

Phtochemical Compounds Test of Lemongrass Extract (Cymbopogon Citratus) Using Maceration Method

**Windi Indra Alfiyanti¹, Anggun Putri Furdyanti¹, Ahmad Fatur Rohman¹,
Eva Agustina¹, Risa Purnamasari¹, Estri Kusumawati²**

¹*Faculty of Science and Technology, Sunan Ampel State Islamic University, Surabaya, Indonesia,*

²*Faculty of Psychology and Health, Sunan Ampel State Islamic University, Surabaya, Indonesia.*

eva_agustina@uinsby.ac.id

Keywords : Lemongrass, Phytochemical Test, Ethanol, Phenolic

Abstract : Lemongrass (*Cymbopogon citratus*) is a spice plant that contains active compounds that can be used as a cooking spice and medicine. The purpose of this study was to determine the phytochemical compounds in lemongrass a qualitatively and to determine the levels of phenolic compounds quantitatively. The method used to extract the structure of compounds in lemongrass plants is maceration using ethanol as a solvent. Phytochemical test qualitatively by looking at physical and chemical changes. Quantitative phytochemical tests determine the levels of phenolic compounds using the UV-VIS Spectrophotometer instrument and identification of bonds between compounds using the FTIR (Fourier Transform Infra Red) instrument. The results of the phytochemical test qualitatively contained alkaloids, flavonoids, and triterpenoids. The results of the quantitative phytochemical test in the extract contained a total phenolic content of 6.379 mg/g. Based on the identification of phenolic compounds using FTIR, there are wave peaks around 3400-3600 cm⁻¹ indicating the presence of O-H bonds in the phenolic hydroxyl groups. In addition, the presence of a peak wave number around 1600-1700 cm⁻¹ indicates the presence of a C=O bond in the ketone or aldehyde group.

INTRODUCTION

Indonesia is a tropical country that is rich in a variety of biological natural resources. This diversity provides various benefits for living things such as source of food, medicine, and aromatherapy. One of the plants that can be used as medicine and aromatherapy is lemongrass (*Cymbopogon citratus*). Lemongrass is usually used as a cooking spice and medicine which is commonly called lemongrass oil because it contains essential oils (Moniharapon, et al., 2014). As a seasoning, it is still not widely cultivated in Indonesia, because most of it is only used for daily needs as a food ingredient. However, if processed properly, Lemongrass will produce essential oils that have high selling value (Firyanto et al., 2020).

Extraction is a process of separating materials from a mixture using an appropriate solvent (Mukhriani, 2014). The extraction process can be performed by 2 methods, that are hot method and cold method (Febrina et al, 2015). The cold method is percolation and maceration, while the hot method is soxhlet and reflux (Safitri et al, 2018). The maceration method is an extraction process that is carried out by soaking simplicia at room temperature with a suitable solvent. Soaking sample takes 3-5 days with several stirring to speed up the process of dissolving the analyte (Septiani et al, 2021). The solvent used for maceration is ethanol. The character of ethanol is the same as polar solvent and water (Rafsanjani & Putri, 2015). Phytochemical tests were carried out to determine the content of groups of chemical

compounds contained in lemongrass. Phytochemical test can be analyzed qualitatively and quantitatively. Qualitative test is the initial step to determine the class of bioactive compounds by looking at the color change reaction in the sample. Qualitative tests include alkaloid tests, flavonoid tests, tannin tests, saponin tests, steroid and triterpenoid tests (Fauzi & Santoso., 2021). Meanwhile, a quantitative test was carried out to determine the phenolic content of citronella plants. Quantitative tests were carried out using a UV-Vis spectrophotometry instrument to determine the phenolic content in citronella and FTIR (Fourier Transform Infra Red) instruments to analyze the structure between compounds. FTIR is an infrared spectroscopy equipped with a Fourier transform for the detection and analysis of spectrum results (Nurfitriyana, et al., 2022).

METHOD

Tools and Materials

The tools used in this study included beakers, stirrers, blenders, funnels, Erlenmeyer, filter paper, rotary evaporators, petri dishes, FTIR tools, 100 and 10 ml volumetric flasks, measuring pipettes, bulbs, vortexes, cuvettes, test tubes, spatulas, vials, and UV-Vis spectrophotometer tools. The materials used in this study were citronella (*Cymbopogon citratus*), ethyl acetate, gallic acid, 96% ethanol, 0.5 ml Folin-ciocalteu, 7% H₂SO₄, 12 M concentrated HCl, dragendorf reagent, 5% FeCl₃, magnesium, chloroform, and acetic acid.

Research Procedure

Extract Sample Preparation

The lemongrass sample weighing 650 grams was dried, then cut into pieces and ground to a powder. The powder was filtered using a 40 mesh sieve to get a fine powder. 100 grams of fine citronella powder is soaked in 700 ml of ethanol for 24 hours. The results of the soaking were extracted using a rotary evaporator to obtain a thick lemongrass extract.

Phytochemical Qualitative Test

Alkaloid Test

A total of 0.5 grams of sample was put in a test tube added to 0.5 ml of 2 M HCl. Added 1-2 drops of dragendorf. Observations are made by looking at the colors that appear. It is said to be positive for alkaloids if it shows an orange or red precipitate (Tiwari, et al., 2011).

Flavonoid Test

A total of 200 mg of sample was put into a test tube, added 5 ml of ethanol, then heated for 5 minutes. Added a few drops of concentrated HCl and added 0.2 grams of magnesium. Observations seen from the change in color. It is said to be positive if it shows a dark red (magenta) color in the ethanol layer (Mustikasari & Ariyani, 2010).

Saponin Test

A number of samples are put into a test tube then hot water is added and cooled. After chilling, it is shaken for 10 minutes and will form froth or foam if it is positive. If the foam persists and is stable after adding 2M HCl, it indicates a positive saponin (Dewi, 2020).

Phenolic Test

A number of samples were put into the Erlenmeyer and added 10 mL of ethanol. Take 1 mL of the solution formed and put it in a test tube. After that, 2 drops of 5% FeCl₃ solution were added. If a green or bluish green color is formed, it indicates a positive phenol (Syafitri, et al., 2014).

Steroids and Triterpenoids Test

A number of samples were put into a test tube and added 0.5 mL of chloroform and 0.5 mL of acetic acid. After that, 2 mL of concentrated H₂SO₄ was added through the test tube wall. The sample is said to be positive for triterpenoids if a purple-red color is formed. While steroids are positive if they produce green or blue (Suryanita, et al., 2019).

