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Abstract

This study investigated the effect of Ground Control Point (GCP) distribution on the accuracy of UAV-based slope mapping and stability
analysis. Three GCP configurations—top-only, vertical, and diagonal—were tested. Accuracy was evaluated using UAV photogrammetry and
compared to GPS geodetic data. The vertical GCP setup produced the highest accuracy, reducing total RMSE by 89.6% (from 52.93 mm to 5.50
mm). The diagonal configuration, while being slightly less accurate (61.26 mm RMSE), improved spatial coverage. Slope stability analysis
using the finite element method (FEM) confirmed the reliability of the vertical setup for slope assessment. These results demonstrated that
optimizing GCP layout could significantly improve model precision while reducing fieldwork. This work contributes to efficient and accurate
slope monitoring with fewer GCPs, making it suitable for large-scale geotechnical applications. Future research will focus on applying these
configurations to vegetated and more complex terrains and integrating automation for broader and scalable implementation.
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1. Introduction

Unmanned aerial vehicle (UAV) photogrammetry has
transformed geospatial mapping and slope stability studies by
providing efficient high-resolution terrain  analyses,
particularly for complex and hazardous area. UAVs equipped
with real-time kinematic (RTK) and post-processing kinematic
(PPK) GNSS systems deliver precise spatial data that are
critical for geotechnical assessments [1]. The use of RGB,
thermal, and LiDAR sensors also enhances 3D mapping in
disaster-prone environments [2].

Accurate digital elevation models (DEMs) and surface

models (DSMs) are crucial for identifying vulnerable slopes
and enabling early landslides warning [3]. UAV data, when
combined with geophysical imaging and finite element method
(FEM) analysis, can improve embankment stability evaluation
and supported risk mitigation strategies [4,5].
However, achieving high accuracy in complex terrains requires
cautious consideration of ground control points (GCP)
placement, which greatly influences the root mean square error
(RMSE) of elevation models [6,7].

Strategic GCP placement remains a logistical challenge,
particularly in accessible slope zones. Reducing the GCP usage
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without compromising its accuracy remains the key research
goal. In this regard, GPS geodetic methods offer a reliable
benchmarks and support UAV validation [8—11].

Accurate soil data from field tests, including cone
penetration tests (CPT) and boring tests, further support slope
stability modeling. CPT provide continuous soil resistance
profiles that correlate with geotechnical parameters such as
density, shear strength, and internal friction angle without
disturbing the soil structure [17-19]. Laboratory analyses refine
the field data and ensure precise cohesion and moisture content
measurements, which are essential for predicting the slope
behavior under various conditions [20-22]

This study explored the feasibility of minimizing GCPs in
UAV-based slope photogrammetry while maintaining model
accuracy through validation with GPS geodetic data and FEM
analysis, supported by soil data from CPT and boring tests.
Vertical and diagonal GCP configurations were tested against
geodetic benchmarks to enhance slope modeling with reduced
field intervention.

Although existing studies have explored GCP reduction, few
have integrated GCP optimization with geotechnical validation
using subsurface data and FEM modeling. Unlike previous
studies, which mostly assessed spatial accuracy, this research
introduces a novel validation framework that links sparse GCP
configurations with slope safety modeling using FEM. This
integrative approach fills a gap in the literature concerning GCP
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minimization strategies for complex slope environments and
offers practical insights for geotechnical risk assessment and
disaster mitigation.

2. Materials and Methods
2.1. Site background

A topographic survey was performed at Tebing Pandang in
Benua Riam Village, Aranio District, Banjar Regency, South
Kalimantan. This area, covering approximately 0.9 hectares,
features a hilly terrain with steep slopes and sharp elevation
changes, which renders it particularly vulnerable to slope
instability. Loose, easily eroded soil, and weathered rock
increase the risk of landslides, especially during heavy rainfall,
increasing the pore water pressures. Although the local
vegetation provides some stabilization, human activities and
poor drainage exacerbate these risks. The challenging
topography, soil composition, and high rainfall conditions
highlight the need for an effective slope management. The
survey coordinates were recorded at SOM 283279.9614818,
oriented at 346° North that provided essential data for further
slope stability assessment and management.

2.2. Tools and equipment used

Specialized equipment was employed to achieve high-
precision geospatial mapping and slope stability analysis. The
Comnav T300 RTK Geodetic GPS provided accurate
positioning for GCPs, which is essential for enhancing the
UAV photogrammetry accuracy in difficult conditions [8].
Meanwhile, the DJI Phantom 4 Professional Obsidian UAV
equipped with GNSS and high-resolution imaging enabled
efficient data capture and created detailed 3D models for
stability assessments [1]. For soil profiling, a 2.5-ton CPT
device provided continuous resistance data to determine the
soil shear strength, whereas hand boring facilitated the
laboratory analysis of cohesion, moisture content, and other
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critical parameters in slope stability modeling [4]. This
integrated approach, as illustrated in Fig. 1, outlines the
workflow from the benchmark (BM) and GCP setups to the
UAV data collection and two-dimensional (2D) modeling for a
comprehensive slope stability analysis.

2.3. UAV and GPS geodetic data acquisition

The initial step in data collection involved establishing
benchmark (BM) points using RTK Geodetic GPS to provide
elevation references and accurate coordinates (East and South)
throughout the study area. The Comnav T300 RTK Geodetic
GPS ensured the precise positioning of the BM points, which
anchored all subsequent UAV measurements to a consistent
geospatial framework, which is vital for slope stability analysis
[8]. Each GCP used in the photogrammetry was also
established by means of RTK GPS to ensure accurate alignment
with the BM reference framework. Fig. 2 illustrates the setup
of the BM and GCPs, which demonstrates the use of a geodetic
GPS to achieve high-accuracy mapping.

2.4. UAV data collection and GCP configurations

The DJI Phantom 4 Professional Obsidian UAV was flown
at a fixed altitude of 50 m above the ground and captured high-
resolution images necessary for constructing DSMs and DEMs.
The UAV flight paths were predefined to comprehensively
cover the study area, thereby ensuring detailed imagery over
both steep and flat terrain. In this study, the GCPs, as shown in
Fig. 3, were strategically placed in three unique configurations
at three points each to assess their impact on model accuracy:
(1) at the top of the slope, (2) in a straight line down the slope,
and (3) arranged diagonally on the slope. While previous
research demonstrated the importance of the GCP distribution
for model precision [6], these specific configurations were
developed to enhance the accuracy of the challenging
topography of the study area.
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Fig. 1. Workflow diagram for UAV-based photogrammetry and slope stability analysis using GCP configurations and FEM

modeling
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Fig. 2. Establishing benchmarks (BM) and ground control points (GCP)
using geodetic GPS for high-precision mapping.

Fig. 3. GCP placement configurations: (a) Top, (b) Straight, and (c)
Diagonal on slope

2.5. Photogrammetric processing

The photogrammetric process started with UAV data to create
DSMs and DEMs using Agisoft MetaShape. The initial steps
included feature detection, alignment, and dense point cloud
generation, followed by 3D model reconstruction and texture
mapping to enhance the model detail and accuracy [1]. The
DSM and DEM models were further refined using
CloudCompeare to align and calibrate the point clouds precisely
[3]. ArcGIS was used to produce topographic maps, which
provided a comprehensive view of the slope area essential for
accurate slope analysis [5].

2.6. Accuracy assessment

The reliability of the photogrammetric models was
evaluated through an accuracy assessment using root mean
square error (RMSE) metrics for both the horizontal (RMSExy)
and vertical (RMSEz) dimensions. This assessment quantified
the spatial accuracy of the DSM and DEM across different GCP

configurations. Furthermore, UAV-derived slope contours
were compared with geodetic GPS reference measurements to
evaluate the precision [14]. This comparison helped to
determine the effect of the GCP distribution on model accuracy
and establish a benchmark for UAV-based mapping
effectiveness in geotechnical applications [6].

This integrated workflow, which combined RTK GPS, UAV
photogrammetry, and advanced data processing, ensured that
the slope stability models were accurate and reliable. By
aligning the UAV data with geodetic GPS measurements, this
study highlighted the potential of UAV photogrammetry for
precise mapping and stability assessment of complex terrains,
thus supporting disaster risk management and geotechnical
analysis in vulnerable areas [9].

2.7. Soil testing and laboratory analysis

Field soil testing included CPT and hand boring tests, which
are essential for collecting soil parameters for finite element
modeling in slope stability analysis. Following the Indonesian
National Standard (SNI) 8460-2017, soil testing was performed
at three locations: the top, middle, and base of the slope. The
CPT and hand boring tests were performed 2 m apart as
specified by the standard. Undisturbed soil samples were taken
at the depths of 2.4-2.8 m at Point S-1 (top), 1.5-2.0 meters at
Point S-2 (middle), and 1.6-2.0 meters at Point S-3 (base).
These samples were tested for cohesion, moisture content,
Atterberg limits, and shear strength to ensure an accurate
representation of soil conditions in stability modeling.

2.8. Finite element slope stability analysis

In this study, the slope stability was assessed using the two-
dimensional (2D) FEM Plaxis software in which the model
geometry was constructed based on the generated DEM/DSM
models. The models served as the basis for simulating the slope
geometry and stratification with soil parameters such as
cohesion, internal friction angle, and moisture content obtained
from the CPT and hand-boring tests [4]. A medium-density
mesh was used with fixed boundaries at the base and vertical
roller conditions on the lateral sides. Although no field
deformation data were available for calibration, all models
shared identical soil inputs, allowing for a valid comparative
analysis between GCP-derived geometries. The analysis
calculated the safety factors and identified the potential failure
zones by leveraging FEM-based modeling methods as
validated in previous studies [15]. UAV and GPS geodetic data
were used to verify the slope geometry and assess its stability
in order to facilitate a detailed slope-failure risk evaluation.

3. Results and Discussions

3.1. Impact of GCP distribution and accuracy metrics in UAV
photogrammetry

Table 1 presents a comparison of the accuracy of UAV
photogrammetry processed using Agisoft Metashape for three
different GCP configurations: top-only, straight vertical, and
diagonal distribution. The metrics analyzed included ground
sampling distance (GSD), vertical (Z), horizontal (XY), and
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total errors. These RMSE values were computed by Agisoft
Metashape based on deviations between the model and control
points, and the large difference between configurations
reinforced the superior accuracy of the vertical GCP setup.

Table 1. Accuracy metrics (GSD, RMSEz, RMSExy, RMSEtotal) for three
GCP configurations in UAV photogrammetry processed with Agisoft

Metashape
Type GSD RMSEz RMSE Rt](\)/{;E
(mm/pixel) (mm) (mm) (mm)

3 GCPs Positioned 162 1729 5003 52.93
at the Top
3 GCPs Positioned
in a Straight Vertical
Line from Top to 16 0.69 5.46 5.50
Bottom
3 GCPs Positioned
Diagonally from 16 14.24 59.58 61.26

Top to Bottom

The top-only GCP configuration yielded the highest total
error (52.93 mm), largely due to insufficient control in lower
slope areas, highlighting its unsuitability for precise mapping.
This finding supports prior studies noting the poor performance
of clustered GCPs at higher elevations [7][16].

In contrast, the vertical configuration produced the lowest
total error (5.50 mm), representing an 89.6% reduction
compared to the top-only configuration. This aligns with Seo et
al. [16], who stressed the effectiveness of vertical GCP
distribution in reducing elevation and total error. Nevertheless,
its limited horizontal spread could constrain performance in
more complex terrains.

The diagonal setup, though exhibiting a higher total error
(61.26 mm), offered a broader spatial coverage, effectively
capturing both vertical and horizontal features. This trade-off
between spatial coverage and precision reflects the findings by
Martinez-Carricondo et al. [7] and Seo et al. [16] that
emphasized the value of diagonal GCP placement in
representing terrain variability.

3.2. Multiscale 3D distance analysis of GCP configurations

The Multiscale Model to Model Cloud Comparison (M3C2)
distance analysis was employed to quantify elevation
discrepancies between UAV-derived point clouds and GPS
geodetic benchmarks for three different GCP configurations. In
the top-only GCP setup (Fig. 4), significant overestimations in
elevation were observed, particularly in the lower slope
regions. This is indicated by the dominant red and yellow tones,
reflecting deviations exceeding +3 meters. These errors
highlight the limitations of clustered GCP placement in
capturing full slope variability, in line with prior studies by Seo
et al. [16] and Gindraux et al. [17].

The vertical GCP configuration (Fig. 5) demonstrated
improved elevation accuracy, as evidenced by widespread
green and blue zones. These colors indicate smaller elevation
differences, generally within +2.5 meters, especially in the
lower portions of the slope. Although minor horizontal
discrepancies remained, the vertical arrangement significantly
reduced vertical errors, supporting the conclusions of Seo et al.

[16] on the benefits of vertically aligned GCPs.

In the diagonal GCP configuration (Fig. 6), the slope surface
exhibited a more consistent pattern of green and grey tones.
These corresponded to a narrow band of elevation differences
centered around zero, suggesting a closer match between UAV
and GPS models across both horizontal and vertical axes. The
broader spatial coverage and balanced alignment offered by the
diagonal setup reinforce the findings of Martinez-Carricondo et
al. [7], who advocated for diagonal GCP layouts in complex
terrain to enhance DEM reliability.

Fig. 6. M3C2 Distance analysis for diagonal GCP configuration

3.3. Cross-sectional analysis of slope profiles based on GCP
configurations

Fig. 7(a) illustrates a top view of the studied slope with
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cross-sectional lines to visualize the accuracy of the GCP
placements. Meanwhile, Fig. 7(b—d) present the slope profiles
generated using ArcGIS, comparing different GCP
configurations (GPS geodetic data, top-only GCPs, straight-
line GCPs, and diagonal GCPs) against the GPS baseline.
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Fig. 7. Cross-sectional analysis of slope: (a) cross-section positions, (b)
cross-section 1, (b) cross-section 2, and (d) cross-section 3

In Fig. 7(b) (Section 1), the top-only GCPs showed
significant deviations, whereas the straight-line GCPs
improved the accuracy, and the diagonal GCPs aligned best
with the GPS baseline. Fig. 7(c) (Section 2) and Fig. 7(d)
(Section 3) show the similar patterns where the diagonal GCPs
consistently offered superior accuracy compared to the top-
only configuration.

These results emphasized the importance of well-distributed
GCPs for accurate slope modeling, particularly in complex
terrain. The diagonal GCP arrangement provided the best
spatial coverage and aligned closely with the GPS data. These
findings align with those of previous studies by Carvajal-
Ramirez et al. [18], Martinez-Carricondo et al. [7], and Seo et
al. [16], thereby highlighting the role of strategic GCP
placement in improving the accuracy of UAV photogrammetry.
In this case, ArcGIS played a crucial role in visualizing these
differences in geospatial applications.

3.4. Soil data and subsurface layering

CPT data from three slope points (Fig. 8) revealed moderate
variations in cone resistance (qc) and friction ratio (FR) along
depth. CPT 1 displayed lower . values near the surface (0—0.6
m), while CPT 3 showed slightly elevated resistance at 2.2—4
m depth, suggesting heterogeneity in near-surface materials.
All locations identified a hard soil layer between 9.8 and 10.6
m, indicating the relatively uniform base stratigraphy. Overall,
FR profiles aligned across sites, except at CPT 1 (0—1.8 m) and
CPT 3 (1.8-4.0 m) where deviations indicated localized
transitions in soil behavior.
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Fig. 8. Cone penetration test (CPT) results: cone resistance (q.) and
friction ratio (FR) profiles for CPT 1, CPT 2, and CPT 3

Soil classification based on the Robertson chart (Fig. 9a)
showed zones 3—6, ranging from cohesive clay to silty sand.
This gradation indicated increasing drainage and decreasing
plasticity from deeper to shallower layers. Subsurface
stratigraphy (Fig. 9b) confirmed layered compositions: clay
(Layer 3), silty clay (Layer 4), clay silt (Layer 5), and sandy silt
(Layer 6). These layers informed FEM modeling by
representing the vertical heterogeneity critical to slope response
under loading.

Laboratory tests (Table 2) further supported this
stratification. BH3 exhibited the highest unit weight and
stiffness with a modulus of elasticity (E,) of 2178 kN/m?
suggesting denser and more competent soils. In contrast, BH1
showed the highest moisture content (20.89%) and lowest
strength, consistent with more plastic, compressible materials.
Variations in cohesion (44.18-51.44 kN/m?) and internal
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friction angle (18.47°-19.38°) provided essential inputs for
FEM stability assessments. This combination of CPT profiling
and borehole analysis enabled a robust geotechnical
understanding of the slope, vital for accurate numerical
modeling.

q; (MPa)

Friction ratio (%)

3 Clay

4 Clay to silty clay

5 Clayey silt to silty clay
6 Sandy silt to clayey silt

CPT I/BH 1

7 CPT2/BH2 (b)
.  CPT3/BH3
5
6

Fig. 9. (a) Soil classification at locations 1, 2, and 3 using CPT data and (b)
soil stratigraphy prediction based on CPT data

The laboratory results further showed subsurface variability.
Silt dominated the grain size distribution, while clay content
varied modestly among boreholes. BH2 showed the highest
plasticity index (19.63%), suggesting greater deformability,
whereas BH3 exhibited the highest shear strength and stiffness,
with the cohesion of 51.44 kN/m?, unconfined compressive
strength of 108.88 kN/m?, and modulus of elasticity reaching
2178 kN/m?. These contrasts confirm the heterogeneity of the
slope’s mechanical properties, a critical factor for accurate
modeling in slope stability analysis.

3.5. FEM modeling for slope stability

Previous studies [27-29] revealed that the use of CPT data
for estimating soil properties requires region-specific empirical
correlations, particularly when the laboratory-based results are
not readily available. Niazi [19] highlighted that the methods
outlined in his manual were designed specifically for Indiana's
geology where extensive CPT research has been performed to
ensure the reliability of the results. Zhou et al. [20] developed
regional correlations in New Zealand and demonstrated a need

to adapt CPT-based estimations for local soil types by
comparing CPT data with Standard Penetration Test (SPT),
Dilatometer Test (DMT), and shear wave velocity (Vs)
measurements. