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 Abstract: This article introduces a novel blind image quality metric (BIQM) 

for color images which is designed taking into account human visual system 

characteristics. The BIQM has a four-stage framework: RGB to YUV 

transformation, denoising with convolutional neural network , quality 

evaluation, and weighting to make it compatible with the human visual 

system. Experimental results, including Spearman's rank-order correlation 

coefficient, confirm BIQM's effectiveness, particularly in scenarios involving 

white noise and its compatibility with the human visual system. Furthermore, 

a survey involving 100 participants ranks images based on three distinct 

qualities, validating the method's alignment with the human visual system. 

The comparative analysis reveals that the proposed BIQM can compete with 

commonly used non-referenced quality measures and is more accurate than 

some of them. The MATLAB codes for the development of the BIQM are 

made available through the provided link: https://bit.ly/49MrbFX 
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1. INTRODUCTION 

The determination of perceived image quality by the human eye holds significant importance in 

visual communication and image processing. In communication systems, digital images undergo a series of 

processes including digitization, compression, and transmission before reaching the end-user [1]. Moreover, 

image quality plays a crucial role in the concept of object identification within biomedical imaging, which 

represents one of the most prevalent applications of image processing [2]. 

Quality metrics for digital images encompass three distinct measurement methodologies: full-

reference (FR), no-reference (NR), and reduced-reference (RR) [3]. RR studies employ partial image 

information or specific features to assess image quality. FR metrics, widely documented in the literature [4], 

rely on numerical comparisons but face challenges in integration with the human visual system (HVS). 

Additionally, a significant limitation of FR studies is their dependence on a reference image for comparison. 

Prominent examples of FR metrics include Peak Signal to Noise Ratio (PSNR), Structural Similarity (SSIM) 

[5], and Universal Quality Index (UQI) [6]. 

In the literature, the frequency of proposals for no-reference (NR) metrics is comparatively lower. 

Mathematical comparison methods are dysfunctional because there is no reference image in the NR metrics. 

From this point of view, in the field of NR quality metrics, various studies have been carried out with pattern 

recognition algorithms and feature extraction methods. For example, Blind Image Quality Index (BIQI) [7], 

Perception based Image Quality Evaluator (PIQUE) [8], and Blind/Referenceless Image Spatial Quality 

Evaluator (BRISQUE) [9] have been developed in recent years. One approach utilized in IQAs is the 
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incorporation of features into the assessment architecture [10]. This approach is supported by existing 

literature highlighting the significant impact of local or structural features on the determination of image 

quality [11], [12]. For clarity, the working principles and the NR-IQA categories of some methods used in 

this study are summarized in Table 1. 

 

Table 1. Working Principles of NR-IQA Metrics Included in the Evaluation 
Metric Category Working Principle 

BLIINDS-II Transform Domain-based Uses statistical features of DCT coefficients. Distortions 
alter DCT statistics, and these changes are used to predict 

quality. 

BRISQUE Traditional ML (NSS-based) Extracts Natural Scene Statistics (NSS) features in the 
spatial domain. Quality scores are predicted using 

Support Vector Regression (SVR). 

BIQI Early NSS-based Divides the image into sub-bands, extracts NSS features 

from each band, and maps them to quality scores via 
regression. 

DIIVINE Traditional ML (NSS-based) Extracts NSS-based features, classifies the distortion type 

first, and then predicts quality using a regression model 
trained for that distortion category. 

NIQE Traditional ML (NSS-based) A completely opinion-unaware model. Learns a 
multivariate Gaussian model of NSS features from 

natural images and predicts quality without training on 

human opinion scores. 

IL-NIQE Traditional ML (NSS-based) An improved version of NIQE with an extended set of 

NSS features and multiple image categories for better 
generalization. 

 

In the presented study, the deep convolutional neural network is used. By employing the residual 

learning method, the proposed approach effectively estimates and removes various types of noise in the 

image, including gaussian, sharpen, salt and pepper, poisson, and JPEG compression [13]. The image 

obtained as a result of denoising is accepted as a reference image. Thus, the quality of the image can be 

determined by using the image and its estimated version. In addition, during the comparison of two images 

for quality determination, YUV color space is used in order to be more compatible with the HVS. 

The novelty of the proposed BIQM lies in the integration of a DnCNN-based denoising stage with 

HVS-driven feature weighting in the YUV domain. Unlike existing NR-IQA metrics that rely solely on NSS-

based or handcrafted features, proposed BIQM first reconstructs a pseudo-reference image through residual 

learning, and then incorporates the biological sensitivity of the human eye in the final quality estimation. This 

dual design bridges the gap between deep learning-based denoising and perceptual modeling, providing a 

more reliable no-reference image quality metric. 

