
Cogito Smart Journal | VOL. 6 - NO.1, JUNE 2020 n 25

Fakultas Ilmu Komputer | Universitas Klabat | CORIS | ISSN: 2541-2221 | E-ISSN: 2477-8079

Pemilihan Graphics Processing Unit Nvidia dan AMD

Menggunakan Algoritma Simple Additive Weighting

Electing Graphics Processing Nvidia and AMD Using

Simple Additive Weighting

Jeffrey Jahja1, Rizky Albert Hartono2, Kristien Margi Suryaningrum3
1,2,3Fakultas Teknologi dan Desain, Universitas Bunda Mulia

Jl. Lodan Raya No. 2 Ancol, Jakarta Utara 14430
e-mail: 1jeffrey.511999@gmail.com, 2rizky.albert@gmail.com, 3kristienmargi@gmail.com

Abstrak

 Graphics Processing Unit (GPU) merupakan komponen komputer yang bekerja untuk

mengelola grafis pada komputer baik dalam bentuk video, gambar, animasi. Pemilihan

Graphics Processing Unit bagi pengguna komputer merupakan hal yang harus diperhatikan
demi penggunaan yang maksimal. Penelitian dilakukan bertujuan untuk membangun sistem

pengambilan keputusan untuk pemilihan Graphics Processing Unit. Metode yang digunakan

dalam penelitian ini adalah (SAW) Simple Additive Weighting. Konsep dari Simple Additive
Weighting adalah dengan memberikan bobot pada setiap kriteria yang digunakan kemudian

dilanjutkan dengan perangkingan untuk mendapatkan hasil yang sesuai dengan bobot kriteria

yang paling sesuaai. Penelitian ini dilakukan dengan urutan analisis, desain, program, serta

pengujian. Kesimpulan yang didapat dalam penelitian ini adalah dengan dibuatnya sistem
pendukung keputusan untuk pemilihan (GPU) Graphics Processing Unit mempermudah proses

pemilihan (GPU) bagi penggunannya.

Kata Kunci : GPU, Simple Additive Weighting (SAW), Sistem Pendukung Keputusan.

Abstract

 Graphics Processing Unit (GPU) is a computer component that works for managing

graphics on computer in form of video, picture, animation. Picking Graphics Processing Unit
for user is a must thing for maximal performance. This research was maded for building

decision-making system for picking Graphics Processing Unit. Method used in this research is

(SAW) Simple Additive Weighting. The concept of Simple Additive Weighting is by giving weight
on each used criteria then continued with ranking to get the accurate result equal as the weight

criteria. The conclusion in this research is by making decision-making system for picking

(GPU) Graphics Processing Unit are making the process easier picking the GPU for user.

Keywords : GPU, Simple Additive Weighting (SAW), Decision Support System.

1. PENDAHULUAN

 Kebutuhan grafis saat ini merupakan hal yang sering dipertimbangkan oleh banyak
orang pada saat akan membeli sebuah komputer maupun membangun sebuah komputer[1].

Namun dikarenakan perkembangannya yang terbilang cepat Graphics Processing Unit (GPU)

pun memiliki banyak ragam fitur baru maupun kelebihan pada fitur – fitur tertentu yang

Cogito Smart Journal | VOL. 6 - NO.1, JUNE 2020 n 26

Fakultas Ilmu Komputer | Universitas Klabat | CORIS | ISSN: 2541-2221 | E-ISSN: 2477-8079

bergantung pada setiap perusahaan yang mengembangkannya[2]. Timbul masalah dalam

pemilihan GPU untuk digunakan dalam beberapa kegiatan mulai dari harga yang ditawarkan,
kecepatan GPU memproses grafis, memori yang digunakan dan lainnya[3]. Berdasarkan

masalah yang timbul maka judul penelitian ini adalah “Pemilihan Graphics Processing Unit

Nvidia dan AMD menggunakan Algoritma Simple Additive Weighting” Yang sekiranya dapat
membantu proses pemilihan GPU yang sesuai dengan kebutuhan setiap orang.

 Penelitian ini terdiri dari beberapa tahapan, yakni pengumpulan data, perancangan

sistem, pengujian sistem, pada penelitian ini penulis menggunakan aplikasi berbasis mobile

(dapat digunakan dimana saja)[4], aplikasi yang dibuat dalam penelitian ini merupakan sistem
pengambilan keputusan yaitu sistem yang saling berinteraksi dengan sistem bahasa, sistem

pengetahuan, dan sistem pemrosesan masalah[5],[6],[7]. Algoritma SAW digunakan karena

dapat menentukan bobot setiap atribut kemudian dilakukan proses perangkingan yang akan
memberikan alternatif terbaik[8],[9], atau bisa juga disebut sebagai kombinasi bobot linear atau

metode scoring[10],[11],[12]. Aplikasi ini dibuat dengan bahasa pemrograman berorientasi

objek bertujuan untuk membuat kode program yang lebih terstruktur, terkelompokkan
berdasarkan objek-objek yang terlibat sehingga bagian-bagiannya dapat digunakan untuk

pembuatan aplikasi lain[13],[14].

2. METODE PENELITIAN

2.2 Metode Analisis dan Perancangan

Gambar 1. Metode Pengembangan Sistem Waterfall.

 Pengembangan aplikasi dalam penelitian ini menggunakan metode waterfall dimana

sering juga disebut model sekuensial linier (sequential linier) atau alur hidup klasik (classic life

cycle). Model air terjun menyediakan pendekatan alur hidup perangkat lunak secara sekuensial
atau terurut dimulai dari analisis, desain, pengkodean, pengujian, dan tahap pendukung

(support)[15].

3. HASIL DAN PEMBAHASAN

3.1 Perancangan

3.1.1 Flowchart

Flowchart pada gambar 2 menggambarkan alur kerja program, dimana user harus

melakukan penginputan bobot, yang kemudian dengan metode SAW akan dipilih data dari basis
data yang bobotnya sesuai dengan ketentuan bobot yang dimasukan oleh user dan kemudian

ditampilkan.

Cogito Smart Journal | VOL. 6 - NO.1, JUNE 2020 n 27

Fakultas Ilmu Komputer | Universitas Klabat | CORIS | ISSN: 2541-2221 | E-ISSN: 2477-8079

Gambar 2. Flowchart.

1. Ketika aplikasi dijalankan pengguna diminta untuk memasukan
kebutuhan, harga, dan kriteria kebutuhan yang nantinya akan digunakan

dalam penentuan bobot.

2. Data masukan akan diproses menggunakan metode SAW dimana
pembobotan dan normalisasi akan dilakukan.

3. Dilakukan pengecekan dan menentukan nilai terbaik berdasarkan hasil

pengolahan dengan metode SAW , jika hasil tidak didapatkan maka

proses akan kembali ke tahap meminta masukan pengguna.
4. Hasil terbaik ditampilkan di aplikasi.

3.1.2 Use Case Diagram

 Fitur dalam aplikasi yang dikembangkan oleh penulis adalah user dapat melakukan hal-
hal seperti pada gambar 3 :

1. User dapat mencari data

 Ketika user mencari data maka data akan ditampilkan, jika terjadi

kesalahan maka akan muncul pesan error.
2. User dapat meminta saran dari sistem

 Ketika user meminta saran secara otomatis sistem akan melakukan

verifikasi data yang diinputkan user dan menampilkan hasil.

Cogito Smart Journal | VOL. 6 - NO.1, JUNE 2020 n 28

Fakultas Ilmu Komputer | Universitas Klabat | CORIS | ISSN: 2541-2221 | E-ISSN: 2477-8079

Gambar 3. Use Case Diagram.

3.1.3 Activity Diagram

 Aktivitas yang terjadi dalam sistem ketika user menggunakan fitur pencarian dapat

digambarkan seperti pada gambar 4.
1. Ketika akan melakukan pencarian user akan memilih kategori dan memasukan

data pencarian berdasarkan kategori, diikuti dengan mengkonfirmasi pencarian.

2. Sistem mengecek apakah kategori telah diatur oleh user, jika tidak maka sistem

akan mengatur pencarian berdasarkan nama, diikuti dengan meminta data ke
database.

3. Database akan memberikan data ke sistem untuk ditampilkan.

Gambar 4. Activity Diagram Fitur Pencarian.

Cogito Smart Journal | VOL. 6 - NO.1, JUNE 2020 n 29

Fakultas Ilmu Komputer | Universitas Klabat | CORIS | ISSN: 2541-2221 | E-ISSN: 2477-8079

 Aktivitas yang terjadi dalam sistem ketika user menggunakan fitur Meminta saran dapat

digambarkan seperti pada gambar 5.
1. Ketika user meminta saran kepada sistem, user akan diminta untuk memasukan

bobot, anggaran, dan menentukan penggunaan GPU, yang diikuti konfirmasi

dasar penyaranan.
2. Sistem akan memproses data menggunakan metode SAW, sekaligus meminta

data ke database.

3. Database akan memberikan data ke sistem untuk ditampilkan.

Gambar 5. Activity Diagram Fitur Penyaranan.

3.1.4 Class Diagram

Gambar 6. Class Diagram.

 Class diagram pada gambar 6 menggambarkan bagaimana class “inputBobot” memiliki

beberapa data yang diperlukan yaitu bobot dengan kategori kebutuhan, kecepatan, memori, dan

Cogito Smart Journal | VOL. 6 - NO.1, JUNE 2020 n 30

Fakultas Ilmu Komputer | Universitas Klabat | CORIS | ISSN: 2541-2221 | E-ISSN: 2477-8079

harga kemudian menggunakan beberapa metode yang diambil dari “MainActivity” dan

“dbConector”.

3.1.5 ERD (Entity Relationship Diagram)

Gambar 7. ERD Basis Data GPU.

 ERD pada gambar 7 memiliki hubungan sebagai berikut :

1. Setiap satu manufaktur memiliki banyak “sub_brand”.

2. Setiap satu “sub_brand” memiliki banyak “series”.
3. Setiap satu “series” memiliki satu “perilisan_dan_harga”, “Processor”,

“Memory”, dan “Clock_speed”.

3.1.6 Implementasi Antarmuka Pengguna

Gambar 8. Halaman Utama.

Cogito Smart Journal | VOL. 6 - NO.1, JUNE 2020 n 31

Fakultas Ilmu Komputer | Universitas Klabat | CORIS | ISSN: 2541-2221 | E-ISSN: 2477-8079

 Halaman utama merupakan halaman dimana pengguna diminta untuk memasukan data

yang akan digunakan untuk pengolahan data mulai dari harga (dalam rupiah), keperluan
penggunaan GPU, tingkat kepentingan kecepatan GPU bagi pengguna dan kepentingan ukuran

memori pada GPU.

 Halaman utama juga dilengkapi dengan fitur pencarian yang dapat dilakukan dalam
beberapa kategori diantaranya harga, dan nama manufaktur.

Gambar 9. Pemberitahuan Wajib Memasukan Harga.

 Tombol selesai terdapat pada pojok kanan bawah tampilan dimana ketika pengguna
telah selesai melakukan penginputan data dan menekan tombol selesai maka aplikasi akan

melakukan pemrosesan data yang telah dimasikan pengguna.

3.1.7 Implementasi Metode atau Algoritma

Cogito Smart Journal | VOL. 6 - NO.1, JUNE 2020 n 32

Fakultas Ilmu Komputer | Universitas Klabat | CORIS | ISSN: 2541-2221 | E-ISSN: 2477-8079

Gambar 10. Masukan data uji coba.

 Implementasi algoritma SAW pada aplikasi yang dibuat oleh penulis diterapkan dengan

cara sebagai berikut :

• Pencarian data berdasarkan harga guna memperkecil jumlah data gpu yang akan dipilih.

• Pengguna diminta untuk memilih keperluan penggunaan yaitu gaming dan multimedia,

guna menentukan manufatkur sesuai dengan kebutuhan.

• Pengguna diminta untuk memilih kepentingan kecepatan, dan ukuran memori untuk

dapat menntukan hasil gpu yang dibutuhkan oleh pengguna.

 Kriteria (C) pada aplikasi ini ditentukan oleh penulis menggunakan radio button sebagai

opsi pilihan dengan isi seperti pada gambar 10, yaitu Sangat Penting, Penting, Sedang, Kurang

Penting, dan hiraukan. Pada setiap kriteria (kecepatan pemrosesan, ukuran memori, dan waktu

rilis) penulis menetapkan kriteria kecepatan pemrosesan, dan ukuran memori memiliki nilai
maksimal 40% dengan waktu rilis merupakan 100% dikurangi dengan jumlah persen terhadap

kecepatan pemrosesan dan ukuran memori guna memastikan bahwa jumlah bobot total adalah

100%.
 Penentuan bobot pada aplikasi ini penulis menggunakan nilai maksimal, minimal, dan

median dari data yang telah dicari berdasarkan harga dan manufaktur. Pertama dicari nilai

maksimal, dan nilai minimal dari data yang telah diperoleh guna mencari nilai median,

kemudian dicari nilai tengah dari nilai maksimal dan median, diikuti nilai median dengan nilai
minimal yang nantinya akan digunakan untuk memperoleh bobot. Berikut adalah pseudo-code

untuk mencari nilai maksimal dan minimal yang digunakan penulis:

 Nilai acuan bobot dapat dicari setelah nilai maksimal dan minimal telah didapatkan,
dengan penghitungan nilai median dan nilai tengah dari median terhadap minimal dan maksimal

dengan rumus dan kode program sperti yang terdapat pada gambar 11:

Cogito Smart Journal | VOL. 6 - NO.1, JUNE 2020 n 33

Fakultas Ilmu Komputer | Universitas Klabat | CORIS | ISSN: 2541-2221 | E-ISSN: 2477-8079

Gambar 11. Pseudo-code Membuat Nilai Acuan Bobot.

 Bobot dibuat setelah nilai acuan didapatkan, dengan pembobotan dengan menggunakan

pengondisian sperti yang terdapat pada gambar 12:

Gambar 12. Pseudo-code Membuat Nilai Bobot.

 Penentuan nilai bobot pada aplikasi ini dibagi menjadi 5, dimana 5 sebagai nilai terbaik,

dan 1 sebagai nilai terendah dimana jika data yang didapat lebih besar sama (>=) dengan batas 4

(nilai tengah dari maksimal dan median) maka bobot sama dengan 5, jika data yang didapat

lebih kecil dari batas 4, maka dilakukan pengujian apakah data yamg didapat lebih besar sama

// Membuat nilai acuan bobot

Batasbc5, batasbc4, batasbc3, batasbc2, batasbc1 : double

Maxbc, Minbc : double { Pencatat nilai terbesar, nilai terkecil dari “Base

Clock”}

ALGORITMA

read (Maxbc) { nilai terbesar dari data di basis data }

read (Minbc) { nilai terkecil dari data di basis data }

batasbc5 ! Maxbc {mengisi nilai batasbc5 dengan nilai maksimal}

batasbc4 ! (Maxbc +((Maxbc + Minbc)/2)) /2
batasbc3 ! (Maxbc + Minbc)/2 { mencari nilai tengah dengan rumus median}

batasbc2 !(batasbc3 +Minbc)/2

batasbc1 ! Minbc

//Membuat bobot bc

batasbc5, batasbc4, batasbc3, batasbc2, batasbc1 : double

baseclock : Array of double {data dari basis data}

bobotbc : Array of Integer

i : Integer {Pencacah banyaknya pengulangan}
JumlahRow : Integer { Jumlah baris / record pada basis data }

ALGORITMA

read(jumlahRow) {Membaca banyaknya baris dari basis data}
read(baseclock[]) {Membaca data dari basis data}

for i ! 0 to jumlahRow do

 if baseclock[i] >= batasbc4 then

 bobotbc[i] ! 5

 else if baseclock[i] >= batasbc3 then

 bobotbc[i] ! 4

 else if baseclock[i] >= batasbc2 then

 bobotbc[i] ! 3

 else if baseclock[i] >= batasbc1 then

 bobotbc[i] ! 2
 else bobotbc[i] ! 1

 end if

end for

Cogito Smart Journal | VOL. 6 - NO.1, JUNE 2020 n 34

Fakultas Ilmu Komputer | Universitas Klabat | CORIS | ISSN: 2541-2221 | E-ISSN: 2477-8079

dengan (>=) batas 3, jika iya maka bobot sama dengan 4, jika tidak dilakukan lagi pengujian

dengan batas 2. Jika lebih besar batas sama dengan 2 maka bobot sama dengan 3, jika tidak
maka data akan dibandingkan lagi dengan batas 1 jika nilainya lebih besar sama dengan (>=)

batas 1 maka bobot sama dengan 2, selain itu bobot sama dengan 1. Setelah nilai bobot

didapatkan, dicarilah nilai maksimal dari bobot yang ada guna untuk dilakukan normalisasi.

 Normalisasi kriteria dapat dilakukan dengan menggunakan rumus :

!!" =
#!"

$%&!	$!"

 ; untuk j = benefit (1)

!!" =
$!'!	$!"

#!"
 ; Untuk j= cost (2)

 Dalam penelitian ini penulis hanya mencari benefit menggunakan rumus !!" =
#!"

$%&!	$!"

 ;

untuk j = benefit, menggunakan algoritma sebagai berikut :

Gambar 13. Pseudo-code Normalisasi C.

 Normalisasi (C) akhir dilakukan dengan pengalian hasil normalisasi (C) terhadap

kriteria yang telah ditentukan di awal, pada kasus ini penulis menggunakan kriteria kecepatan

pemrosesan = 40% = 0.4, ukuran memori = 40% = 0.4, dan waktu rilis = 20% = 0.2, maka hasil
normalisasi dikalikan dengan nilai kriteria yang ada seperti pada pseudo-code sebagai berikut :

Gambar 14. Pseudo-code Normalisasi C Akhir.

// Normalisasi C

baseclock, MemorySize, Release : Array of double {data dari basis data}

bobotbc, bobotms,bobotrd : Array of Integer { nilai bobot terhadap data di basis data }
maxbobotbc, maxbobotms, maxbobotrd : Integer { nilai maksimal dari bobot pada

setiap data }
i : Integer {Pencacah banyaknya pengulangan}

JumlahRow : Integer { Jumlah baris / record pada basis data }

normCbc, normCms, normCrd : Array of Integer

ALGORITMA

for i ! 0 to jumlahRow do

 normCbc[i] ! bobotbc[i]/ maxbobotbc

 normCms[i] ! bobotms[i]/ maxbobotms

 normCbrd[i] ! bobotrd[i]/ maxbobotrd

end for

// Normalisasi C Akhir

i : Integer {Pencacah banyaknya pengulangan}

JumlahRow : Integer { Jumlah baris / record pada basis data }

normCbc, normCms, normCrd : Array of Integer { hasil normalisasi C }

ALGORITMA

for i ! 0 to jumlahRow do

 normCbc[i] ! normCbc[i]*InputKecepatan { pengalian normalisasi C

dengan inputan kriteria }
 normCms[i] ! normCbc[i]*InputMemori

 normCbrd{i] ! normCbc[i]*InputRilis

end for

Cogito Smart Journal | VOL. 6 - NO.1, JUNE 2020 n 35

Fakultas Ilmu Komputer | Universitas Klabat | CORIS | ISSN: 2541-2221 | E-ISSN: 2477-8079

Penentuan data GPU terbaik dapat ditentukan dengan mencari nilai terbesar dari hasil
pengalian data normalisasi dengan kriteria, diikuti dengan penjumlahan masing-masing kriteria

untuk mencari nilai terbaik, setelah penjumlahan nilai tersebut dicari nilai terbaik dengan cara

mencari nilai terbesar dari data yang ada seperti pada pseudo-code sebagai berikut:

Gambar 15. Pseudo-code Penentuan Hasil Terbaik.

4. KESIMPULAN

 Berdasarkan hasil penelitian yang dilakukan oleh penulis maka penulis menarik
kesimpulan sebagai berikut :

1. Dengan adanya aplikasi pemilihan graphics processing unit nvidia dan amd

menggunakan algoritma SAW (Simple Additive Weighting) berbasis mobile
proses pemilihan GPU dapat dilakukan.

2. Dengan adanya aplikasi pengguna dimudahkan untuk mencari GPU yang sesuai

dengan kegunaan dan anggaran yang dimiliki.

3. Penggunaan tipe data double dapat menimbulkan masalah dalam proses
pemilihan alternatif akhir.

5. SARAN

 Berikut adalah saran yang penulis usulkan untuk pengembangan dikemudian hari adalah

sebagai berikut :
1. Hasil pengolahan terhadap nilai terbaik kedepannya perlu ditambah tingkat

akurasinya dengan mengatasi masalah terhadap tipe data double dimana angka

spesifik di belakang koma tidak terdapat kelebihan jumlah hasil perhitungan.

2. Tampilan aplikasi dikembangkan menjadi lebih dinamis dan lebih mudah
digunakan oleh pengguna.

3. Fitur pencarian dibuat lebih fleksibel terhadap masukan pengguna sehingga

pengguna dapat lebih mudah mencari data yang sesuai.

// Penentuan Hasil Terbaik

i : Integer {Pencacah banyaknya pengulangan}

JumlahRow : Integer { Jumlah baris / record pada basis data }

normCbc, normCms, normCrd : Array of Integer { hasil normalisasi C }
A[i] : Array of Integer

terbaik : Integer

ALGORITMA

for i ! 0 to jumlahRow do

 A[i] ! normCbc[i] + normCms[i] + normCbrd{i]

end for

terbaik ! A[0] {mengasumsikan nilai sama dengan nilai awal A}

for i ! 0 to jumlahRow do

 if A[i] > terbaik then

 terbaik ! A[i]

 end if

end for

Cogito Smart Journal | VOL. 6 - NO.1, JUNE 2020 n 36

Fakultas Ilmu Komputer | Universitas Klabat | CORIS | ISSN: 2541-2221 | E-ISSN: 2477-8079

DAFTAR PUSTAKA

[1] Utomo, Tegar Mochamad dan Hindayati Mustafidah. 2016. Penentuan
 Spesifikasi Komputer Berdasarkan Kebutuhan Pemakai Dan Harga

 Menggunakan Basis Data Fuzzy. Vol. IV No. 1. ISSN 2086-9398.

[2] Rizaldi, Ilyas Hilmi. dkk. 2017. Optimasi Proses Rendering Objek Game 3D
 Menggunakan Pemrograman CUDA pada Game Sandbox Craft. Vol. 4 No. 3.

 ISSN 2528-6579.

[3] Kurniawan, Bagus. dkk. 2015. Analisis Perbandingan Komputasi GPU dengan

 CUDA dan Komputasi CPU untuk Image dan Video Procesing. ISSN 1907-

 5022.

[4] Syani, Mamay dan Nindi Werstantia. 2018. Perancangan Aplikasi Pemesanan

 Catering Berbasis Mobile Android. Vol. 1 No. 2. ISSN 2615-0387.

[5] Hidayat, Rachmat. 2013. Metode Simple Additive Weighting Sebagai Sistem

 Pendukung Keputusan Penerima Beasiswa Murid Berprestasi. Vol. 2 No. 2.

 ISSN 2541-2019.

[6] Ernawati. dkk. 2017. Rancang Bangun Sistem Pendukung Keputusan Kenaikan

 Jabatan Pegawai dengan Metode Simple Additive Weighting. ISSN 1979-0767.

[7] Situmorang, Harold. 2015. Sistem Pendukung Keputusan Pemilihan Calon

 Peserta Olimpiade Sains Tingkat Kabupaten Langkat pada Madrasah Aliyah

 Negeri (MAN) 2 Tanjung Pura dengan Menggunakan Metode Simple Additive
 Weighting (SAW). Vol. IV No. 2. ISSN 2337-3601.

[8] Haswan, Febri. 2019. Application of Simple Additive Weighting Method to
 Determine Outstanding School Principals. Vol. 3 No. 2. ISSN 2541-2019.

[9] Afshari, Alireza. dkk. 2010. Simple Additive Weighting approach to Personnel

 Selection Problem. Vol. 1 No. 5. ISSN : 2010-0248.

[10] Agustina, Ina. dkk. 2017. Implementasi Metode SAW (Simple Additive

 Weighting) pada Perancangan Sistem Pendukung Keputusan Penerimaan
 Beasiswa Berbasis Web. Vol. 4. ISSN 2089-1083.

[11] Marpaung, Nasrun. 2018. Penerapan Metode Simple Additive Weighting pada
 Sistem Pendukung Keputusan untuk Menentukan Kenaikan Gaji Karyawan.

 Vol. IV No. 2. ISSN 2550-0201.

[12] Hidayati, Risky. dkk. 2016. Sistem Pendukung Keputusan Penerimaan
 Beasiswa di SMK N 1 Sukoharjo dengan Metode Simple Additive Weighting

 (SAW). Vol. 4 No. 1. ISSN 2338-4018.

[13] Hartono, Roni. 2012. “Aplikasi Laporan Laba-Rugi Online Berbasis Web Studi

 Kasus PT Andalusia Persada Indonesia”. Fakultas Teknologi dan Desain.

 Universitas Bunda Mulia. Jakarta.

Cogito Smart Journal | VOL. 6 - NO.1, JUNE 2020 n 37

Fakultas Ilmu Komputer | Universitas Klabat | CORIS | ISSN: 2541-2221 | E-ISSN: 2477-8079

[14] Retnoningsih, Endang. dkk. 2017. Pembelajaran Pemrograman Berorientasi

 Objek (Object Oriented Programming) Berbasis Project Based Learning. Vol. 2
 No. 1. ISSN 2548-3412.

[15] Tabrani, Muhamad dan Eni Pujiarti. 2017. Penerapan Metode Waterfall pada
 Sistem Informasi Inventori PT. Pangan Sehat Sejahtera. Vol. 1 No. 2. ISSN:

 2615-3645.