Quantitative Test using UV-Vis Spectrophotometry

Preparation of Gallic Acid Standard Solution

The required gallic acid is 1 ppm, so a comparison is used

$$\text{Ppm} = \frac{\text{mg gallic acid}}{1000 \text{ ml ethanol}}$$

The stock solution that will be used as much as 100 to get the results by using under this formula

$$100 \text{ ppm} = \frac{100 \text{ lg}}{1000 \text{ ml}} = 0,01 \text{ gram}$$

Preparation of standard mother liquor Gallic acid 100 ppm

Gallic acid powder was weighed on an analytical balance as much as 10 mg and then put into a volumetric flask. Dissolved with ethanol up to 100 ml and shaken until homogeneous. Gallic acid standard mother liquor was prepared with various concentrations of 10, 20, 30, 40, 50 ppm. The formula used is below

$$\text{M1. V1} = \text{M2. V2}$$

Information :

M1 = Molarity before dilution

M2 = Molarity before dilution

V1 = Volume before dilution

V2 = Volume after dilution

Preparation of 7% Na₂CO₃ Solution

Na₂CO₃ powder was weighed as much as 7 grams and then dissolved with distilled water up to 100 ml.

Maximum Wavelength Determination

Measurement of the maximum wavelength of gallic acid was carried out by measuring a sample of 10 ppm gallic acid concentration in the wavelength range of 400-800 nm using a UV-Vis spectrophotometer.

Gallic Acid Standard Solution Curve

Standard gallic acid solutions were made with various concentrations of 10, 20, 30, 40.50

ppm. Take 1 ml of each concentrate and put it in a test tube and add 0.5 ml of Folin-ciocalteu and then let it stand for 8 minutes while shaking. Into the solution was added 4 ml of 7% Na₂CO₃ solution and vortexed for 1 minute. If there is a precipitate, centrifuge to separate the precipitate and filtrate. The filtrate was taken and tested with a UV-Vis spectrophotometer. Measurements are made at the maximum wavelength. Create a calibration curve between the concentration of gallic acid (sb x) and the absorbance (sb y). The regression equation is used to find the concentration of the sample. Pay attention to the value of r² (make sure the value of r² is close to 1).

Measuring Sample Absorption

The extract was weighed 0.01 g and dissolved with 10 ml of ethanol and homogenized. The extract solution was taken as much as 1 ml and added 0.5 ml of Folin-ciocalteu, left for 4 minutes while shaking. 4 ml of 7% Na₂CO₃ solution was added and vortexed for 1 minute. Enter the blank solution (ethanol) into the cuvette. The sample is put in a cuvette and placed in a spectrometer, then the wavelength is in the range of 400-800 nm. The absorbance of the sample is entered into the gallic acid linear regression equation as sb y to obtain the sample concentration (sb x).

Total Phenolic Content Test (TPC Formula)

The total phenol content can be calculated using the following formula:

$$\text{TPC} = \frac{\text{C. V. fp}}{\text{g}}$$

Information:

C = phenolic concentration (x value)

V = volume of extract used (ml)

fp = dilution factor

g = sample weight used

Qualitative Test Using FTIR Instruments

Turn on the FTIR tester and the computer connecting the software used for analysis, put the citronella sample into the sample holder,

operate the FTIR tool so that the FTIR spectrum is generated from the sample.

RESULTS AND DISCUSSION

The lemongrass sample to be used is first subjected to the extraction process. Extraction of lemongrass leaves is carried out using the maceration method so as not to make the chemical content in the lemongrass damaged by heat. This extraction is classified as wet extraction because it does not require heating in the process. This extraction process has the goal that all the compounds contained in the material can be separated, so that it will produce a yield which will later be used to determine the content of existing compounds (Purwandari et al., 2018). The maceration method was carried out by immersing the samples in ethanol for 24 hours. The purpose of immersion is to break down the cell wall caused by pressure on the outside and inside of the cell. The breakdown of this cell wall will result in the compound content in the cytoplasm of the sample soluble in the solvent (Zena, et al., 2019). During the immersion process, the sample must be stirred so that the solvent and sample can be mixed evenly. The solvent used for extraction must fulfill two conditions, namely the solvent must be the best solvent for the material being extracted and the solvent must separate quickly after stirring. The filter liquid or solvent normally used in the extraction method can be water, ethanol, methanol, water-ethanol or other solvents (Febriana & Oktavia, 2019).

One of the suitable solvents for extracting kitchen lemongrass is ethanol. Ethanol is a type of alcohol with two carbon atoms and a polarity value of 0.68 (Febriana & Oktavia, 2019). Ethanol is commonly chosen as a solvent due to its low boiling point, making it easy to evaporate. The volatile nature of ethanol leads to a minimal amount of ethanol remaining in the extract, resulting in a purer extract. Based on this, ethanol is selected as the polar solvent in this study, considering it hinders bacterial and fungal growth and doesn't require excessively

high temperatures for heating. Additionally, the principle of "like dissolves like" guides solvent selection, making ethanol suitable for dissolving polar compounds. Ethanol serves as one of the solvents that can bind to active substances like tannins, saponins, flavonoids, alkaloids, and phenols (Nitasari, 2019).

The result of maceration is referred to as the filtrate, which will be evaporated using a rotary evaporator to obtain a concentrated extract. The rotary evaporator serves to separate the solvent from the lemongrass powder. The use of this apparatus is chosen because it can evaporate the solvent below its boiling point, ensuring that the constituents contained within the oil are not damaged by high temperatures (Pangestu & Handayani, 2011). At this stage, ethanol will evaporate, causing the extract to dry and yield a concentrated extract (Rusli, 2016). Drying the extract is performed to prevent enzymatic reactions that could lead to chemical changes in the extract. Additionally, the purity of the concentrated extract will be maintained, and it will be less susceptible to fungal contamination. The obtained concentrated extract will be transferred to a petri dish and covered with plastic wrap (Saifudin, et al., 2011).

Phytochemical Screening Qualitative Test

Phytochemical screening test is the initial step to determine the groups of chemical compounds present by observing the physical color changes. Qualitative phytochemical screening is conducted using reagents that will induce color changes in the prepared extract sample (Vifta & Advistasari, 2018). The results of phytochemical screening are influenced by the solvent used and the extraction method applied. In this test, the solvent used is ethanol because the chemical content in lemongrass is more easily extracted using ethanol. Based on the phytochemical test conducted on the kitchen lemongrass leaf extract sample, the following results were obtained.

Table 1: Phytochemical Qualitative Test Results of Lemongrass Leaf Extract

Test	Etanol	Reaction
Alkaloid	+	Jingga
Flavonoid	+	Dark Red
Saponin	-	Tidak berbuih
Fenolik	+	Green
Steroid	-	-
Triterpenoid	+	Purple

Lemongrass dissolved in ethanol shows a reaction when dissolving alkaloids because it is polar in nature and can bind together. Alkaloids are organic compounds containing negatively oxidized nitrogen and possess active physiological properties, making them widely utilized in medicine (Titus, et al., 2013). The alkaloid reaction is characterized by the presence of a red or orange precipitate due to the formation of covalent bonds from potassium ion K, forming potassium alkaloid (Anindita, et al., 2023). In this experiment, the kitchen lemongrass sample shows a positive alkaloid reaction as it turns orange after being treated with Dragendorff's reagent. In a study by Tuasalamony et al. (2020), it was stated that kitchen lemongrass indeed contains alkaloids, thus having potential to inhibit bacterial growth with specific inhibition zones. Even in Fahdi et al.'s study (2022), an oral antiseptic formulation was made from kitchen lemongrass extract with the addition of 96% ethanol solvent. This mouthwash formulation has been proven to inhibit the growth of *S. mutans*. Badriyah & Fariyah (2022) mentioned that lemongrass treated with 96% ethanol contains high alkaloid content that can restrain the growth of pathogenic organisms by preventing nucleic acid synthesis and inhibiting enzyme activity.

The flavonoid test on kitchen lemongrass yielded positive results, indicated by a color change to orange. Flavonoids are polyphenolic compounds containing an aromatic system. Flavonoids assist in photosynthesis, exhibit antiviral and antimicrobial properties in plants (Akasia et al., 2021). Flavonoids also function as antioxidants, neutralize cytotoxicity, and can

alter genes (Iling, et al., 2017). The color change to orange or red is due to the presence of leukonidin, wherein the orange color indicates the presence of flavonols and the darker red color indicates the presence of flavonones (Mosse, et al., 2021). Leukonidin is one of the flavonoid compounds resulting from the formation of flavillium salts when treated with HCl and Mg. Similar to the conducted experiment, Adiguna & Santoso (2017) stated that lemongrass contains antibacterial and fungicidal flavonoid compounds. This is also supported by Hairi et al.'s study (2016), which claimed that the flavonoid content in lemongrass stimulates the development of fibrin threads, leading to faster wound healing and drying of the wound tissue.

The result of the saponin test in this experiment is negative. This is indicated by the absence of froth or foam when the extract is treated with HCl. Saponins are a group of glycoside chemical compounds known for their strong odor. They are easily soluble in water and possess soap-like properties. Saponins are potent compounds that generate froth or foam at high concentrations (Iling, et al., 2017). The formation of foam occurs due to saponin hydrolysis, resulting in the creation of both polar and nonpolar compounds. When shaken, this difference causes saponins to form micellar structures, leading to stable foam (Muthmainnah, 2017). In the study by Sinaga et al. (2020), it was stated that kitchen lemongrass extract indeed does not contain saponin compounds as it does not produce foam when shaken. However, the research by Pujawati et al. (2019) indicated that kitchen lemongrass contains saponins, showing foam formation after being treated with 2N HCl and distilled water. Diana et al. (2017) mentioned that kitchen lemongrass extract contains saponins capable of breaking down bacterial cell walls and forming collagen, thus accelerating wound healing.

The result of the phenolic compound test in this study showed a positive outcome, indicated by the color change of the sample from orange to green. Phenols are compounds known for their high antioxidant activity. In the research by Yanti et al. (2022), the phenolic content in

lemongrass and various other plants is used as a raw material for producing herbal teas that combat free radicals in the body. According to Mirghani et al. (2013), a high phenolic content in a sample can be beneficial as a preventive measure against hypertension and diabetes. Meanwhile, in Yeni et al.'s study (2022), it is explained that low concentrations of phenols can cause cell leakage. This is because at low concentrations, phenols can damage the cell wall and cytoplasm. At high concentrations, phenols can easily lyse cell membranes due to protein coagulation (Hairi et al., 2016). Other benefits are highlighted in Sujianti et al.'s study (2020), which stated that phenolic content in lemongrass can prevent lipid oxidation in fish ball products, thereby maintaining the fat content that affects the quality of the fish balls.

The steroid test yielded a negative result in the lemongrass sample. This is evident from the lack of color change to green or blue in the lemongrass sample. In the study conducted by Balfa & Rahmawati (2022), no steroids were found in lemongrass either. Steroids are derivative/lipid compounds that are not hydrolyzed (Ratnasari et al., 2022). The presence of steroids in a sample would result in acetylation reactions of the -OH group when treated with acetic acid (Agustina et al., 2016). The acetylation reaction caused by adding acetic acid would yield acetyl steroid complexes, resulting in a color change to green or blue (Ilyas, et al., 2015). The absence of a color change to green or blue in the lemongrass sample indicates the absence of steroid compounds (Alviani et al., 2022). Steroids have various benefits, including being antimicrobial, antioxidant, anti-asthma, and antiviral agents (Mohan, et al., 2012). In the research by Wardhani & Supartono (2015), it is stated that steroids have the property of being insoluble in lipids, which enables them to easily penetrate bacterial cell walls. This suggests that sufficiently potent steroid content has significant potential as an antimicrobial agent.

The result of the triterpenoid test on kitchen lemongrass showed a positive outcome, indicated by the color change to green.

Triterpenoids are secondary metabolite compounds derived from terpenoids, which can be cyclic or acyclic. Triterpenoids contain alcohol, aldehyde, or carboxylic acid groups that have numerous benefits for both plants and humans (Andayani & Gunawan, 2013). In human life, triterpenoids are useful as anti-cancer, antibacterial, anti-inflammatory agents, and can help manage cholesterol levels. In plants, they can prevent pest, fungal, bacterial, and viral disturbances that might affect growth (Nassar, et al., 2020). In Djahi et al.'s study (2021), it was stated that triterpenoid content has been proven to control blood sugar levels in the body. This is because triterpenoids can stimulate insulin release and help reduce glucose levels in the body.

Ethanol is a compound that possesses polar properties, similar to water and methanol (Ergina et al., 2014). Additionally, ethanol is also considered universal or nearly capable of dissolving all substances, whether polar, nonpolar, or semi-polar (Erviana et al., 2016). Ethanol can dissolve compounds present in the lemongrass sample. This is because the compounds contained in lemongrass can be easily extracted when the solvent used is polar in nature (Ariyani et al., 2017). Furthermore, ethanol has more hydroxyl groups compared to other compounds like methanol, which makes ethanol's polarity suitable for the lemongrass sample. Moreover, in the research by Miftahurrahmah et al. (2023), it is explained that the yield obtained from the lemongrass sample extraction process using ethanol was greater compared to using other solvents.

Quantitative Test Using UV-Vis Spectrophotometry

UV-Vis spectrophotometry is an analytical method that reviews the molecular interactions that occur between chemicals and ultraviolet electromagnetic radiation. This reaction occurs from near electromagnetic radiation (190 to 380 nm) and visible light (380 to 780 nm) using a spectrophotometer. The principle of this instrument is that there is an electronic transition of a molecule caused by the

absorption of energy in the form of electromagnetic radiation at a certain frequency by the molecule itself. Measurement of the absorption of radiation on the sample will be detected by the detector at various wavelengths. The results of radiation absorption by this detector will be continued to the recorder to produce a spectrum which will provide information for identifying the presence or absence of chromophore groups (Shahmoradi et al., 2022).

The first step before carrying out the test is weighing the sample to be used and adding some chemicals. The added materials are Na₂CO₃ and folin. Sodium carbonate (Na₂CO₃) is a salt compound that can dissolve in water about 30% by weight. Na₂CO₃ solution can be used as an activator because it dissolves easily in water and does not cause metal oxides so that it can reduce the metal content in activated carbon. The Na₂CO₃ compound will decompose in carbon from the sodium metal compound into the following reaction Na₂CO₃ + 2C → 2Na + 3CO. The purpose of giving Na₂CO₃ to the sample is to form complex compounds so that a shift in visible wavelengths occurs (Meilanti., 2020). While folin is a reagent that has a function as an oxidizing agent in UV-Vis spectrophotometry tests. Folin has a principle by forming a blue complex compound. This complex compound can be measured at 675 nm. The purpose of giving folin reagent is to maintain the wavelength in the visible region. The steps that must be taken after adding Na₂CO₃ and folin are followed by centrifuging to obtain a clear supernatant which will be tested on UV-Vis spectrophotometry (Listiana, et al. 2022).

Preparation of a calibration curve for gallic acid standard solution was carried out before determining the level of total phenolic compounds. This aims to facilitate the determination of phenol levels and is obtained through the regression equation of the calibration curve. Making a regression curve shows that there is a relationship between concentration and absorption. This relationship is indicated by the value of r (correlation

coefficient), and R² (coefficient of determination). The curve is made from a comparison between concentration and absorption, where the greater the concentration, the greater the absorption value (Marjoni et al., 2015). A standard solution will be made from gallic acid and will be used to determine the total phenolic content, so it is necessary to make a calibration curve for gallic acid standard solutions with concentrations of 10, 20, 30, 40, and 50 µg/mL (Marjoni, et al., 2015). The results of the calibration curve for gallic acid standard solutions with concentrations of 10, 20, 30, 40, and 50 µg/mL can be seen in Table 2 as follows.

Table 2: Gallic Acid Standard Solution Calibration Curve

Number	Concentration (µL/mL)	Serapan
1	10	0,525
2	20	0,863
3	30	1,531
4	40	2,007
5	50	2,392

Measurement of the maximum wavelength needs to be done to find out the largest concentration unit at the maximum wavelength, so that the maximum analytical sensitivity will be obtained. The determination of the peak wavelength is carried out because the wavelength of a compound can vary when measured under different conditions and devices. The goal is that the change in absorbance per unit concentration reaches the highest value at the peak wavelength, so that the maximum analytical sensitivity is achieved (Rosalina, 2018). The peak wavelength (λ max) is the wavelength at which the absorbance peak occurs due to electronic excitation. The measurement of the peak wavelength is carried out because the change in absorbance per unit concentration has the highest value at the peak wavelength, so that the maximum analytical sensitivity is achieved. The process of determining the peak wavelength of gallic acid was carried out by measuring a solution of gallic acid at a concentration of 10 ppm in the wavelength range of 400-800 nm. In this study

the maximum absorption of gallic acid was obtained at a wavelength of 753 nm (Leo & Daulay 2022).

The measurement results showed that the greater the concentration of the standard gallic acid solution measured, the greater the absorbance obtained. This is because the higher the concentration of the tested compound, the higher the concentration of the compound. In addition, the Lambert-Beer law shows that changes in the concentration of a particular sample will change the absorbance at each wavelength with a constant factor (Pratama & Zulkarnain, 2015). Making a standard gallic acid calibration curve can be done by plotting a standard gallic acid solution (x-axis) and absorbance (y-axis), after which the two points can be connected with a straight line.

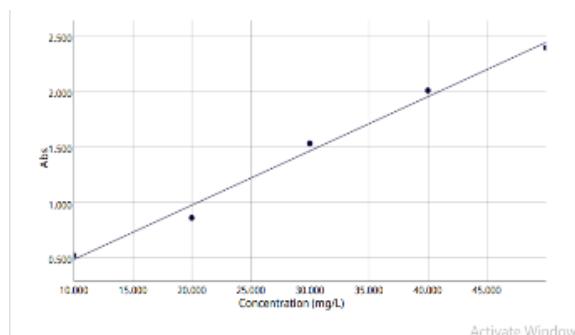


Figure 1: Absorption Measurement Results of Gallic Acid Standard Solution of Lemongrass Leaf Ethanol Extract

Based on the results of measuring the absorption of gallic acid standard solution at a wavelength of 753 nm with a UV-VIS Spectrophotometer, the linear regression curve shows that there is a close relationship between concentration and absorption. The greater the concentration, the greater the absorption value. From the calibration curve, the regression equation $y=0.049 x-2.561$ is obtained and the coefficient of determination $R^2 = 0.990$ which means that 99.9% of the absorption is affected by concentration.

Total Phenolic Content (TPC) is a total phenolic content test carried out using the Folin-

Ciocalteu reagent. The principle of this reagent is the formation of a blue solution which comes from the oxidation of phenolic compounds by Folin-Ciocalteu (Monica, 2017). The choice of Folin Ciocalteu reagent in the total phenolic content test is because phenolic compounds will react with Folin Ciocalteu and form a solution whose absorbance can be measured. The blue colored complex produced by this reaction can be measured at a maximum wavelength of 753 nm. The greater the concentration of phenolic compounds will produce more phenolic ions resulting in the reduction of heteropoly acids (phosphomolybdate-phosphotungstate) into molybdenum-tungsten complexes. The reduction that occurs can produce a deeper blue color (Putri et al., 2022). The formula and results for calculating the TPC content of a sample of lemongrass are as follows:

$$\begin{aligned} \text{TPC} &= \frac{c \cdot v \cdot Fp}{g} \\ &= \frac{6,739 \cdot 1 \cdot 10}{\frac{0,01}{67,39}} \\ &= 6,739 \text{ ppm} \end{aligned}$$

Information :

- TPC : total phenolic content (mg/g GAE)
- c : concentration (x value) (ppm)
- v : extract volume (ml)
- fp : dilution factor
- g : sample weight (gram)

Research conducted by Marjon et al., (2015) states that the limit value of quantization = 6.61 $\mu\text{g/mL}$. The total phenolic content obtained in the extract was 6.379 mg/g GAE, thus exceeding the quantization limit value. The quantization limit value is the smallest quantity of analyte present in a sample that still meets the standard value criteria. If the phenolic content in the extract exceeds the quantization limit value, then the measurement result can be considered as a reliable result and indicates that the extract has a high phenolic content.

Qualitative Test Using FTIR

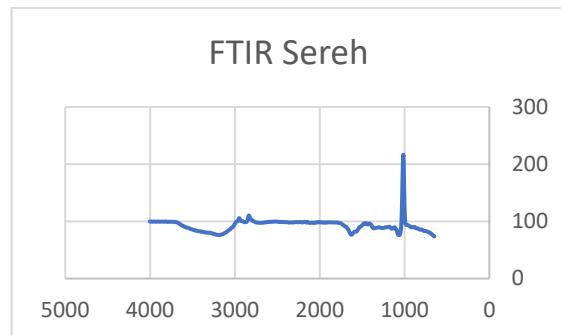


Figure 2: Lemongrass FTIR results

The phenolic test of citronella extract using Fourier Transform Independent Red (FTIR) is an analytical method used to determine the presence of phenolic compounds in citronella extract quantitatively and qualitatively (Mulyani, et al., 2021). Extraction is carried out using a suitable solvent, namely ethanol to obtain citronella extract which will be tested using FTIR spectroscopy. In the FTIR analysis, the lemongrass extract sample is placed in a small cup or transparent container according to the FTIR tool so that the infrared light will hit the sample and record the resulting infrared spectrum (Abd Hamid, 2023). In the infrared spectrum there are a series of peaks and curves that represent the molecular vibrations of the compounds present in the lemongrass extract. The will of phenolic compounds can be revealed through the characteristic peaks seen in the infrared spectrum (William, et al., 2023). Based on the research results, the FTIR spectrum of citronella extract showed a distinctive peak that could be associated with phenolic bonds. Peaks at wave numbers around 3400-3600 cm⁻¹ indicate the presence of OH bonds in the phenolic hydroxyl groups (Muhiddin, 2019). In addition, the presence of peaks at wave numbers around 1600-1700 cm⁻¹ indicates the presence of a C=O bond in the ketone or aldehyde group (Sapitri, 2021).

Interpretation of the FTIR spectrum, the presence of peaks at wave numbers indicating the presence of phenolic bonds indicates that the citronella extract contains phenolic compounds.

The phenolic content in lemongrass extract has important implications for the potential antioxidant activity and other biological properties of the extract (Fajriah, et al., 2022). Phenolic compounds are known to have strong antioxidant activity due to their ability to fight free radicals and prevent oxidative damage in the body. Therefore, the phenolic content contained in sereh extract can provide potential health benefits such as protecting the body from oxidative stress and several other diseases (Marpaung, et al., 2020).

The structural composition of the compounds found in the spectrum results of the lemongrass extract also needs to be identified. Based on the results of the FTIR chromatogram analysis in Figure 2, the component N,N'-Hexamethylenebis (methacrylamide) is obtained which is a synthetic amine compound mixed with water. It is proven that there is an absorption band of 3289.26cm with a transmittance percent of 50,209 which means that the intensity is in the -OH group. Whereas in the absorption band of 1376.45cm with a transmittance percent of 86,402 which means that the weak intensity is in the -CH₃- or C-H alkyl groups. This is in accordance with the opinion of Nurhasanah (2012) that the higher the absorption band on the FTIR chromatogram will affect the strength and weakness of the energy intensity.

CONCLUSION

The lemongrass sample was first extracted using ethanol as the solvent and the maceration method to preserve the compound content in the sample. Phytochemical screening yielded positive results for alkaloids, flavonoids, saponins, phenolics, and triterpenoids, while steroids were not detected. The calibration curve results showed an absorbance of 0.52 at a concentration of 10 µl/ml, 0.863 at 20 µl/ml concentration, 1.531 at 30 µl/ml concentration, 2.007 at 40 µl/ml concentration, and 2.392 at 50 µl/ml concentration. The linear regression curve demonstrated a direct relationship between concentration and absorbance, with the

regression equation $y=0.049x-2.561$ and a coefficient of determination $R^2=0.990$, indicating that 99.9% of the absorbance is influenced by concentration. The total phenolic content, calculated using the TPC formula, was 6.739 ppm. FTIR analysis revealed the presence of N-N - Hexamethylenebis (methacrylamide) component. The absorption band at 3229.26 cm with a transmittance percentage of 50.209 (medium) corresponds to the -OH group, while the absorption band at 1376.45 cm with a transmittance percentage of 86.402 (weak) corresponds to the -CH₃- or C-H alkyl functional group.

REFERENCES

Abd Hamid, H. (2023). Cymbopogon citratus And Cymbopogon nardus Essential Oil Components— FTIR, Chemometrics Assesmenet And Identification Using GC-MS. *Malaysian Journal of Analytical Sciences*, 27(3), 641-652.

Adiguna, P., & Santoso, O. (2017). Pengaruh Ekstrak Daun Serai (Cymbopogon citratus) Pada Berbagai Konsentrasi Terhadap Viabilitas Bakteri Streptococcus Mutans. *Jurnal Kedokteran Diponegoro (Diponegoro Medical Journal)*, 6(4), 1543-1550.

Agustina, S., Ruslan., Agrippian, W. 2016. Skrining Fitokimia Tanaman Obat Di Kabupaten Bima. *Cakra Kimia*. 4(1):71-76.

Akasia, A. I., Putra, I. D. N. N., & Putra, I. N. G. (2021). Skrining fitokimia ekstrak daun mangrove Rhizophora mucronata dan Rhizophora apiculata yang dikoleksi dari kawasan mangrove Desa Tuban, Bali. *Journal of Marine Research and Technology*, 4(1), 16-22.

Alviani, S., Adelia, R. F., Amri, Y., & Amna, U. 2022). Skrining Fitokimia Ekstrak Daun Benalu Kopi (*Scrrula parasitica* L.) Dataran Tinggi Gayo. *Quimica: Jurnal Kimia Sains dan Terapan*, 4(1), 9-14.

Andayani, Y., & Gunawan, E. R. (2013). Analisis senyawa triterpenoid dari hasil fraksinasi ekstrak air buah buncis (*Phaseolus vulgaris* Linn). *Chemistry progress*, 6(2).

Anindita, R., Ramadhena, A. A., Perwitasari, M., Nathalia, D. D., Beandrade, M. U., & Putri, I.

K. (2023). Bioprospeksi Ekstrak Etanol Batang Serai Dapur *Cymbopogon citratus* (DC.) Staph. sebagai Antibakteri *Staphylococcus aureus* ATCC: 25923. Bioscientist: *Jurnal Ilmiah Biologi*, 11(1), 130-144.

Ariyani, F., Setiawan, L. E., & Soetaredjo, F. E. (2017). Ekstraksi Minyak Atsiri dari Tanaman Sereh dengan Menggunakan Pelarut Metanol, Aseton, Dan N-Heksana. *Widya teknik*, 7(2), 124-133.

Badriyah, L., dan Fariyah, D.A. (2022). Analisis Ekstraksi Kulit Bawang Merah (*Allium cepa* L.) Menggunakan Metode Maserasi. *Jurnal Sintesis: Penelitian Sains Terapan dan Analisisnya*, 3(1), 30-37.

Balfa, R. F., & Rahmawati, Y. D. (2022). Skrining Fitokimia, Formulasi, dan Uji Sifat Fisik Sediaan Foot Sanitizer Spray Minyak Atsiri Sereh Wangi (*Cymbopogon citratus* sp.). *Jurnal Pharmascience*, 9(1), 11-17.

Dewi, N. P. (2020). Uji Kuantitatif Metabolit Standar Ekstrak Etanol Daun Awar-Awar (*Ficus septica* Burm. F) Dengan Metode Kromatografi. *Acta Holistica Pharmaciana*, 2(1), 16-24.

Diana, F., Andila, I., & Safutra, E. (2017). Pengaruh Ekstrak Sereh (*Cymbopogon citratus* DC) Terhadap Prevalensi dan Survival Benih Ikan Mas (*Cyprinus carpio* L) yang Diinfeksi Bakteri *Edwardsiella* Tarda. *Jurnal Akuakultura Universitas Teuku Umar*, 1(1).

Djahi, S. N. N. S., Lidia, K., Pakan, P. D., & Amat, A. L. S. (2021). Uji Efek Antidiabetes Ekstrak Etanol Daun Sereh (*Cymbopogon Citratus*) Terhadap Penurunan Glukosa Darah Tikus Putih Sprague Dawley Diinduksi Aloksan. *Cendana Medical Journal (CMJ)*, 9(2), 281-291.

Ergina, E., Nuryanti, S., & Pursitasari, I. D. (2014). Uji Kualitatif Senyawa Metabolit Sekunder Pada Daun Palado (*Agave angustifolia*) Yang Diekstraksi dengan Pelarut Air dan Etanol. *Jurnal Akademika Kimia*, 3(3), 165-172.

Erviana, L., Malik, A., & Najib, A. (2016). Uji Aktivitas Antiradikal Bebas Ekstrak Etanol Daun Kemangi (*Ocimum basilicum* L.) dengan Menggunakan Metode dpph. *Jurnal Fitofarmaka Indonesia*, 3(2), 164-168.

Fahdi, F., Syahdabri, H., dan Sari, H. (2022). Formulasi Obat Kumur Ekstrak Daun Sereh (*Cymbopogon citratus*) terhadap Pertumbuhan

Bakteri *Streptococcus mutans*. Best Journal, 5(1), 231-236.

Fajriah, F., Faridah, D. N., & Herawati, D. (2022). Penurunan Indeks Glikemik Nasi Putih dengan Penambahan Ekstrak Serai dan Daun Salam. *Jurnal Teknologi dan Industri Pangan*, 33(2), 169-177.

Fauzi, M. N., & Santoso, J. (2021). Uji Kualitatif dan Uji Aktivitas Antioksidan Ekstrak Etanolik Buah Maja (*Aegle marmelos* (L.) Correa) dengan Metode DPPH. *Jurnal Riset Farmasi*, 1-8.

Febriana, F., & Oktavia, A. I. (2019). Perbedaan Kadar Flavonoid Total Dari Ekstrak Daun Kejibeling (*Strobilanthes Crispa* L. Blume) Hasil Metode Maserasi Dan Perkolasi (Doctoral dissertation, Akademi Farmasi Putra Indonesia Malang).

Febrina, L., Rusli, R., & Mufliahah, F. (2015). Optimalisasi Ekstraksi Dan Uji Metabolit Sekunder Tumbuhan Libo (*Ficus variegata* blume). *Journal of Tropical Pharmacy and Chemistry*, 3(2), 74-81.

Firyanto, R., Kusumo, P., & Yuliasari, I. E. (2020). Pengambilan Minyak Atsiri Dari Tanaman Sereh Menggunakan Metode Ekstraksi Soxhletasi. *Journal of Chemical Engineering*, 1(1), 1-6.

Hairi, M., Dewi, N., & Khatimah, H. (2016). Pengaruh ekstrak sereh (*Cymbopogon citratus*) terhadap panjang luka mukosa labial mencit secara klinis. *Dentino: Jurnal Kedokteran Gigi*, 1(2), 90-95.

Illing, I., Safitri, W., & Erfiana, E. (2017). Uji Fitokimia Ekstrak Buah Dengen. *Dinamika*, 8(1), 66-84.

Ilyas, A., Novianty, I., & Irmayanti, I. (2015). Senyawa Golongan Steroid Dari Ekstrak N-Heksana Kulit Batang Kayu Bitti (*Vitex cofassus*) dan Uji Toksisitas Terhadap *Artemia salina* Leach. *Chimica et Natura Acta*, 3(3).

Leo, R., & Daulay, A. S. (2022). Penentuan Kadar Vitamin C Pada Minuman Bervitamin Yang Disimpan Pada Berbagai Waktu Dengan Metode Spektrofotometri UV. *Journal of Health and Medical Science*, 105-115.

Listiana, L., Wahlanto, P., Ramadhani, S. S., & Ismail, R. (2022). Penetapan Kadar Tanin Dalam Daun Mangkokan (*Nothopanax scutellarium* Merr) Perasan Dan Rebusan Dengan Spektrofotometer UV-Vis. *Pharmacy Genius*, 1(1), 62-73.

Marjoni, M. R., Afrinaldi, A., & Novita, A. D. (2015). Kandungan total fenol dan aktivitas antioksidan ekstrak air daun kersen (*Muntingia calabura* L.). *Jurnal Kedokteran Yarsi*, 23(3), 187-196.

Marpaung, A. M. (2020). Tinjauan manfaat bunga telang (*Clitoria ternatea* L.) bagi kesehatan manusia. *Journal of Functional Food and Nutraceutical*, 63-85.

Meilanti, M. (2020). Pembuatan Karbon Aktif dari Arang Tongkol Jagung Dengan Variasi Konsentrasi Aktivator Natrium Karbonat (Na₂CO₃). *Jurnal Distilasi*, 5(1), 14-20.

Miftahurrahmah, M., Nurmalasari, E., Putra, R. L., Maulana, I., & Chairunnisa, A. (2023). Pengaruh Perbedaan Pelarut Terhadap Proses Ekstraksi Batang Sereh (*Cymbopogon citratus*). *SAINTI: Majalah Ilmiah Teknologi Industri*, 20(1), 26-31.

Moniharpon, E., Nendissa, S. J., Souripet, A., & Hataul, S. (2016). Pengaruh konsentrasi ekstrak air sereh wangi (*Cymbopogon nardus* L.) terhadap kualitas tahu. *Jurnal Teknologi Pertanian*, 5(1), 13-17.

Mosse, A. F., Prasetyaningsih, A., & Adityarini, D. (2021). Potensi Ekstrak Daun Binahong (*Anredera cordifolia* (Ten.) Steenis) dan Minyak Atsiri Serai (*Cymbopogon citratus* (DC.) Stapf) sebagai Bahan Aktif Hand Sanitizer Spray. *EduMatSains: Jurnal Pendidikan, Matematika dan Sains*, 6(1), 17-30.

Muhiddin, N. F. (2019). Pemanfaatan Tempurung Kemiri (*Aleurites moluccana*) Menjadi Karbon Aktif Sebagai Kapasitansi Elektroda Kapasitor. Skripsi. Universitas Islam Negeri Alauddin Makasar, Makasar.

Mukhriani. (2014). Ekstraksi, Pemisahan Senyawa, dan Identifikasi Senyawa Aktif. *Jurnal Kesehatan*, 7(2).

Mulyani, S., Ulfah, U., Meilina, H., & Munawar, E. (2021). Fourier Transform Infrared Spectroscopy dan Chemometrics: Analisis Boraks pada Bakso. *Jurnal Inovasi Ramah Lingkungan*, 2(2), 6.

Mustikasari, K., & Ariyani, D. (2010). Skrining Fitokimia Ekstrak Metanol Biji Kalangkala (*Litsea angulata*). *Jurnal Berkala Ilmiah Sains dan Terapan Kimia*, 4(2), 131-136.

Muthmainnah. (2017). Skrining Fitokimia Senyawa Metabolit Sekunder dari Ekstrak Etanol Buah Delima (*Punica granatum* L.) dengan Metode

Uji Warna. Media Informasi Poltekkes Makasar, XIII(2), 1-14.

Nambiar VS, Matela H. Potential Function Of Lemon Grass (*Cymbopogon citratus*) In Health And Disease. IJPBA, 2012; 3(5): 1035-1043.

Nitasari, D. (2019). PERBANDINGAN KADAR FLAVONOID EKSTRAK DAUN SIRIH HIJAU (*Piper betle L.*) HASIL MASERASI DAN PERKOLASI BERDASARKAN ANALISA SPEKTROFOMETRI UV-Vis (Doctoral dissertation, Akademi Farmasi Putera Indonesia Malang).

Nurfitriyana, N., Fithri, N. A., & Yanuarti, R. (2022). Analisis Interaksi Kimia Fourier Transform Infra Red (FTIR) Tablet Gastrorentif Ekstrak Daun Petai (*Parkia speciosa*) Dengan Polimer HPMC-K4M Dan Kitosan. Online Technologi Journal, 3(2), 27-33.

Nuryadin, Y., Naid, T., Dahlia, A. A., & Dali, S. (2018). Kadar flavonoid total ekstrak etanol daun serai dapur dan daun alang-alang menggunakan spektrofotometri UV-VIS. Window of Health: Jurnal Kesehatan, 337-345.

Pratama, W. A., & Zulkarnain, A. K. (2015). Uji SPF in vitro dan sifat fisik beberapa produk tabir surya yang beredar di pasaran. Majalah Farmaseutik, 11(1), 275-283.

Pangestu, A & Setyo Wuri Handayani. 2011. Rotary Evaporator and Ultraviolet Lamp. Institute Pertanian Bogor Penelitian Sains Terapan dan Analisisnya, 3(1), 30-37.

Pujawati, R. S., Rahmat, M., Djuminar, A., & Rahayu, I. G. (2019). Uji Efektivitas Ekstrak Serai Dapur (*Cymbopogon citratus* (Dc.) Stapf) terhadap Pertumbuhan *Candida Albicans* Metode Makrodilusi. Jurnal Riset Kesehatan Poltekkes Depkes Bandung, 11(2), 267-273.

Purwandari, R., Subagiyo, S., & Wibowo, T. (2018). Uji aktivitas antioksidan ekstrak daun jambu biji. Walisongo Journal of Chemistry, 1(2), 66-71.

Putri, C. N., Rahardhian, M. R. R., & Ramonah, D. (2022). Pengaruh Metode Ekstraksi Terhadap Kadar Total Fenol dan Total Flavonoid Esktrak Etanol Daun Insulin (*Smallanthus sonchifolius*) serta Aktivitas Antibakteri Terhadap *Staphylococcus aureus*. JPSCR: Journal of Pharmaceutical Science and Clinical Research. J Pharm Sci, 1(1), 15-27.

Rafsanjani, M. K., & Putri, W. D. R. (2015). Karakterisasi Ekstrak Kulit Jeruk Bali Menggunakan Metode Ultrasonic Bath (Kajian Perbedaan Pelarut Dan Lama Ekstraksi)[In Press September 2015]. Jurnal Pangan dan Agroindustri, 3(4).

Ratnasari, T., Sulistiyowati, H., & Setyati, D. (2022, October). Identifikasi Bioprospeksi Senyawa Aktif Terkandung dalam Bahan Baku Sirup Herbal Kube Minuman Herbal Resort Wonosari Taman Nasional Meru Betiri. In Agrogross: National Conference Proceedings of Agriculture (pp. 517-523).

Rosalina, V. (2018). Analisis Kadar Sedian Paracetamol Syrup Pada Anak Terhadap Lama Penyimpanan Dan Suhu Penyimpanan. Jurnal Kesehatan, 5(1). 1-5.

Rusli, T. R. (2016, April). Perbedaan Aktivitas Antioksidan dan Toksisitas Ekstrak Etanol 96% dan Ekstrak Freeze Drying Biji Mangga Gedong (*Mangifera indica L.*). In Proceeding of Mulawarman Pharmaceuticals Conferences (Vol. 3, pp. 415-421).

Safitri, I., Nuria, M. C., & Puspitasari, A. D. (2018). Perbandingan Kadar Flavonoid Dan Fenolik Total Ekstrak Metanol Daun Beluntas (*Pluchea indica L.*) Pada Berbagai Metode Ekstraksi. Jurnal Inovasi Teknik Kimia, 3(1), 31-36.

Sapitri, R. (2021). Ekstraksi Dan Karakterisasi Selulosa Dari Kulit Buah Aren (*Arenga pinnata*) Untuk Penyerapan Ion Logam Cr (VI). Doctoral dissertation, Universitas Jambi

Septiani, G., Susanti, S., & Sucitra, F. (2021). Effect of Different Extraction Method on Total Flavonoid Contents of *Sansevieria trifasciata* P. Leaves Extract. Jurnal Farmasi Galenika (Galenika Journal of Pharmacy)(e-Journal), 7(2), 143-150.

Shahmoradi, A. R., Talebibahmanbigloo, N., Nickhil, C., Nisha, R., Javidparvar, A. A., Ghahremani, P., ... & Ramezanzadeh, B. (2022). Molecular-MD/atomic-DFT theoretical and experimental studies on the quince seed extract corrosion inhibition performance on the acidic-solution attack of mild-steel. Journal of Molecular Liquids, 346, 117921.

Sinaga, R. Y., Prasetyaningsih, A., & Prakasita, V. C. (2020, September). Potensi Ekstrak Daun Sendok (*Plantago major L.*) dan Serai (*Cymbopogon citratus L.*) Sebagai Feet Sanitizer Alami. In Prosiding Seminar Nasional Biologi (Vol. 6, No. 1, pp. 270-277).

Sujianti, T., Haris, H., & Jaya, F. M. (2020). Pengaruh Penambahan Sari Sereh Dapur (*Cymbopogon*

citratus) Terhadap Mutu Bakso Ikan Patin (Pangasius hypothalamus). *Jurnal Ilmiah Pangan Halal*, 2(1), 23-31.

Suryanita, S., Aliyah, A., Djabir, Y. Y., Wahyudin, E., Rahman, L., & Yulianty, R. (2019). Identifikasi senyawa kimia dan uji aktivitas antioksidan ekstrak etanol kulit jeruk bali (*Citrus maxima* Merr.). *Majalah Farmasi dan Farmakologi*, 23(1), 16-20.

Syafitri, N. E., Bintang, M., & Falah, S. (2014). Kandungan fitokimia, total fenol, dan total flavonoid ekstrak buah harendong (*Melastoma affine* D. Don). *Current Biochemistry*, 1(3), 105-115.

Titis, M. B., Fachriyah, E., & Kusrini, D. (2013). Isolasi, Identifikasi dan Uji Aktifitas Senyawa Alkaloid Daun Binahong (*Anredera cordifolia* (Tenore) Steenis). *Chem. Info*, 1(1), 196-201.

Tiwari, Prashant, Bimlesh Kumar, Mandeep Kaur, Gurpreet Kaur, dan Harleen Kaur. "Phytochemical Screening And Extraction: A Review." *Internationale 2011. Pharmaceutica Sciencia* 1(1):98-106.

Tuasalamony, M.M., Seumahu, C.A., dan Pesik, A. (2022). Uji Aktivitas Sediaan Spray Hand Sanitizer Kombinasi Ekstrak Daun Sirih Hijau dan Daun Serai sebagai Antibakteri terhadap *Staphylococcus aureus*. *Biosilampari: Jurnal Biologi*, 4(2), 97-106.

Vifta, R. L., & Advistasari, Y. D. (2018). Skrining Fitokimia, Karakterisasi, dan Penentuan Kadar Flavonoid Total Ekstrak dan Fraksi-Fraksi Buah Parijoto (*Medinilla speciosa* B.). In Prosiding Seminar Nasional Unimus (Vol. 1).

Wardhani, R. A. P., & Supartono, S. (2015). Uji Aktivitas Antibakteri Ekstrak Kulit Buah Rambutan (*Nephelium lappaceum* L.) Pada Bakteri. *Indonesian Journal of Chemical Science*, 4(1).

Willian, N., Pardi, H., & Arief, S. (2023). Pembuatan dan Karakterisasi Nanopartikel Perak Menggunakan Ekstrak Buah Mangrove (*Rhizophora stylosa*). *Jurnal Penelitian Kimia*, 19(1), 53-60.

Yanti, F., Surhaini, S., & Suseno, R. (2022). Formulasi Teh Herbal Berbasis Serai (*Cymbopogon citratus*), Rosela (*Hibiscus sabdariffa* Linn.), dan Jahe (*Zingiber officinale* Rosc.). *Jurnal teknologi hasil pertanian*, 1-9.

Zena Vergita, A., Fiatun Hanifah, R., & Tria Putri, A. (2019). Pagi Hari (Pasta Gigi Herbal Anti Nyeri) Kombinasi Akar Nipah (Nypa fruticans) dan Serai (*Cymbopogon citratus*). *Pharmaqueous: Jurnal Ilmiah Kefarmasian*, 1(1), 50-59.

Saifuddin, N., Nian, CY, Zhan, LW, & Ning, KX (2011). Komposit nanopartikel kitosan-perak sebagai sistem penyaringan air minum rumah tangga yang dapat digunakan untuk menghilangkan pestisida dalam air. *Jurnal Biokimia Asia*, 6 (2), 142-159.