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Abstract

Identifying marine fish species accurately can be difficult due to their subtle
anatomical and color pattern similarities, which often result in misclassification
during ecological assessments and fisheries operations. Manual identification
methods are time-consuming and prone to errors especially in high throughput
environments such as fish markets. In this study, transfer learning is used to
evaluate three deep learning models ResNet-50, AlexNet and GoogLeNet on a
total of 20,325 images from twenty marine fish species acquired from Kuantan
(Pahang) and Mengabang Telipot (Kuala Nerus), Malaysia. All images were
morphologically classified as complete fish, head, body and tail. The dataset was
subjected to preprocessing procedures which encompassed image resizing, pixel
normalization and data augmentation techniques that consists of random rotation
(£15°), horizontal flipping, adjustments to brightness and contrast (£20%) and
cropping. Subsequently, the dataset was partitioned into 80% training set (16,260
images), 10% validation set (2,032 images) and 10% testing set (2,033 images).
The classification patterns were analyzed using confusion matrices and standard
metrics such as accuracy, precision and recall. ResNet-50 outperformed other
models achieving ideal results with 100% accuracy, precision and recall in
every category. With 99.5% and 99.4% accuracy, GoogleNet and AlexNet came
in second and third, respectively. This study shows that deep learning models
especially ResNet-50 achieved an accurate and efficient way to classify fish
species automatically. With multi-view images, data augmentation and transfer
learning, the model performs well even in difficult visual conditions. These
results support its use in real-time fisheries monitoring, biodiversity studies, and
environmental impact assessments.
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1. Introduction

Fish classification plays a vital role in eco-
logical monitoring, biodiversity conservation, and
sustainable fisheries management (Yang et al., 2024).
Traditionally, this process has relied on morphological
characteristics and DNA barcoding techniques. While
these methods provide results, they demand signif-
icant resources and require highly skilled personnel,
limiting their practicality for large-scale applications
(Igbal ef al., 2021; Hilal ef al., 2023). Moreover, the
hands-on aspect of these methods makes them suscep-
tible to human mistakes and personal bias, particularly
when addressing uncommon or morphologically akin
species. Consequently, the scalability and practicali-
ty in contemporary fisheries science continue to pose
significant challenges.

Recently, deep learning an advanced branch
of artificial intelligence has emerged as a powerful
tool for automating fish classification, offering high
accuracy with minimal human intervention (Saleh et
al., 2022; Hasan et al., 2022; Han et al., 2022). Deep
learning models, particularly Convolutional Neural
Networks (CNNs) have significantly transformed the
field of image recognition by effectively extracting
complex hierarchical features directly from raw im-
age data (Peddina and Mandava, 2025; Prasetyo et al.,
2022; Zhang et al., 2022; Wang et al., 2023, Iqtait et
al., 2024). In contrast to traditional computer vision
methods that rely on manual feature extraction, CNNs
autonomously learn spatial and temporal patterns,
thereby improving accuracy and reducing the neces-
sity for specialized domain knowledge. Nevertheless,
the capacity of CNNs to classify various components
of fish anatomy, including the head, body, and tail, re-
mains challenging due to high visual similarity in tex-
ture and shapes across species, which is less distinct
than in typically general objects classification (Lan ef
al., 2020; Ahmad et al., 2023).

A typical CNN model is made up of several
essential elements: the input image, convolutional lay-
er, pooling layer, activation function, fully connected
layer, and output layer (Rawat and Wang, 2017; Song
et al., 2019). The process starts with the input image,
which represents visual data from the pixels of a dig-
ital image. The convolutional layer employs a kernel
or filter to automatically identify specific features,
producing a comprehensive channel representation of
the input images. Research indicates that CNN mod-
els like ResNet, AlexNet, and GooglLeNet effectively
classify marine organisms, including various fish spe-
cies, plankton, and coral (Allken e al., 2019; Wang et
al.,2021; Veluswami and Panneerselvam, 2021; Zhou
et al., 2022; Alinsug et al., 2024; Zhai et al., 2023).

However, the growing potential of research reveals
significant deficiencies in model evaluation, especial-
ly concerning classification accuracy across differ-
ent fish body areas. This area remains poorly under-
stood, even though comprehensive categorization is
crucial for effective real-time underwater monitoring
systems. Furthermore, many current models rely on
broad benchmark datasets, which limit their capacity
to adapt specific local marine environments.

Limited research has methodically evaluated
various CNN architectures on a consistent dataset,
employing uniform performance metrics specifically
for fish classification (Dong er /., 2023; Rawat and
Wang, 2017; Sun et al., 2020). Current studies infre-
quently investigate the performance of various CNNs
across diverse data conditions or with images taken
in authentic aquatic settings (French ez al., 2020; Is-
mail et al., 2021; Kaya et al., 2023). Additionally, the
visual background and camera settings used during
image acquisition are often overlooked, even though
they significantly impact feature extraction and model
learning. Therefore, it’s crucial to conduct a more in-
depth investigation into fish image classification that
considers both full-body images and region-specific
segments across different CNN models.

This study examines how effectively three
prominent CNN architectures ResNet50, AlexNet,
and GoogLeNet classify 20 local marine fish species
using a dataset collected in controlled laboratory set-
tings. The research aims to address this question on
How accurate are CNN models in classifying fish spe-
cies when employing augmented and region-specific
image data? The experimental design includes both
full-body images and cropped images that concen-
trate on the head, body, and tail, aimed at evaluating
classification performance in specific regions. Model
performance is evaluated through established metrics
like accuracy, precision, and recall, complemented by
confusion matrices and training loss curves (Ahmed
etal., 2023)

This research propels the field of ecological
Al by addressing several research gaps through inno-
vative dataset design, data augmentation techniques,
and a comparative analysis of CNN architectures (Ben
Tamou et al., 2022; Deka et al., 2023). The study con-
centrates on developing a carefully annotated fish im-
age dataset, segmented by regions and representative
of authentic marine environments (Zheng et al., 2024).
The study presents a comparison of three notable CNN
models, highlighting their real-world uses and limita-
tions. The results aim to improve scalable and accurate
fish classification by offering an advanced Al-based
approach to enhance fisheries management, species
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monitoring, and marine conservation efforts. To tai-
lor the models for fish species identification, trans-
fer learning was applied (Deka er al., 2023; Zheng et
al., 2024). Each model underwent training across ten
separate sessions, using the same hyperparameters to
ensure consistency and evaluate performance through
various iterations. This standardized training approach
guaranteed stable results despite the typical random
variations associated with deep learning optimization
methods.

2. Materials and Methods
2.1 Material

The tools used in this research were selected
for their ability to obtain high-resolution aquatic im-
ages suitable for classification purposes and to recre-
ate a controlled aquatic environment.

2.1.1 The equipments

Fish images were acquired using a Huawei
P30 Lite smartphone equipped with a 24 MP wide
lens and Al scene recognition, ensuring consistent
high-resolution output suitable for training deep learn-
ing models. This device features a triple-lens setup
comprising a 24 MP wide lens, an 8 MP ultra-wide
lens, and a 2 MP depth sensor, all precisely designed
to deliver high-resolution images of 1080 x 2312 pix-
els. The integration of Al scene recognition and image
stabilization features guarantees consistent and sharp
image quality, which is crucial for training deep learn-
ing models. Furthermore, the study used a standard
glass aquarium measuring 30 cm in height, 30 cm in
width, and 40 cm in length as the observation cham-
ber. The transparent glass walls minimized distortion
and maintained uniform lighting throughout the im-
age acquisition process. The aquarium was designed
with standardized dimensions and substrate depth to
replicate natural marine conditions while optimizing
image clarity and fish mobility for classification pur-
poses (Zheng et al., 2024).

2.1.2 The materials

The research initiative concentrated on the
classification of fish species utilizing Convolutional
Neural Networks (CNN) and depended on two es-
sential materials: sand and saltwater. These materials
were chosen due to their significant role in the ma-
rine ecosystem, which is imperative for the study of
various fish species. By using sand and saltwater, re-
searchers were able to create environments that close-
ly mimic the natural habitats of the fish being studied.
Furthermore, the artificial saline mixture of saltwa-
ter was meticulously prepared and introduced into
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the aquarium to a depth of 20 centimeters, yielding
an estimated volume of 24 liters, determined by the
tank’s dimensions (40 cm length X 30 cm width x 30
cm height). The designated water depth was carefully
selected to mimic the natural environment of the fish
species and to enhance optimal camera focus from dif-
ferent angles. In addition, a consistent layer of 5.0 cm
thick natural beach sand was evenly distributed along
the tank’s bottom. Adding beach sand achieved two
main goals: (1) it replicated the fish species’ natural
habitat, and (2) it enhanced the visual background’s
complexity, which supports the development of effec-
tive computer vision models (Zheng ef al., 2024).

2.1.3 Ethical approval

This research did not include the use of live
experimental animals, humans, or any protected spe-
cies. Consequently, there was no requirement for ethi-
cal approval from an institutional animal care and use
committee. Nevertheless, the research adhered to es-
tablished ethical principles for gathering image-based
data in environmental contexts. As precaution, any fu-
ture studies involving biological samples or live sub-
jects will secure ethical clearance in accordance with
institutional policies and national regulations.

2.2 Method
2.2.1 Experimental design

The experimental framework used in this
study and provides a systematic overview of the re-
search workflow. This framework encompasses data
collection, data augmentation, dataset training, model
evaluation, and classification test. These components
are essential for comprehending the contributions of
each phase to the overall success of the research ob-
jectives (Figure 1). By carefully following this frame-
work, the study aims to ensure strong results and im-
prove the reliability of the findings.

2.2.2 Fish specimen collection

Twenty marine fish species were collected
for classification, as detailed in Table 1. Data collec-
tion took place over a 12-month period, from Janu-
ary to December 2024, enabling analysis of season-
al variations in species availability. Specimens were
obtained from various local markets and vendors in
Kuantan (Pahang) and Mengabang Telipot, Kuala
Nerus (Terengganu), Malaysia. These locations were
thoughtfully chosen to ensure a thorough representa-
tion of the marine biodiversity along the East Coast of
Peninsular Malaysia.

2.2.3 Data augmentation

Copyright ©2025 Faculty of Fisheries and Marine Universitas Airlangga
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This study employed a range of image augmen-
tation techniques on the unprocessed dataset to en-
hance the robustness and generalizability of the fish
classification model. The methodologies utilized were
meticulously developed to improve the dataset and in-
corporate variability that accurately reflects real-world
scenarios in a synthetic environment. After acquiring
images under controlled conditions, each original im-
age was enhanced through various geometric and pho-
tometric transformations. Drawing from the research
conducted by Yasin ez al. (2023), this study examined
various image manipulation techniques, such as rota-
tions within a range of -30° to +30°, horizontal and
vertical flips, scaling, cropping, and modifications to
brightness and contrast. The selected methodologies
endeavour to replicate the natural orientation of fish as
well as the variations in lighting. This approach facil-
itates the model’s ability to acquire invariant features
across a range of conditions (Li ef a/., 2024). The ex-
ecution of these transformations was particularly im-
perative for species with limited initial sample sizes,
thereby ensuring sufficient representation throughout
the dataset.

environments. Images were captured using a station-
ary camera setup that ensured consistent lighting,
maintained a 90-degree angle from above, and was
positioned 15 c¢cm away, which promoted uniformity
among samples. This method was designed to mini-
mize environmental noise and facilitate precise fea-
ture extraction during model training and validation.

2.2.4 Preparation of the training dataset

After augmentation, the dataset was divided
into training and testing subsets with an 80:20 strat-
ified split to maintain the proportional representation
of all species in both sets. Before training began, each
image was resized to 224 x 224 pixels to comply with
the input specifications mandated by the convolutional
neural network (CNN). Taxonomists performed exten-
sive validation and label annotation on each image, en-
suring ground truth accuracy. The research employed
three advanced pre-trained CNN models ResNet50,
AlexNet, and GoogLeNet chosen for their established
image classification effectiveness and capacity for
fine-tuning on specific datasets. Transfer learning was

Data
Augmentation

Data
Collection

—

Training
Dataset

Model
Evaluation

Classification
7 Test

Figure 1. The process of experimental design.

The operations resulted in an expansion of the
dataset to 20,325 images, which showcased 20 distinct
fish species. This enhanced dataset was specifically
designed to address class imbalance and to enrich the
variety of included visual features. Considerable ef-
forts were undertaken to ensure that augmentation was
implemented consistently across all classes, thereby
preserving the balance of the dataset and mitigating
the emergence of any potential bias. This approach
aligns with the best practices noted in recent research
(Okafor et al., 2018), indicating that augmentation im-
proves classification performance and acts as a regu-
larization technique during model training.

To develop a varied image dataset for model
training, images of each species were captured in two
controlled settings: (i) on a flat surface with laminat-
ed white A3 paper as the background and (ii) in an
artificial underwater environment, as shown in Fig-
ures 2 and Figure 3. The underwater scene included a
transparent aquarium filled with saltwater and natural
beach sand from local coastal areas to replicate genu-
ine marine conditions. This two pronged background
strategy sought to improve the model’s versatility by
integrating both controlled and naturalistic imaging

JIPK: Scientific Journal of Fisheries and Marine

employed to tailor the models for the specific task of
recognizing fish species. Each model underwent ten
training sessions, utilizing the same hyperparameters
to ensure consistency and evaluate performance across
various iterations. This consistent training methodolo-
gy guaranteed that the outcomes were not affected by
the random fluctuations typically associated with deep
learning optimization techniques. Furthermore, to as-
sess the distinguishing capability of various anatomi-
cal areas, classification was conducted utilizing both
full-body images and segmented images that concen-
trated on the fish head, mid-body, and tail. This com-
prehensive analysis across multiple regions sought to
pinpoint the body part that holds the most significant
visual cues for precise species classification, provid-
ing essential insights for the advancement of more ef-
fective and localized recognition systems.

2.2.5 Classification and assessment

After finishing the model training, evaluations
for classification were carried out on all three CNN
architectures. Performance evaluation was conducted
through three main tools: the confusion matrix, train-
ing progress graphs, and classification test reports. The
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(2) () (1)

(s) ®

Figure 2. Images of fish species presented on a laminated A3 background as well as under underwa-
ter conditions: (a) Abalistes stellatus, (b) Alectis indical/indicus, (¢) Carangoides gymnosthetus, (d)
Pampus argenteus, (€) Epinephelus bleekeri, (f) Euthynnus affinis, (g) Johnius dussumieri, (h) Lates
calcarifer, (1) Lethrinus lentjan, (j) Lutjanus gibbus, (k) Megalaspis cordyla, (1) Nemipterus furcosus,
(m) Pampus argenteus, (n) Parastromateus niger, (0) Psettodes erumei, (p) Scarus ghobban, (q) Selar
crumenophthalmus, (r) Seriolina nigrofasciata, (s) Trachinotus blochii, (t) Trichiurus lepturus.
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confusion matrix facilitated the calculation of funda-
mental performance metrics, encompassing overall
accuracy, precision, and recall. Accuracy is defined
as the ratio of correctly classified samples to the to-
tal number of samples, whereas precision assesses the
proportion of true positives among all positive predic-
tions. Recall, also known as sensitivity, indicated the
percentage of true positives accurately recognized by
the model. The metrics were derived using the estab-
lished formula.

Accuracy is calculated by taking the sum of true
positives and true negatives, divided by the total of
true positives, false positives, true negatives, and false
negatives.

Accuracy = (Tp+ Tn)/(Tp+ Tn+ Fp+ Fn)x100%.(Eq 1)

Accuracy is determined by the ratio of true
positives to the sum of true positives and false posi-
tives.

Precision = TP/(Tp + FP) x100%.......c..ccceun..... (Eq 2)

Recall is calculated as the ratio of true positives
to the sum of true positives and false negatives.

Recall = Tp/(Tp+ Fn) x100%.....cccceeeeveireeranns (Eq3)

Where true positives (7p), true negatives (7n),
false positives (Fp), and false negatives (Fn) of the
model’s predictions.

These metrics provided a comprehensive view
of model performance, enabling a detailed analysis
that goes beyond mere accuracy numbers. Graphs il-
lustrating training progress were created to monitor
the changes in loss and accuracy throughout the train-
ing epochs. The visualizations played a crucial role in
evaluating the learning behaviour of each CNN and
pinpointing possible challenges like under fitting or
overfitting. Given the constraints of the hardware, we
presented representative graphs for each model to il-
lustrate the trends in convergence. The classification
tests involved comparing results across various ana-
tomical regions to determine which segment yielded
the highest accuracy. This segmentation method sup-
ports the overarching goal of creating optimised, re-
source-efficient models for immediate application in
aquaculture systems.

2.3 Analysis Data

The evaluation of model performance was con-
ducted comprehensively through both statistical and
visual techniques utilizing MATLAB Software 2022b,
which is licensed to Universiti Malaysia Terengganu.
Confusion matrices were created for each model to as-
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sess the accuracy of predictions for each fish species.
The matrices offered valuable insights into particular
inter-class misclassifications, especially among visu-
ally similar species, aiding in pinpointing the areas
where the model faced challenges in distinguishing
between different fish types. Class-wise analysis of
precision and recall scores was conducted to evalu-
ate the performance of each model in managing both
prevalent and infrequent species. Classification re-
ports compiled all performance metrics and were uti-
lized to evaluate models comprehensively, allowing
for the identification of the most effective architec-
ture. The examination further encompassed reviewing
training progress charts for each CNN and graphing
training accuracy and loss over the epochs. The curves
facilitated the evaluation of how the model converges
and helped pinpoint any irregularities in the training
process.

The study aimed to assess not only model accu-
racy but also the practicality of implementing Al-driv-
en classification within actual aquaculture and marine
monitoring settings. The research offered important in-
sights into practical deployment considerations by an-
alysing how effectively the models distinguish species
based on various anatomical features. This analysis
highlighted the importance of image quality control,
camera positioning, and habitat variability. The data
indicated that convolutional neural network-based
models can attain impressive accuracy in species clas-
sification if trained with well-augmented and balanced
datasets in controlled settings. These findings contrib-
ute to the advancement of automated fish identifica-
tion systems designed to support sustainable fisheries
and ecological monitoring efforts.

3. Results and Discussion
3.1 Result

The confusion matrix serves as a tabular rep-
resentation employed to assess the performance of a
classification model by juxtaposing its predicted labels
with the actual labels. In the context of this study, it
elucidates the precision with which the deep learning
model differentiates each species of marine fish. The
matrix exhibits precise predictions along the diagonal;
however, the off-diagonal entries signify instances of
misclassification. Through a comprehensive analysis
of this matrix, it can differentiate specific species that
the model consistently misclassifies, thereby enabling
subsequent improvements.

The graph depicting training progress effective-
ly visualizes the model’s learning trajectory gradual-
ly, typically illustrating metrics such as accuracy and
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loss throughout the training process epochs. In this
research, the graphical representation demonstrates
the enhancement of the model’s performance across
each epoch. A consistent rise in accuracy accompanied
by a corresponding decline in loss indicates effective
learning. Conversely, any irregularities may signal
complications such as overfitting or under fitting. It
is imperative to monitor this graph to ensure that the
model is training as anticipated and to facilitate the
implementation of necessary adjustments.

Figure 4 displays the confusion matrix results
from the initial training sessions of each Convolution-
al Neural Network (CNN) model. In Figure 4(a), the
ResNet50 model’s confusion matrix shows outstand-
ing performance, achieving an accuracy, precision,
and recall of 100%. This result demonstrates that the
ResNet50 model effectively identified all fish species
without any false positives or negatives. Figure 4(b)
presents the confusion matrix for the AlexNet mod-
el, which recorded an accuracy of 99.9%, alongside

Table 1. Taxonomy of twenty selected fish species in this study

No. Family Genus Species

1 Balistidae Abalistes Abalistes stellatus

2 Carangidae Scyris Alectis indica/indicus
3 Carangidae Carangoides Carangoides gymnosthetus
4 Serranidae Epinephelus Epinephelus areolatus
5 Serranidae Epinephelus Epinephelus bleekeri
6 Scombridae Euthynnus Euthynnus affinis

7 Sciaenidae Johnius Johnius dussumieri
8 Latidae Lates Lates calcarifer

9 Lethrinidae Lethrinus Lethrinus lentjan
10 Lutjanidae Lutjanus Lutjanus gibbus

11 Carangidae Megalaspis Megalaspis cordyla
12 Nemipteridae Nemipterus Nemipterus furcosus
13 Stromateidae Pampus Pampus argenteus
14 Carangidae Parastromateus Parastromateus niger
15 Psettodidae Psettodes Psettodes erumei

16 Scaridae Scarus Scarus ghobban

17 Carangidae Selar Selar crumenophthalmus
18 Carangidae Seriolina Seriolina nigrofasciata
19 Carangidae Trachinotus Trachinotus blochii
20 Trichiuridae Trichiurus Trichiurus lepturus

3.1.1 Confusion table

perfect precision and recall at 100%. While its accuracy

Copyright ©2025 Faculty of Fisheries and Marine Universitas Airlangga
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Table 2. The process of data augmentation applied to enhance the training dataset for deep learning mod-
els

Pre-Processing Images

Whole Picture
Brightness/Contrast (sharp-
en 25%):

(a) 0%/0% (b) 10%/10%
() 20%/20% (d) 30%/30%

(b) (©) (d)

Same  Brightness/Contrast
as above images (Sharpen

-25%): (e), (D), (2), (h)

@) (2 (h)

Head (Cropped)
Brightness/Contrast:
(a) 0%/0% (b) 10%/10% (c) (d)

(c) 20%/20% (d) 30%/30%

Same Brightness/Contrast
as above images (Sharpen

-25%): (e), (D), (2), (h)

(& (h)

Body (Cropped)
Brightness/Contrast:

(a) 0%/0% (b) 10%/10%
() 20%/20% (d) 30%/30%

(b) (©) (d)

Same Brightness/Contrast
as above images (Sharpen

-25%): (e), (D), (2), (h)

(2) (h)

JIPK: Scientific Journal of Fisheries and Marine
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TP
@ |

(b) (© (d)

Tail (Cropped)
Brightness/Contrast:

(a) 0%/0% (b) 10%/10%
(c) 20%/20% (d) 30%/30%

Same Brightness/Contrast
as above images (Sharpen

-25%): (e), (D), (2), (h)

® (2 (h)

Rotation
(a) 0° (b) 90°
(c) 180° (d) 270°

®  (© @

Same rotation as above
images (Sharpen -25%): (e),
(9, (&), (h)

© o (@ (h)

*The underwater images also through a similar data augmentation process as above.

Aquarium Water
q o

| A

Salt Water

=20.0 cm

height
\ . .
" Beach Sand

/ =5.0cm

Figure 3. The aquarium has been thoughtfully organized to replicate an underwater ecosystem, thereby en-
abling the acquisition of authentic images of fish.
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is slightly lower than that of ResNet50, its flawless
precision and recall illustrate its capability in classi-
fying fish species in this training period. Figure 4(c)
shows the confusion matrix for the GoogLeNet model,
which reached an accuracy of 99.6%, with perfect pre-
cision and recall (100%). Although its accuracy is a bit
lower than that of AlexNet and ResNet50, GoogLeNet
still exhibited strong performance in the classification
task, resulting in no false positives or negatives. Table
3 summarizes the confusion matrix results for each
model and training session, enabling a thorough com-
parison of performance across different models. The
results highlight the effectiveness of the Convolution-
al Neural Network (CNN) models in classifying fish
species, with ResNet50 noted as the model demon-
strating the best performance efficiency. The discrep-
ancies in performance levels among these models may
be ascribed to their respective architectural intricacies,
particularly the utilization of deeper layers and skip
connections in ResNet50, which contribute to its en-
hanced accuracy. Although AlexNet and Googl.eNet
display marginally lower accuracy rates, both models
demonstrate commendable performance, achieving
flawless precision and recall metrics, thereby estab-
lishing them as dependable alternatives for this clas-
sification task.

for the various CNN models: (a) ResNet50, (b) Alex-
Net, and (c¢) GoogLeNet. Due to hardware limitations,
specifically the constraints imposed by a single-core
CPU, training was executed solely once for each mod-
el. The dataset, comprising 20,325 images, posed
challenges for the system in terms of repeated process-
ing. Each graph illustrates the validation value, which
serves as an indicator of the model’s performance
concerning accuracy following each training session.
The loss value denotes the number of incorrect pre-
dictions made during the training process, functioning
as a critical metric for assessing the model’s learning
progression over time. A reduced loss value signifies
superior model performance, whereas an elevated val-
ue indicates opportunities for enhancement. The re-
corded training time encompasses the total duration
taken for the model to complete the training, including
the time required for data loading. Progress in training
was monitored subsequent to each designated epoch,
with live updates reflecting the evolution of various
parameters throughout the session. This approach en-
abled real-time tracking of model performance. None-
theless, hardware limitations restricted us to a single
training session for each model. The training was
limited to two epochs, using sixty-four mini batches
and a learning rate of 0.001 to enhance the model’s

Table 3. Comparison of classification performance through confusion matrices for Res-

Net-50, AlexNet, and GoogleNet

ResNet50 AlexNet GooglLeNet

Training A P R A P R A P R

1 100% 100% 100% 99.9% 100% 100% 99.6% 100%  100%
2 100% 100% 100% 100% 100% 100% 99.6% 100%  100%
3 100% 100% 100% 99.9% 100% 100% 99.7% 100%  100%
4 100% 100% 100% 99.9% 100% 100% 99.4% 100%  100%
5 100% 100% 100% 100% 100% 100% 99.4% 100%  100%
6 100% 100% 100% 100% 100% 100% 99.7% 100%  100%
7 100% 100% 100% 99.9% 100% 100% 99.5% 100%  100%
8 100% 100% 100% 100% 100% 100% 99.7% 100%  100%
9 100% 100% 100% 99.9% 100% 100% 99.4% 100%  100%
10 100% 100% 100% 99.9% 100% 100% 99.5% 99.5% 99.5%
Average  100% 100% 100% 99.4% 100% 100% 99.5% 99.9% 99.5%

3.1.2 Training progress graph

Figure 5 presents the training progress graphs

JIPK: Scientific Journal of Fisheries and Marine

accuracy, considering the limited computational re-
sources. In future projects, we might leverage more
advanced hardware, allowing for additional training
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sessions and more significant potential improvements

to these models.

Table 4. The classification test on 10 fish species

study, we selected 10 fish species from a pool of 20
distinct species, ensuring that new images were used

Classification
Model Training 1 2 3 4 5 6 7 8 9 10
1 v v X v v v X v v X
2 v v X v v v X v v X
3 v v X v v v X v v X
4 v v X v v v X v v X
ResNet50 > v v * v v v * v v *
6 v v X v v v X v v X
7 v v X v v v X v v X
8 v v X v v v X v v X
9 v v X v v v X v v X
10 v J X v J J X v v X
1 V4 J X J X J J X X J
2 v J X J X J J X X J
3 V4 J X J X V4 X X X J
4 v v X V4 X v v X X J
AlexNet > v v : v * v v * * v
6 V4 J X J X J X X X J
7 v v X v X J J X X J
8 v v X v X v v X X v
9 N4 v X J X N4 X X X J
10 v J X v X v v X X v
1 v v X v X v v v v X
2 J V4 X N4 X v v v v X
3 Vv v X v X v v v v X
4 v v X v X v v v v X
GoogLeNet > v v X v * v v v v v
6 v v X v X v v v v X
7 v v X v X v v v v X
8 v v X v X v v v v X
9 v v X v X v v v v X
10 v v X v X v v v v X

*This compiles results including for whole part of the fish, head, body, and tail (similar results)

3.1.3 Classification test

The classification test was conducted after each
training session to validate the results shown in the
confusion matrix, as presented in Table 4. For this

for testing, which were excluded from the training
dataset to reduce bias. The tested species included 4z
Pampus argenteus, Psettodes erumei, Scarus ghob-

ban, and Trachinotus blochii.

Copyright ©2025 Faculty of Fisheries and Marine Universitas Airlangga
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Table 5. Accuracy comparison from confusion matrix table and training progress graph on similar

models in other studies

CNN Models
Studies ResNet50 AlexNet GoogleNet
CMT TPG CMT TPG CMT TPG

(Deka et al., 2023) 99.76% 100.0% 97.84% 97.84% - -
(Zhou et al., 2022) 91.38% - 90.16% - 92.34% -
(Zhou et al., 2023) 92.22% - 89.84% - 90.28% -
(Raufet al., 2019) 91.05% - 85.54% - 81.77% -
Proposed Study 100.0% 100.0% 99.40% 97.90% 99.50% 98.71%

*CMT= Confusion Matrix Table, TPG= Training Progress Graph

The accuracy results derived from the confu-
sion matrix indicate that ResNet 50 attained a perfect
accuracy of 100%, whereas AlexNet achieved an ac-
curacy of 99.4%, and GoogLeNet reached an accuracy
of 99.5%. ResNet 50 maintained consistent perfor-
mance, while AlexNet reached a peak training accura-
cy of 100% in sessions 2, 5, 6, and 8, despite fluctua-
tions during these sessions. Although AlexNet did not
match ResNet 50’s reliability, its simpler architecture
with fewer layers produced noteworthy results for a
Convolutional Neural Network (CNN), mainly be-
cause it was one of the pioneering architectures for
deep learning tasks. GoogLeNet also produced strong
results, achieving a maximum accuracy of 99.7%,
which occurred during training sessions 3, 6, and 8.

As illustrated in Table 5, the Training Prog-
ress Graph ResNet 50 consistently exhibited the best
performance with 100% validation accuracy. In con-
trast, AlexNet and GoogLeNet attained validation ac-
curacies of 97.9% and 98.71%, respectively. ResNet
50 reached 90% accuracy early in the training process
(around iteration 50), while the other models required
more time to reach that threshold. The deeper layers
in ResNet 50 allowed it to capture more intricate pat-
terns in the images, thus achieving superior accuracy.
However, adding these deeper layers led to a longer
training time for the model. Specifically, ResNet 50
needed 1,346 minutes and 27 seconds to finish its
training considerably longer than AlexNet, which took
193 minutes and 6 seconds, and GoogLeNet at 191
minutes and 25 seconds. While the deeper layers of
ResNet 50 enhance its accuracy, longer training times

can pose difficulties on limited hardware, as high tem-
peratures during prolonged training may negatively
affect outcomes. Nonetheless, all three models exhib-
ited strong performance, with ResNet 50 especially
recognized for its consistent and high accuracy.

Examining the confusion matrix in conjunc-
tion with the training progress graph indicates that all
three Convolutional Neural Network (CNN) models
ResNet 50, AlexNet, and GoogLeNet performed effec-
tively in classifying fish species, albeit with differing
degrees of accuracy and reliability. Table 4 presents
the classification outcomes for ten chosen fish species,
evaluated across four anatomical regions, including
whole body, head, body, and tail. This multi-segment
classification method was employed to thorough-
ly evaluate each model’s robustness in recognizing
both partial and obstructed views of the fish. ResNet
50 showed a strong alignment with the dataset, accu-
rately classifying seven out of ten fish species across
all recognition segments. Misclassifications occurred
for Epinephelus areolatus, Pampus argenteus, and
Trachinotus blochii. ResNet 50’s strong performance
across several sessions highlights its advanced archi-
tecture, enabling effective learning and generalization
of intricate features in the dataset. On the other hand,
AlexNet managed to classify just five to six species
in similar conditions accurately. Additional misclas-
sifications were noted with Epinephelus areolatus,
Lethrinus lentjian, Pampus argenteus, Psettodes eru-
mei, and Scarus ghobban. This outcome is anticipated
due to AlexNet’s relatively shallow architecture and
restricted feature extraction capacities, which hinder
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its ability to discern subtle distinctions among closely
related species.

GooglLeNet produced slightly better classifica-
tion outcomes, accurately identifying seven to eight
species. This improvement is linked to the model’s
unique Inception modules, which facilitate multi-
scale feature extraction. However, while GoogLeN-
et occasionally outperformed ResNet 50 in terms of
raw classification numbers, its results were less stable
across repeated sessions. Misclassifications noted in-
cluded Epinephelus areolatus, Lethrinus lentjan, and
Trachinotus blochii, with only one instance occurring
during the fifth training session, as indicated in Table
4. All models exhibited substantial validation accu-
racy during training: ResNet 50 (100%), GoogLeN-
et (71%), and AlexNet (97%), as illustrated by the
training progress graphs. These results highlight the
capability of the models to generalize to new datasets,
while ResNet 50 demonstrating the highest reliabili-
ty and consistency as a classifier across various input
perspectives and sessions. It is crucial to understand
the connection between architectural depth, training
time, and classification accuracy when choosing a
suitable CNN model for large-scale fish species clas-
sification endeavors.

3.2 Discussion
3.2.1 Discussion on the confusion table

A thorough examination of the confusion ma-
trix and training progress graphs indicates that the
ResNet50 model consistently outperformed both Alex-
Net and GoogLeNet regarding classification accuracy,
robustness, and reliability. As highlighted in Table 5,
ResNet50 achieved nearly perfect classification across
various training sessions, showing minimal misclassi-
fications. The model’s capacity to accurately identify
species from diverse anatomical perspectives, includ-
ing the whole body, head, body, and tail, highlights
its outstanding generalization capabilities, thereby
making it particularly suitable for high-resolution fish
datasets. Nevertheless, this remarkable performance
is accompanied by considerable limitations; ResNet50
required a significantly longer training duration of
1,346 minutes and 27 seconds, as opposed to Alex-
Net’s 193 minutes and GoogleNet’s 191 minutes.
The extended duration of training can be attributed to
the intricate architecture of the model and the height-
ened computational requirements. An enhancement
of CPU hardware may reduce this duration (Dong et
al., 2023); however, the employment of GPU or TPU
acceleration, coupled with architectural advancements
such as model pruning, dropout techniques, and batch
normalization, may present more efficient and scalable
solutions (Xu ef a/., 2022, Knausgard et al., 2022).

JIPK: Scientific Journal of Fisheries and Marine

3.2.2 Discussion on the training progress graph

The training progress graph reinforces these
findings. Figure 5(a) shows that ResNet50 achieved
over 90% validation accuracy within the first 50 it-
erations and reached perfect accuracy by epoch 1.
This quick convergence suggests that the model ef-
fectively captured intricate patterns and features early
in training. In contrast, AlexNet and GoogLeNet re-
quired nearly 100 iterations to surpass the 90% valida-
tion threshold, as illustrated in Figures 5(b) and 5(c).
Although these models also attained high accuracy
(AlexNet: 97.9%, GoogleNet: 98.71%), the dispari-
ty in their convergence rates emphasizes the differing
capacities of each model in processing complex image
data.

In spite of their inherent strengths, all three
models of Convolutional Neural Networks (CNNs)
experienced difficulties with certain species, partic-
ularly Pampus argenteus, which was predominantly
misclassified across all models. This persistent mis-
classification suggests that the current dataset may be
deficient in high-quality and diverse images pertaining
to this specific species. Factors contributing to these
inaccuracies may include reflections of light, insuffi-
cient contrast, and morphological similarities to other
species (Sun ef al., 2020; Hou et al., 2021).

In order to address these challenges, the follow-
ing enhancements are recommended: firstly, the imple-
mentation of advanced augmentation techniques, such
as varying rotation angles, random cropping, contrast
adjustments, and the incorporation of species-specific
features, for example, body stripe coloration and tail
morphology. Moreover, establishing controlled light-
ing during image capture and using post-processing
tools to standardize brightness and reduce glare is es-
sential. Additionally, increasing the number of imag-
es for commonly misclassified species will promote
a fairer class distribution and boost visual diversity.
ResNet50 exhibits superior classification performance
in this study, corroborated by both quantitative metrics
and visual convergence assessments. Future research
should concentrate on optimizing training durations
and enhancing dataset quality to improve the reliabil-
ity and scalability of deep learning models employed
for automated fish species classification.

4. Conclusion

In this study, three Convolutional Neural
Network architectures, ResNet—50, AlexNet and
GoogleNet were compared in classifying 20 local
fish species. Using a well-annotated dataset of about
20,000 underwater images captured from different an-
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atomical perspectives, all proposed models achieved
high classification accuracy. Among the three pro-
posed models, ResNet—50 had the highest classifica-
tion accuracy. This is likely due to the residual skip
connections that help mitigate degradation in deeper
networks. The minor misclassifications that did oc-
cur like in Pampus argenteus were likely a result of
overlapping visual features and/or inconsistent image
quality. Most importantly, current work shows that a
well-labeled dataset is essential for a model to iden-
tify more subtle features and symmetries, rather than
depending solely on its architecture. Without enough
labelled data, even state-of-the-art architectures may
struggle to achieve good classification performance
in heterogeneous underwater environments. Results
demonstrated that deep learning is a viable and robust
method to classify underwater species if a sufficient
labelled dataset is available. Going forward, results
identified several major research gaps: (i) broad-
er taxonomic coverage, i.e., more species and envi-
ronments, (ii) optimization for real-time deployment
(e.g., transfer learning, lightweight architecture), and
(iii) seamless integration of classification models into
fisheries monitoring systems. Resolutions to these
gaps can help improve adaptability to varying ecolog-
ical contexts. Looking ahead, our results highlight a
few exciting areas for further research: (1) expanding
our taxonomic coverage by including more species
and environments; (2) improving models for real-time
application using techniques like transfer learning and
lightweight architectures; (3) integrating classifica-
tion models into fisheries monitoring systems to make
them even more effective. Collectively, these direc-
tions can improve adaptability across various ecolog-
ical settings and resource-limited environments. By
connecting deep learning with fisheries science, this
study lays the foundation for better ecosystem mon-
itoring, sustainable fisheries management and marine
biodiversity conservation. Future efforts should aim to
improve the models’ capacity to generalize, transfer
knowledge and perform inference directly on devices
in order to better address the complex requirements of
marine resource management.
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