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receives appropriate weighting compared to the color channels, taking into account its greater significance in
determining image quality.

3.2. Phase 2: Choosing Network

It has been shown in previous studies that the blocking effect caused by JPEG should be examined with
a separate concept considering the denoising process [26]. The blocking effect because of compression,
especially at low bit rates, is sometimes examined separately [27]. Although most of the commonly used
types of generated noise can be classified on a statistical basis, the blocking effect, a kind of compression
problem, must be considered from a different perspective [28]. Because it is a noise caused by the
quantification of DCT coefficients during compression [29]. From this point of view, two different pre-
trained CNNs have been used in this study. Then, separate pre-trained CNNs would be used for JPEG and
other noise types.

The use of pre-trained CNN has a direct effect on the result in most cases. The use of a properly trained
network is often of great importance in structures that require forecasting. In addition to this, the use of
multiple pre-trained CNNSs is an issue that has been investigated in recent years [30]. Because training a CNN
is a challenging process in terms of time and calculation costs. In order to overcome this problem, the use of
the GPU, which is very successful in matrix operations, is being examined with the parallel programming
concept, and research on performance analysis continues [16]. The main purpose of using pre-trained CNN in
this study is to avoid training cost. The training and test data of the CNN used are described below.

3.2.1. Training and Testing the CNN

The pre-trained network used in the proposed model had been trained using the Berkeley segmentation
dataset [31]. For the training, 400 images of 180x180 size were used. It has been noted that using more
images for training did not provide a worthwhile improvement to the training cost. In that study, three noise
levels had been used to train DnCNN for Gaussian denoising with known noise levels: o = 15, 25 and 50.
The patch size as 40 x 40, and crop 128 x 1,600 patches were set to train the model. In addition, to train a
single DnCNN model for blind Gaussian denoising, Zhang et al. set the range of the noise levels as ¢ € [0,
55]. The patch size as 50x50 and the crop 128%3,000 patches were set to train the model [13].

Two different datasets were used for test images in the BIQM. The first is the Berkeley segmentation
dataset (BSD68) which is depicted above, the second is the 12 images which are detailed in the study of
Zhang et al. [13]. In addition, test images are not included in the training dataset.

As mentioned above, a separate model is trained for JPEG. To generate the JPEG deblocking input, the
image is compressed with a quality factor ranging from 5 to 99 using the MATLAB JPEG encoder.
128x8000 image patch (size 50x50) pairs are generated for training. Operations on the patch pairs based on
rotation/flip are used during mini-batch learning.

3.3. Phase 3: Denoising with Deep CNN

The more successful this denoising process, which is used to develop the intended quality metric, the
more successful it will be to predict the quality. For this reason, the denoising method used is extremely
important. The method proposed by Zhang et al. (2015) has proven to be more successful than previous
studies [13][10]. In addition, the feedforward denoising CNN developed by them gives a fast result if it is
operated with a pre-trained network. Even if it is not pre-trained, the developed network is fully compatible
with GPU parallel programming.

The utilization of pre-trained sets in MATLAB enables efficient and effective denoising processes.

The selection of the denoising level is predefined and not customizable by the user. These functions are
relatively new and do not offer input parameters for fine-tuning denoising applications according to desired
rates. To enhance the quality prediction performance, one can consider increasing the number of denoising
iterations or retraining the model using transfer learning techniques. While there are multiple methods to
enhance denoising performance, it is important to note that the primary objective of this study is to propose
an image quality metric rather than focusing on denoising techniques.

3.4. Phase 4: Weightening by the HVS

In the fourth phase, an FR quality metric SSIM is used for quality calculation. However, when using the
SSIM, the denoised image is assumed as a reference image in the BIQM. This measurement is made in the
YUV color space to suit the HVS. In addition, as mentioned in Section 2.2, the ratio between light and color-
sensitive cells in the human eye should also be reflected in the Y and UV channels [52]. For this reason, the
quality of the Y channel in the measurement result is 95% effective compared to the human eye, while only
5% of the average of the U and V channels are effective [14].

As a result, the image quality to be determined using the presented method expressed as:

Blind Image Quality Metric for Color Images Based on Human Vision System ... (Ali Erdem Altinbas et al)
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BIQM = SSIM(Y,Y") x 0.95 + [(SSIM(U,U") + SSIM(V,V"))/2] x 0.05 (14)
With this calculation, a color image, it is possible to determine the quality without a reference image.

4. EXPERIMENTAL RESULTS

During the evaluation of the experimental outcomes, it was observed that the proposed method
achieved notable efficacy specifically in handling white noise. To further validate the performance of the
method, correlation calculations were conducted not only on the widely utilized LIVE [32], CSIQ [33], and
TID2013 [34] databases but also on additional databases TID2008 [35] and VCL@FER [36]. This broader
selection of databases allowed for a more comprehensive assessment of the method's effectiveness across
different noise levels.

These databases encompass a range of characteristics such as varying numbers of observers
contributing to the determination of mean opinion scores (MOS), different quantities of reference and noisy
images, diverse image sizes, and distinct levels of distortion given in Table 2. These variations in the
databases contribute to the diversity and richness of the data available for evaluation and enable a
comprehensive analysis of the proposed method's performance across a wide range of conditions.

Table 2. Characteristics of databases used in the study

Database Reference Image Distorted Image Image Size Distortion Level Observers
LIVE 20 779 866%591 9 161
CsIQ 30 866 512x384 4-5 25

TID2013 25 3000 512x384 4 985-971

TID2008 25 1700 512x384 7-8 838

VCL@FER 30 866 512x512 4-5 25

To assess the degree of compatibility of the proposed study with the human visual system, the
Spearman rank-ordered correlation coefficient (SROCC) and Pearson linear correlation coefficient (PLCC)
coefficients were computed. These coefficients measure the degree of correlation between the proposed
method's output and human perceptual judgments. A value closer to 1 for these coefficients indicates a
stronger correlation between the proposed method and the human visual system. Table 3 provides the ground
truth values for the study at hand on the LIVE database [32]. The numeric suffixes "1" and "3" represent the
number of times the algorithm was executed on the Y channel. Additionally, the columns labeled as "JPEG"
denote the usage of alternative pre-trained convolutional neural networks for JPEG compression.

Table 3. Spearman rank-ordered correlation coefficient (SROCC) and Pearson linear correlation
coefficient (PLCC) comparison of proposed BIQM on individual distortions types on the LIVE database.

SROCC-1 SROCC-3 SROCC-1JPEG SROCC-3JPEG PLCC-1 PLCC-3 PLCC-1JPEG PLCC-3 JPEG

JP2K 0.87237 0.86775 0.90121 0.85892 0.68843 0.74361 0.85593 0.82028
JPEG 0.87759 0.83079 0.82710 0.71597 0.64191 0.67912 0.81639 0.71417
White Noise 0.98198 0.98239 - - 0.95907 0.96331 - -
Gaussian Blur ~ 0.73353 0.63188 - - 0.63065 0.65520 - -
Fast Fading 0.51002 0.55511 - - 0.02816 -0.05217 - -
Average 0.79510 0.77358 0.58964 0.59781

Upon initial examination, the table illustrates the efficacy of the denoising method for both white
noise and compression noise. However, the observed correlation for Gaussian blur and fast fading is
comparatively lower due to the inherent blurring effect of the denoising process, particularly in repetitive
scenarios. However, it is evident that using a CNN specifically trained for JPEG compression yields
improved results for images that have undergone compression, such as those in the JP2k and JPEG formats.

The experimental studies have demonstrated the notable success of the proposed method,
particularly in white noise. To thoroughly investigate this aspect, an in-depth analysis was conducted on the
state-of-the-art LIVE, CSIQ, and TID2013 databases, focusing specifically on white noise. In order to ensure
a fair evaluation, fifteen different IQAs were assessed, and the SROCC results are given in Table 4. It is
noted that the proposed BIQM produces scores ranging from 0 to 1, where higher values indicate superior
perceived quality and lower values correspond to more significant distortions.
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Table 4. Comparative Analysis of SROCC Values for IQAs Across Different Databases

IQA METHODS LIVE CSIQ TID2013
DIIVINE [37] 0.979 0.940 0.906
BLIINDS-II [38] 0.941 0.922 0.741
NIQE [39] 0.961 0.835 0.852
IL-NIQE [40] 0.977 0.866 0.904
CORNIA [41] 0.979 0.941 0.935
BRISQUE [9] 0.978 0.957 0.900
GMLOG [42] 0.978 0.943 0.946
NFERM [43] 0.980 0.938 0.931
FRIQUEE [44] 0.975 0.941 0.950
BILC [45] 0.986 0.962 0.959
HOSA [46] 0.975 0.604 0.853
BIECON [47] 0.980 0.902 0.717
WaDIQAm [1] 0.982 0.974 0.843
DB-CNN [48] 0.980 0.948 0.790
Proposed BIQM 0.981 0.951 0.919

Table 5 presents the SROCC results obtained from various IQAs for white noise in the TID2008 and
VCL@FER databases. These databases, although less commonly used nowadays, contain a variety of image
characteristics and noise types that can provide valuable insights into the performance of IQAs.

The performance of the proposed BIQM was compared against 14 cutting-edge NR-IQA methods
across a range of benchmark datasets. As demonstrated in Table 4, BIQM exhibits robust performance on the
LIVE, CSIQ, and TID2013 databases, achieving SROCC values of 0.981, 0.951, and 0.919, respectively. The
values obtained are consistently competitive with, or in some cases superior to, leading NR metrics such as
BRISQUE, BLIINDS-II, NIQE, and CORNIA. It is noteworthy that BIQM demonstrates a high degree of
robustness for white noise distortions, aligning closely with the human visual system (HVS) perception.

Furthermore, the results presented in Table 5 offer additional verification of the proposed approach's
generalisation ability, utilising the TID2008 and VCL@FER datasets. In this study, the BIQM model
demonstrated its capability to achieve correlation values of 0.869 (TID2008) and 0.882 (VCL@FER), which
exceed the performance of conventional NR metrics such as BIQI and NIQE. Furthermore, the BIQM model
exhibited a comparable or superior performance to BRISQUE in these datasets.

These comparisons demonstrate that the proposed BIQM not only competes with but also surpasses
several well-established NR-IQA models across diverse datasets. The consistent results observed across five
distinct benchmark databases underscore the robustness, generalisation, and practical applicability of BIQM.
This comprehensive evaluation directly addresses the concern regarding performance comparison with other
methods and strengthens the claim that BIQM offers a novel and effective solution for blind image quality
assessment.

In addition to the ground truth evaluation, peer-based PSNR tests were conducted to compare the
image quality. The test set consisted of images with various types of commonly used noise, including
Gaussian, Poisson, salt & pepper, sharpen, and JPEG. While the PSNR metric described in Section 2.4 failed
to sort the images based on their quality, the presented metric allowed for accurate ranking of the images
from the highest to the lowest quality. To enhance the visibility of noise effects, selected parts of the images
were enlarged during the comparison.

Table 5. Comparative Analysis of SROCC Values for IQAs on TID2008 and VCL@FER Databases.

TID2008 VCL@FER
BLIINDS-1I [38] 0.779 0.894
DIIVINE [37] 0.812 0.913
BRISQUE [9] 0.853 0.823
NIQE [39] 0.786 0.848
BIQI [7] 0.798 0.703
QAC [49] 0.707 0.882

Proposed BIQM 0.869 0.882206

Blind Image Quality Metric for Color Images Based on Human Vision System ... (Ali Erdem Altinbas et al)



594 a ISSN: 2089-3272

As stated above, according to the PSNR, which is an FR metric, all images in Fig. 5 have the same
PSNR value (28.29 dB). However, this is not a suitable situation for the HVS, and quality difference between
images is perceived. In addition, the original image may not be available, so the use of the NR metrics is
inevitable. It is also shown in Table 5 that other NR quality metrics mentioned in the introduction section do
not give satisfactory results.

According to the BIQI, the PIQUE, and the BRISQUE metrics used in comparisons, when the image
quality result approaches 0, it is assumed that the visual quality of the image increases. On the contrary, when
the BIQM result approaches 0, the visual quality of the image decreases.

Figure 5. Comparison of “Monarch” images with different types of distortions, all with PSNR = 28.29 dB:
(a) Original image. (b) Sharpen image. (c) Salt & Pepper image. (d) Poisson image. (¢) JPEG image. (f)
Gaussian image.

Figure 5 and Table 6 show that the PIQUE and the BRISQUE metrics exhibit limitations in
accurately determining the impact of salt & pepper, JPEG, and gaussian noises, as well as differentiating
between salt & pepper and Gaussian noise. Despite the fact that the HV'S perceives the Gaussian noisy image
as the worst in terms of visual quality, the these metrics suggest that it has the best image quality among the
different types of noise.

Table 6. Performance comparisons of NR image quality metrics for Monarch image.

BIQI PIQUE BRISQUE Proposed BIQM
Sharpen 5.937 14.891 10.777 0.9863
S&P 13.774 37777 32.144 0.9554
Poisson 21.104 23.784 25.751 0.9531
JPEG 31.810 58.476 53.689 0.9229
Gaussian 32.220 34.930 30.017 0.8587

Another example is presented in Figure 6 with images prepared in the same PSNR value (29.30 dB).
Comparison results are given in Table 7.

Table 7. Performance comparisons of NR image quality metrics for Parrot image.

BIQI PIQUE BRISQUE Proposed BIQM
Sharpen 13.622 17.869 12.998 0.9725
Poisson 21.710 23.369 21.684 0.9549
S&P 13.179 34.132 16.137 0.9528
JPEG 58.217 78.061 48.961 0.9225
Gaussian 30.622 43.677 31.687 0.8600
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Figure 6. Comparison of “Parrot” images with different types of distortions, all with PSNR =29.30 dB: (a)
Original image. (b) Sharpen image. (c) Poisson image. (d) Salt & Pepper image. (¢) JPEG image. (f)
Gaussian image.

As shown in Table 7, while the BIQI struggled to distinguish between sharpen and salt & pepper
noise, the BIQM yielded a successful result under HVS in this regard. Similarly, the PIQUE failed to separate
JPEG and Gaussian noises, and the BRISQUE failed to separate Poisson and salt & pepper noises.

Even if the quality measurement scenario is FR, the PSNR values are equal (i.e., 24.15 dB), on the
contrary, the BIQM can distinguish digital images by considering the HVS as seen in Figure 7. Table 8 gives
performance comparisons of NR methods and the BIQM method (all noisy images have the same PSNR
(24.15 dB) values).

Figure 7. Comparison of “Wall” images with different types of distortions, all with PSNR = 24.15 dB: (a)
Original image. (b) Sharpen image. (c) Poisson image. (d) Salt & Pepper image. (¢) JPEG image. (f)
Gaussian image.

Table 8. Performance comparisons of NR image quality metrics for Wall image.

BIQI PIQUE BRISQUE Proposed BIQM
Sharpen 39.640 54.590 32.861 0.9697
Poisson 33.094 47.891 32.245 0.9145
S&P 31.690 51.913 50.338 0.9025
JPEG 62.707 64.784 63.948 0.8198
Gaussian 41.810 56.012 39.287 0.8113

The results obtained from the BIQI and PIQUE methods indicate that the quality values of
sharpened and Gaussian images are similar, while the quality values of sharpened and Poisson images are
close according to the BRISQUE method. However, these results do not align with the HVS. In contrast,
visual examination reveals that the Gaussian and sharpened images exhibit significant differences. The
BIQM metric supports this perceptually noticeable result with its measurement outcomes.
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Table 9 presents the comparative performance of various NR image quality metrics, including the
BIQM, BIQI, PIQUE, and BRISQUE, on different noisy images. The noisy variations within each image
have the same PSNR values, namely Flowers (30.87 dB), House (26.22 dB), and Whitewater (25.73 dB).
While sharpened noise produces less quality deterioration at the same PSNR than other types of noise, some
NR image quality metrics fail to accurately distinguish between them.

Similarly, other NR image quality metrics exhibit instability in differentiating salt & pepper and
gaussian noise. However, visual examination of the noisy images in Fig. 5, Fig. 6, and Fig. 7, in the context
of the HVS, shows that salt & pepper and gaussian images differ significantly in quality at the same PSNR
value, and the BIQM confirms these results. The corresponding images used in the assessments of Table 9
are shown in Figure 8.

Table 9. Performance comparison of NR image quality metrics for different noisy images. 11, 12,
and I3 as Flowers, House, and Whitewater respectively.

Sharpen Poisson S&P Gaussian JPEG

BIQI 26.268 17.228 21.912 23.962 43.799

I PIQUE 27.477 18.369 43.507 25.775 65.467
BRISQUE 20.051 22.893 32.576 24.981 56.814

Proposed BIQM 0.9906 0.9727 0.9696 0.9320 0.9084

BIQI 14.935 28.202 26.055 38.721 55.287

» PIQUE 37.516 38.985 32.567 54.400 74.276
BRISQUE 31.585 29.097 41.455 36.245 61.439

Proposed BIQM 0.9695 0.9136 0.9108 0.7855 0.8531

BIQI 38.096 27.753 26.742 39.313 51.228

3 PIQUE 32.644 31.164 31.683 44.590 61.161
BRISQUE 19.378 14.874 53.989 25.267 58.942

Proposed BIQM 0.9801 0.9437 0.9456 0.8348 0.8266

I
Figure 8. Images compared in Table 8. I, I, and I3 are Flowers, House, and Whitewater, respectively.

A survey was conducted to understand the effect of the presented method and measure its
compatibility with the HVS. In this survey conducted with 100 participants, random participants were asked
to rank 3 different images given in Figure 9 according to their quality.

(a) (b) (©)
Figure 9. Images on which the survey was conducted. (a) Lena. (b) Peppers. (c) Baboon.
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The sorting of these three images, each of which added a different amount of noise, was made with a
strict distinction among the participants. Based on the survey results presented in Figure 10, a clear majority
of the participants ranked the image in Figure 9; (a) as the worst quality, followed by (b) and then (c) as the
best quality.

70
60
50

40

30

20

| O O
0 [

(a) Lena (b) Peppers (c) Baboon

(e}

B Worst M Better B Best

Figure 10. Result of the survey.

According to the evaluations of the participants, a majority of respondents (66 out of 100) rated
Lena as the image with the lowest perceived quality. Similarly, 46 participants considered Peppers to be the
median-quality image, while 56 participants ranked Baboon as the image with the highest perceived quality.
These findings provide insights into the subjective assessment of the images in Figure 9. Additionally, the
quality measurements of these images using NR-IQAs are presented in Table 10.

Table 10. NR-IQA results of survey images.

Images
QA BIQI PIQUE BRISQUE Proposed BIQM
Lena 59.7726 68.4288 445229 0.4031
Peppers 58.4485 66.1915 42.0760 0.4453
Baboon 59.3933 67.4209 46.3070 0.5576

When considering the collective findings from Table 9 and Figure 10 it can be observed that the
BIQM demonstrates strong compatibility with the human visual system (HVS). Conversely, the results
obtained from the application of the BIQI, PIQUE, and BRISQUE metrics to the Peppers image do not align
well with the HVS. Furthermore, the survey conducted indicates that utilizing the proposed BIQM as a no-
reference quality metric is more preferable in terms of user satisfaction and its alignment with visual
perception.

5.  CONCLUSION

This study proposes a new deep CNN-based NR image quality metric (BIQM) consisting of four
phases, including RGB to YUV transform, CNN determination considering the file type, denoising with
deep-CNN, and quality value calculation. The experimental results demonstrate the effectiveness of the
presented method, particularly for white noise. The SROCC values indicate that BIQM provides more
consistent results in terms of HVS compared to its counterparts, particularly for images corrupted with white
noise. Moreover, the survey results suggest that BIQM could potentially enhance user satisfaction when used
for image quality measurement.

Another important finding of this survey, consistent with the results of some studies in recent years, is
the challenge of distinguishing between low-level and high-level noise images [50, 51]. For future research,
investigating the relationship between the amount of noise and the human visual system presents an area of
growing interest. Furthermore, with the advancements in CNN models, developing new high-accuracy
metrics that do not require human scoring is becoming an increasingly important research area.

On the other hand, when performance evaluation is made, using pre-trained CNN ensures that it
operates in a reasonable time even for low-medium level hardware. Performance improvement is possible
with the use of advanced GPUs and CPUs. In this way, a fit-for-purpose deep CNN can be trained using a
larger and more suitable data set. Finally, the method of working in YUV space and weighting these channels
will go further with the development of the concepts of vision and visual perception for future works.
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In brief, the main contribution of this work is the integration of DnCNN residual learning with HVS-
based channel weighting. This combination improves the robustness of BIQM against various distortions.
Unlike existing NR-IQA models, which usually rely only on handcrafted features or lack perceptual
weighting, our BIQM bridges deep denoising and perceptual modeling. As a result, it provides a more
perceptually consistent and generalizable solution for blind image quality assessment.

The computational complexity of the presented algorithm has been tested only when MATLAB R2022b
is running. Technicial Specifications; Intel® Alder Lake Core™ i5-12500H 12C/16T; 18MB L3; E-CORE
Max 3.30GHZ E-CORE Max 4.5GHZ;45W;10nm, nVIDIA® GeForce® RTX3050 TI Max-Performance
4GB GDDR6 128-Bit DX12, 32GB (1x32GB) DDR4 1.2V 3200MHz SODIMM, 500GB PCle M.2 2280 3.0
x4 (R: 2050 MB/s - W: 940 MB/s). Under these conditions, the presented work is completed in an average of
1.252 seconds. With the parallel pool, this time is reduced to 1.103 seconds.
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