The second section of the paper outlines the key components of the proposed blind quality metric, including 

Deep convolutional neural networks (CNN), HVS, and SSIM. The third section provides a detailed 

examination of how the quality metric operates. In the fourth section, experimental results are presented, 

along with comparisons to other methods. The paper concludes with the final section, which offers 

conclusive findings and perspectives. 

 

2. FUNDAMENTAL THEMES 

2.1. Human Vision System (HVS) 

Due to certain characteristics of the human visual system (HVS), measuring image quality using the 

RGB color space may hinder the attainment of accurate results. Figure 1 illustrates the two types of 

photoreceptors in the human eye, known as rods and cones, which are responsible for detecting light and 

color, respectively. 
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Figure 1. View of the human eye, rod, and cone cells 

 

The retina consists of approximately 120 million rod cells sensitive to luminance, while the number 

of color-sensitive cone cells is around 7 million. This distribution indicates that approximately 95% of the 

total cells in the retina are primarily sensitive to luminance, with the remaining 5% dedicated to color 

perception [14]. Consequently, the impact of luminance on visual perception is more pronounced than that of 

colors. By conducting quality measurements in the YUV color space, which allows for the separation of light 

and color information, the measurement results can be aligned with the characteristics of the HVS [15]. 

 

2.2. Deep CNN 

In the proposed BIQM framework, the denoiser is implemented using the DnCNN (Denoising 

Convolutional Neural Network) architecture introduced by Zhang et al. [13]. In this model, DnCNN employs 

a deep convolutional structure with 17–20 layers, which makes it capable of capturing more complex 

statistical dependencies in image structures (Figure 2). The network design is inspired by the VGG (Visual 

Geometry Group) architecture and is specifically tailored for image denoising tasks [20]. 

 

 
Figure 2. Residue Learning by using DnCNN 

The input detoriated image is defined as: 𝑦 = ݔ +  (1)  ݒ

where 𝑦  is the distorted image, ݔ  is the original clean image, and ݒ  denotes the additive noise. 

Traditional discriminative denoising models aim to learn the mapping function ܨ(𝑦) =  directly predicting ,ݔ

the clean image. Instead, DnCNN adopts a residual learning strategy, where the network is trained to 

approximate the residual mapping (Figure 3): 

 ܴ(𝑦) ≈ ݒ (2) ݒ = 𝑦 − ܴ(𝑦) (3) 
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Figure 3. Denoising with DnCNN 

 

This formulation simplifies the optimization task, as learning the noise component is generally 

easier than directly predicting the clean image. To further improve convergence speed and stability, batch 

normalization (BN) has been integrated into each convolutional block [17]. The combination of residual 

learning and batch normalization accelerates training and enhances denoising performance. 

The objective function is defined as the mean squared error (MSE) between the estimated and the 

ground-truth residuals: 

(Θ)ܮ  = 12ܰ ∑ே
௜=1 ∥ ܴ(𝑦௜;  Θ) − (𝑦௜ − (௜ݔ ∥ி2  (4) 

 

where Θ represents the trainable parameters of the CNN, and ܰ  is the number of training samples. 

This loss guides the network to minimize the discrepancy between the predicted noise and the actual noise, 

thereby indirectly enhancing the reconstruction quality of the clean image [13]. 

The success of DnCNN lies in its ability to generalize to various distortion levels, including blind 

Gaussian denoising, thanks to its deep residual learning design. Although training deep CNNs from scratch 

can be computationally demanding [16], the use of pre-trained networks significantly reduces the training 

cost and makes such models practical for real-world applications [18]. Furthermore, utilizing fine-tuning in 

conjunction with pre-trained networks has been shown in some studies to lead to more favorable outcomes 

[19]. 

While DnCNN itself is not the primary contribution of this work, it plays a critical role as a 

preprocessing stage. By producing denoised images, it ensures that the proposed BIQM can extract human 

visual system (HVS)-based features more reliably. Consequently, the originality of this study is not in 

developing a new denoiser, but in integrating the denoised outputs into a novel HVS-driven blind image 

quality metric. 

 

2.3. Peak Signal to Noise Ratio 

PSNR is a ratio obtained by comparing two numerical sequences. During PSNR calculation, the 

Mean Squared Error (MSE) is first calculated (Eq. (5)). MSE has a long history predating PSNR and has 

been widely used as a quality metric in signal processing for many years. Originally used for signal fidelity, 

MSE has also been applied to digital signals with the advent of the computer age [21]. The calculation of 

MSE involves determining the mean squared differences between two images of size M × N, as defined by: ܧܵܯ = ܰܯ1 ∑ ௜௝ݔ)∑ − 𝑦௜௝)2ே
௝=1

ெ
௜=1  , (5) 

 

x and y can be two different images. The farther these two images are numerically from each other, 

the MSE will be higher. Based on this, the PSNR can be defined as: 

,ݔ)ܴܰܵܲ  𝑦) = 10݃݋10݈  (6) , (ܧܵܯ2552)
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The reason 255 is used here is that the bit depth of the image is assumed to be 8, corresponding to 8 

bits per pixel. Moreover, it is important to note that higher MSE values result in lower PSNR values [22]. 

However, PSNR has been subject to scrutiny and ongoing research due to its limited similarity to the human 

visual system. Consequently, considerable efforts in quality metric research in recent decades have been 

focused on addressing this limitation [23]. 

 

2.4. Structural Similarity 

Over the past decades, researchers have explored alternatives to the purely numerical comparison 

offered by MSE to better align with the characteristics of the human visual system (HVS). In addition to the 

transmitter, channel, and receiver variables associated with numerical comparison, the HVS, as described in 

Section 2.2, incorporates visual perception phenomena studied in psychology. Notably, Bovik et al. 

conducted significant research on this aspect, resulting in the development of SSIM [5]. The SSIM can be 

expressed in the following formula: 

,ݔ)ܯܫܵܵ  𝑦) = ,ݔ)݈) 𝑦))ఈ(ܿ(ݔ, 𝑦))ఉ(ݔ)ݏ, 𝑦))ఊ , (7) 

In this expression, l, c, and s correspond to luminance, contrast, and structural components, respectively. 

When these statements are examined one by one, the luminance is expressed as: 

,ݔ)݈  𝑦) = ௬ߤ௫ߤ2 + ௫2ߤ1ܥ + ௬2ߤ +  (8) , 1ܥ

 is added to avoid instability when 1ܥ ௬ are the mean of the image x and y, respectively. The constantߤ ௫ andߤ

the 2ߤ௫ߤ௬ expression is too close to zero. The contrast in the second component of Eq. (7) is expressed as: 

,ݔ)ܿ  𝑦) = ௬ߪ௫ߪ2 + ௫2ߪ2ܥ + ௬2ߪ +  (9) , 2ܥ

Covariances of x and y images are specified as ߪ௫ and ߪ௬. Finally, the structural component is expressed as: 

,ݔ)ݏ  𝑦) = ௫௬ߪ + ௬ߪ௫ߪ3ܥ +  (10) , 3ܥ

 

As it draws attention, the numerator of the contrast element and the denominator of the structural component 

are shared by the ߪ௫ߪ௬ expression. Therefore, if ߙ = ߚ = ߛ = 1 and 3ܥ =  are considered to simplify 2/2ܥ

Eq. (7), the result is [5]: 

,ݔ)ܯܫܵܵ  𝑦) = ௬ߤ௫ߤ2) + ௫௬ߪ2)(1ܥ + ௫2ߤ)(2ܥ + ௬2ߤ + ௫2ߪ)(1ܥ + ௬2ߪ +  (11) , (2ܥ

 

SSIM gained prominence upon its initial proposal due to several advantages it offered over PSNR. However, 

it is important to note that SSIM, as a full-reference image quality metric, requires two images for 

computation. It assesses the structural similarity between the two images to determine the quality relationship 

between them. 

 

3. THE PROPOSED METRIC: BIQM 

The proposed BIQM comprises four distinct phases, which are outlined below and visualized in 

Figure 4: 

• Phase 1: Image which quality is to be measured is transformed into YUV space, 

• Phase 2: CNN is determined according to the file type (.jpeg or .bmp) of the image, 

• Phase 3: Denoising is performed by using CNN specified for each color channel. The obtained 

denoised color channels ( ௗܻ, ܷௗ, ௗܸ) are assumed as reference image color channels, 

• Phase 4: Pre-quality results are calculated by comparing the original Y, U, V channels and the ௗܻ, ܷௗ, ௗܸ channels via the SSIM. Considering the biological properties of the HVS, the pre-quality 

results are weighted and the final BIQM quality result is obtained. 
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Figure 4. Flowchart of the proposed BIQM 

 

3.1. Phase 1: YUV Transformation Process 

In this phase, the image whose quality is to be measured is transformed into YUV space. The decision to 

transform the image into the YUV color space is based on the understanding that the Y channel, which 

represents the luminance information, holds greater importance in terms of human visual perception [24]. 

The equation used to separate (or make independent) luminance information from color information is 

expressed as: 

 ܻ = 0.257ܴ + ܩ0.504 +  ܤ0.098 +  16 ܷ =   − 0.148ܴ   − + ܩ0.291   ܤ0.439  + 128 ܸ  =  0.439ܴ  −  ܩ0.386  − + ܤ0.071   128 

(12) 

 The process of returning from YUV space to RGB space involves utilizing specific transformation 

formulas. These formulas, which are given in [25], facilitate the conversion of the YUV representation back 

to the RGB color space: 

 ܩ  =  1.1644(ܻ − 16)  +  1.596(ܸ − 128) 

R  =  1.164(ܻ − 16)  −  0.813(ܸ − 128)  −  0.391(ܷ − 128) 

B  = 1.164(ܻ − 16)  +  2.018(ܷ − 128) 

 

(13) 

The constants used in Eq. (9) and Eq. (10) correspond to the standard coefficients of the RGB to YUV color 

space conversion as defined in widely adopted video and image processing standards ITU-R BT.601  

[52]. In this study, the transformation was performed to prioritize the luminance information, as it plays a 

crucial role in visual perception. The purpose of this conversion was to ensure that the luminance channel 
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receives appropriate weighting compared to the color channels, taking into account its greater significance in 

determining image quality. 

 

3.2. Phase 2: Choosing Network 

 It has been shown in previous studies that the blocking effect caused by JPEG should be examined with 

a separate concept considering the denoising process [26]. The blocking effect because of compression, 

especially at low bit rates, is sometimes examined separately [27]. Although most of the commonly used 

types of generated noise can be classified on a statistical basis, the blocking effect, a kind of compression 

problem, must be considered from a different perspective [28]. Because it is a noise caused by the 

quantification of DCT coefficients during compression [29]. From this point of view, two different pre-

trained CNNs have been used in this study. Then, separate pre-trained CNNs would be used for JPEG and 

other noise types. 

 The use of pre-trained CNN has a direct effect on the result in most cases. The use of a properly trained 

network is often of great importance in structures that require forecasting. In addition to this, the use of 

multiple pre-trained CNNs is an issue that has been investigated in recent years [30]. Because training a CNN 

is a challenging process in terms of time and calculation costs. In order to overcome this problem, the use of 

the GPU, which is very successful in matrix operations, is being examined with the parallel programming 

concept, and research on performance analysis continues [16]. The main purpose of using pre-trained CNN in 

this study is to avoid training cost. The training and test data of the CNN used are described below. 

 

3.2.1. Training and Testing the CNN 

 The pre-trained network used in the proposed model had been trained using the Berkeley segmentation 

dataset [31]. For the training, 400 images of 180×180 size were used. It has been noted that using more 

images for training did not provide a worthwhile improvement to the training cost. In that study, three noise 

levels had been used to train DnCNN for Gaussian denoising with known noise levels: σ = 15, 25 and 50. 
The patch size as 40 × 40, and crop 128 × 1,600 patches were set to train the model. In addition, to train a 

single DnCNN model for blind Gaussian denoising, Zhang et al. set the range of the noise levels as σ ∈ [0, 

55]. The patch size as 50×50 and the crop 128×3,000 patches were set to train the model [13]. 

 Two different datasets were used for test images in the BIQM. The first is the Berkeley segmentation 

dataset (BSD68) which is depicted above, the second is the 12 images which are detailed in the study of 

Zhang et al. [13]. In addition, test images are not included in the training dataset. 

 As mentioned above, a separate model is trained for JPEG. To generate the JPEG deblocking input, the 

image is compressed with a quality factor ranging from 5 to 99 using the MATLAB JPEG encoder. 

128×8000 image patch (size 50×50) pairs are generated for training. Operations on the patch pairs based on 

rotation/flip are used during mini-batch learning. 

 

3.3. Phase 3: Denoising with Deep CNN 

 The more successful this denoising process, which is used to develop the intended quality metric, the 

more successful it will be to predict the quality. For this reason, the denoising method used is extremely 

important. The method proposed by Zhang et al. (2015) has proven to be more successful than previous 

studies [13][10]. In addition, the feedforward denoising CNN developed by them gives a fast result if it is 

operated with a pre-trained network. Even if it is not pre-trained, the developed network is fully compatible 

with GPU parallel programming. 

 The utilization of pre-trained sets in MATLAB enables efficient and effective denoising processes. 

The selection of the denoising level is predefined and not customizable by the user. These functions are 

relatively new and do not offer input parameters for fine-tuning denoising applications according to desired 

rates. To enhance the quality prediction performance, one can consider increasing the number of denoising 

iterations or retraining the model using transfer learning techniques. While there are multiple methods to 

enhance denoising performance, it is important to note that the primary objective of this study is to propose 

an image quality metric rather than focusing on denoising techniques. 

 

3.4. Phase 4: Weightening by the HVS 

 In the fourth phase, an FR quality metric SSIM is used for quality calculation. However, when using the 

SSIM, the denoised image is assumed as a reference image in the BIQM. This measurement is made in the 

YUV color space to suit the HVS. In addition, as mentioned in Section 2.2, the ratio between light and color-

sensitive cells in the human eye should also be reflected in the Y and UV channels [52]. For this reason, the 

quality of the Y channel in the measurement result is 95% effective compared to the human eye, while only 

5% of the average of the U and V channels are effective [14]. 

 As a result, the image quality to be determined using the presented method expressed as: 
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 With this calculation, a color image, it is possible to determine the quality without a reference image. 

 

4. EXPERIMENTAL RESULTS 

During the evaluation of the experimental outcomes, it was observed that the proposed method 

achieved notable efficacy specifically in handling white noise. To further validate the performance of the 

method, correlation calculations were conducted not only on the widely utilized LIVE [32], CSIQ [33], and 

TID2013 [34] databases but also on additional databases TID2008 [35] and VCL@FER [36]. This broader 

selection of databases allowed for a more comprehensive assessment of the method's effectiveness across 

different noise levels. 

These databases encompass a range of characteristics such as varying numbers of observers 

contributing to the determination of mean opinion scores (MOS), different quantities of reference and noisy 

images, diverse image sizes, and distinct levels of distortion given in Table 2. These variations in the 

databases contribute to the diversity and richness of the data available for evaluation and enable a 

comprehensive analysis of the proposed method's performance across a wide range of conditions. 

 

Table 2. Characteristics of databases used in the study 

Database Reference Image Distorted Image Image Size Distortion Level Observers 

LIVE  20 779 866×591 9 161 

CSIQ 30 866 512×384 4-5 25 

TID2013 25 3000 512×384 4 985-971 

TID2008 25 1700 512×384 7-8 838 

VCL@FER  30 866 512×512 4-5 25 

 

To assess the degree of compatibility of the proposed study with the human visual system, the 

Spearman rank-ordered correlation coefficient (SROCC) and Pearson linear correlation coefficient (PLCC) 

coefficients were computed. These coefficients measure the degree of correlation between the proposed 

method's output and human perceptual judgments. A value closer to 1 for these coefficients indicates a 

stronger correlation between the proposed method and the human visual system. Table 3 provides the ground 

truth values for the study at hand on the LIVE database [32]. The numeric suffixes "1" and "3" represent the 

number of times the algorithm was executed on the Y channel. Additionally, the columns labeled as "JPEG" 

denote the usage of alternative pre-trained convolutional neural networks for JPEG compression. 

 

Table 3. Spearman rank-ordered correlation coefficient (SROCC) and Pearson linear correlation 

coefficient (PLCC) comparison of proposed BIQM on individual distortions types on the LIVE database. 

 SROCC-1 SROCC-3 SROCC-1 JPEG SROCC-3 JPEG PLCC-1 PLCC-3 PLCC-1 JPEG PLCC-3 JPEG 

JP2K 0.87237 0.86775 0.90121 0.85892 0.68843 0.74361 0.85593 0.82028 

JPEG 0.87759 0.83079 0.82710 0.71597 0.64191 0.67912 0.81639 0.71417 

White Noise 0.98198 0.98239 - - 0.95907 0.96331 - - 

Gaussian Blur 0.73353 0.63188 - - 0.63065 0.65520 - - 

Fast Fading 0.51002 0.55511 - - 0.02816 -0.05217 - - 

Average 0.79510 0.77358   0.58964 0.59781   

 

Upon initial examination, the table illustrates the efficacy of the denoising method for both white 

noise and compression noise. However, the observed correlation for Gaussian blur and fast fading is 

comparatively lower due to the inherent blurring effect of the denoising process, particularly in repetitive 

scenarios. However, it is evident that using a CNN specifically trained for JPEG compression yields 

improved results for images that have undergone compression, such as those in the JP2k and JPEG formats. 

The experimental studies have demonstrated the notable success of the proposed method, 

particularly in white noise. To thoroughly investigate this aspect, an in-depth analysis was conducted on the 

state-of-the-art LIVE, CSIQ, and TID2013 databases, focusing specifically on white noise. In order to ensure 

a fair evaluation, fifteen different IQAs were assessed, and the SROCC results are given in Table 4. It is 

noted that the proposed BIQM produces scores ranging from 0 to 1, where higher values indicate superior 

perceived quality and lower values correspond to more significant distortions. 
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Table 4. Comparative Analysis of SROCC Values for IQAs Across Different Databases 

IQA METHODS LIVE CSIQ TID2013 

DIIVINE [37] 0.979 0.940 0.906 

BLIINDS-II [38] 0.941 0.922 0.741 

NIQE [39] 0.961 0.835 0.852 

IL-NIQE [40] 0.977 0.866 0.904 

CORNIA [41] 0.979 0.941 0.935 

BRISQUE [9] 0.978 0.957 0.900 

GMLOG [42] 0.97S 0.943 0.946 

NFERM [43] 0.980 0.938 0.931 

FRIQUEE [44] 0.975 0.941 0.950 

BJLC [45] 0.986 0.962 0.959 

HOSA [46] 0.975 0.604 0.853 

BIECON [47] 0.980 0.902 0.717 

WaDIQAm [1] 0.982 0.974 0.843 

DB-CNN [48] 0.980 0.948 0.790 

Proposed BIQM 0.981 0.951 0.919 

 

Table 5 presents the SROCC results obtained from various IQAs for white noise in the TID2008 and 

VCL@FER databases. These databases, although less commonly used nowadays, contain a variety of image 

characteristics and noise types that can provide valuable insights into the performance of IQAs. 

The performance of the proposed BIQM was compared against 14 cutting-edge NR-IQA methods 

across a range of benchmark datasets. As demonstrated in Table 4, BIQM exhibits robust performance on the 

LIVE, CSIQ, and TID2013 databases, achieving SROCC values of 0.981, 0.951, and 0.919, respectively. The 

values obtained are consistently competitive with, or in some cases superior to, leading NR metrics such as 

BRISQUE, BLIINDS-II, NIQE, and CORNIA. It is noteworthy that BIQM demonstrates a high degree of 

robustness for white noise distortions, aligning closely with the human visual system (HVS) perception. 

Furthermore, the results presented in Table 5 offer additional verification of the proposed approach's 

generalisation ability, utilising the TID2008 and VCL@FER datasets. In this study, the BIQM model 

demonstrated its capability to achieve correlation values of 0.869 (TID2008) and 0.882 (VCL@FER), which 

exceed the performance of conventional NR metrics such as BIQI and NIQE. Furthermore, the BIQM model 

exhibited a comparable or superior performance to BRISQUE in these datasets. 

These comparisons demonstrate that the proposed BIQM not only competes with but also surpasses 

several well-established NR-IQA models across diverse datasets. The consistent results observed across five 

distinct benchmark databases underscore the robustness, generalisation, and practical applicability of BIQM. 

This comprehensive evaluation directly addresses the concern regarding performance comparison with other 

methods and strengthens the claim that BIQM offers a novel and effective solution for blind image quality 

assessment. 

In addition to the ground truth evaluation, peer-based PSNR tests were conducted to compare the 

image quality. The test set consisted of images with various types of commonly used noise, including 

Gaussian, Poisson, salt & pepper, sharpen, and JPEG. While the PSNR metric described in Section 2.4 failed 

to sort the images based on their quality, the presented metric allowed for accurate ranking of the images 

from the highest to the lowest quality. To enhance the visibility of noise effects, selected parts of the images 

were enlarged during the comparison. 

 

Table 5. Comparative Analysis of SROCC Values for IQAs on TID2008 and VCL@FER Databases. 
 TID2008 VCL@FER 

BLIINDS-II [38] 0.779 0.894 

DIIVINE [37] 0.812 0.913 
BRISQUE [9] 0.853 0.823 

NIQE [39] 0.786 0.848 

BIQI [7] 0.798 0.703 
QAC [49] 0.707 0.882 

Proposed BIQM 0.869 0.882206 
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As stated above, according to the PSNR, which is an FR metric, all images in Fig. 5 have the same 

PSNR value (28.29 dB). However, this is not a suitable situation for the HVS, and quality difference between 

images is perceived. In addition, the original image may not be available, so the use of the NR metrics is 

inevitable. It is also shown in Table 5 that other NR quality metrics mentioned in the introduction section do 

not give satisfactory results. 

According to the BIQI, the PIQUE, and the BRISQUE metrics used in comparisons, when the image 

quality result approaches 0, it is assumed that the visual quality of the image increases. On the contrary, when 

the BIQM result approaches 0, the visual quality of the image decreases. 

 

 
Figure 5. Comparison of “Monarch” images with different types of distortions, all with PSNR = 28.29 dB: 

(a) Original image. (b) Sharpen image. (c) Salt & Pepper image. (d) Poisson image. (e) JPEG image. (f) 

Gaussian image. 

 

Figure 5 and Table 6 show that the PIQUE and the BRISQUE metrics exhibit limitations in 

accurately determining the impact of salt & pepper, JPEG, and gaussian noises, as well as differentiating 

between salt & pepper and Gaussian noise. Despite the fact that the HVS perceives the Gaussian noisy image 

as the worst in terms of visual quality, the these metrics suggest that it has the best image quality among the 

different types of noise. 

 

Table 6. Performance comparisons of NR image quality metrics for Monarch image. 
 BIQI PIQUE BRISQUE Proposed BIQM 

Sharpen 5.937 14.891 10.777 0.9863 

S&P 13.774 37.777 32.144 0.9554 

Poisson 21.104 23.784 25.751 0.9531 

JPEG 31.810 58.476 53.689 0.9229 

Gaussian 32.220 34.930 30.017 0.8587 

 

Another example is presented in Figure 6 with images prepared in the same PSNR value (29.30 dB). 

Comparison results are given in Table 7. 

 

Table 7. Performance comparisons of NR image quality metrics for Parrot image. 
 BIQI PIQUE BRISQUE Proposed BIQM 

Sharpen 13.622 17.869 12.998 0.9725 

Poisson 21.710 23.369 21.684 0.9549 

S&P 13.179 34.132 16.137 0.9528 

JPEG 58.217 78.061 48.961 0.9225 

Gaussian 30.622 43.677 31.687 0.8600 
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Figure 6. Comparison of “Parrot” images with different types of distortions, all with PSNR = 29.30 dB: (a) 

Original image. (b) Sharpen image. (c) Poisson image. (d) Salt & Pepper image. (e) JPEG image. (f) 

Gaussian image. 

 

As shown in Table 7, while the BIQI struggled to distinguish between sharpen and salt & pepper 

noise, the BIQM yielded a successful result under HVS in this regard. Similarly, the PIQUE failed to separate 

JPEG and Gaussian noises, and the BRISQUE failed to separate Poisson and salt & pepper noises. 

Even if the quality measurement scenario is FR, the PSNR values are equal (i.e., 24.15 dB), on the 

contrary, the BIQM can distinguish digital images by considering the HVS as seen in Figure 7. Table 8 gives 

performance comparisons of NR methods and the BIQM method (all noisy images have the same PSNR 

(24.15 dB) values). 

 
Figure 7. Comparison of “Wall” images with different types of distortions, all with PSNR = 24.15 dB: (a) 

Original image. (b) Sharpen image. (c) Poisson image. (d) Salt & Pepper image. (e) JPEG image. (f) 

Gaussian image. 

 

Table 8. Performance comparisons of NR image quality metrics for Wall image. 
 BIQI PIQUE BRISQUE Proposed BIQM 

Sharpen 39.640 54.590 32.861 0.9697 

Poisson 33.094 47.891 32.245 0.9145 

S&P 31.690 51.913 50.338 0.9025 
JPEG 62.707 64.784 63.948 0.8198 

Gaussian 41.810 56.012 39.287 0.8113 

 

The results obtained from the BIQI and PIQUE methods indicate that the quality values of 

sharpened and Gaussian images are similar, while the quality values of sharpened and Poisson images are 

close according to the BRISQUE method. However, these results do not align with the HVS. In contrast, 

visual examination reveals that the Gaussian and sharpened images exhibit significant differences. The 

BIQM metric supports this perceptually noticeable result with its measurement outcomes. 
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Table 9 presents the comparative performance of various NR image quality metrics, including the 

BIQM, BIQI, PIQUE, and BRISQUE, on different noisy images. The noisy variations within each image 

have the same PSNR values, namely Flowers (30.87 dB), House (26.22 dB), and Whitewater (25.73 dB). 

While sharpened noise produces less quality deterioration at the same PSNR than other types of noise, some 

NR image quality metrics fail to accurately distinguish between them. 

Similarly, other NR image quality metrics exhibit instability in differentiating salt & pepper and 

gaussian noise. However, visual examination of the noisy images in Fig. 5, Fig. 6, and Fig. 7, in the context 

of the HVS, shows that salt & pepper and gaussian images differ significantly in quality at the same PSNR 

value, and the BIQM confirms these results. The corresponding images used in the assessments of Table 9 

are shown in Figure 8. 

 

Table 9. Performance comparison of NR image quality metrics for different noisy images. I1, I2, 

and I3 as Flowers, House, and Whitewater respectively. 
  Sharpen Poisson S&P Gaussian JPEG 

I1 

BIQI 26.268 17.228 21.912 23.962 43.799 

PIQUE 27.477 18.369 43.507 25.775 65.467 
BRISQUE 20.051 22.893 32.576 24.981 56.814 

Proposed BIQM 0.9906 0.9727 0.9696 0.9320 0.9084 

I2 

BIQI 14.935 28.202 26.055 38.721 55.287 

PIQUE 37.516 38.985 32.567 54.400 74.276 
BRISQUE 31.585 29.097 41.455 36.245 61.439 

Proposed BIQM 0.9695 0.9136 0.9108 0.7855 0.8531 

I3 

BIQI 38.096 27.753 26.742 39.313 51.228 

PIQUE 32.644 31.164 31.683 44.590 61.161 

BRISQUE 19.378 14.874 53.989 25.267 58.942 

Proposed BIQM 0.9801 0.9437 0.9456 0.8348 0.8266 

 

I1 I2 I3 

Figure 8. Images compared in Table 8. I1, I2, and I3 are Flowers, House, and Whitewater, respectively. 

 

A survey was conducted to understand the effect of the presented method and measure its 

compatibility with the HVS. In this survey conducted with 100 participants, random participants were asked 

to rank 3 different images given in Figure 9 according to their quality. 

 

   

(a) (b) (c) 

Figure 9. Images on which the survey was conducted. (a) Lena. (b) Peppers. (c) Baboon. 
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The sorting of these three images, each of which added a different amount of noise, was made with a 

strict distinction among the participants. Based on the survey results presented in Figure 10, a clear majority 

of the participants ranked the image in Figure 9; (a) as the worst quality, followed by (b) and then (c) as the 

best quality. 

 

 
Figure 10. Result of the survey. 

 

According to the evaluations of the participants, a majority of respondents (66 out of 100) rated 

Lena as the image with the lowest perceived quality. Similarly, 46 participants considered Peppers to be the 

median-quality image, while 56 participants ranked Baboon as the image with the highest perceived quality. 

These findings provide insights into the subjective assessment of the images in Figure 9. Additionally, the 

quality measurements of these images using NR-IQAs are presented in Table 10. 

 

Table 10. NR-IQA results of survey images. 
Images 

IQA BIQI PIQUE BRISQUE Proposed BIQM 

Lena 59.7726 68.4288 44.5229 0.4031 

Peppers 58.4485 66.1915 42.0760 0.4453 

Baboon 59.3933 67.4209 46.3070 0.5576 

 

When considering the collective findings from Table 9 and Figure 10 it can be observed that the 

BIQM demonstrates strong compatibility with the human visual system (HVS). Conversely, the results 

obtained from the application of the BIQI, PIQUE, and BRISQUE metrics to the Peppers image do not align 

well with the HVS. Furthermore, the survey conducted indicates that utilizing the proposed BIQM as a no-

reference quality metric is more preferable in terms of user satisfaction and its alignment with visual 

perception. 

 

5. CONCLUSION 

This study proposes a new deep CNN-based NR image quality metric (BIQM) consisting of four 

phases, including RGB to YUV transform, CNN determination considering the file type, denoising with 

deep-CNN, and quality value calculation. The experimental results demonstrate the effectiveness of the 

presented method, particularly for white noise. The SROCC values indicate that BIQM provides more 

consistent results in terms of HVS compared to its counterparts, particularly for images corrupted with white 

noise. Moreover, the survey results suggest that BIQM could potentially enhance user satisfaction when used 

for image quality measurement. 

Another important finding of this survey, consistent with the results of some studies in recent years, is 

the challenge of distinguishing between low-level and high-level noise images [50, 51]. For future research, 

investigating the relationship between the amount of noise and the human visual system presents an area of 

growing interest. Furthermore, with the advancements in CNN models, developing new high-accuracy 

metrics that do not require human scoring is becoming an increasingly important research area. 

On the other hand, when performance evaluation is made, using pre-trained CNN ensures that it 

operates in a reasonable time even for low-medium level hardware. Performance improvement is possible 

with the use of advanced GPUs and CPUs. In this way, a fit-for-purpose deep CNN can be trained using a 

larger and more suitable data set. Finally, the method of working in YUV space and weighting these channels 

will go further with the development of the concepts of vision and visual perception for future works. 
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In brief, the main contribution of this work is the integration of DnCNN residual learning with HVS-

based channel weighting. This combination improves the robustness of BIQM against various distortions. 

Unlike existing NR-IQA models, which usually rely only on handcrafted features or lack perceptual 

weighting, our BIQM bridges deep denoising and perceptual modeling. As a result, it provides a more 

perceptually consistent and generalizable solution for blind image quality assessment. 

The computational complexity of the presented algorithm has been tested only when MATLAB R2022b 

is running. Technicial Specifications; Intel® Alder Lake Core™ i5-12500H 12C/16T; 18MB L3; E-CORE 

Max 3.30GHZ E-CORE Max 4.5GHZ;45W;10nm, nVIDIA® GeForce® RTX3050 TI Max-Performance 

4GB GDDR6 128-Bit DX12, 32GB (1x32GB) DDR4 1.2V 3200MHz SODIMM, 500GB PCIe M.2 2280 3.0 

x4 (R: 2050 MB/s - W: 940 MB/s). Under these conditions, the presented work is completed in an average of 

1.252 seconds. With the parallel pool, this time is reduced to 1.103 seconds. 
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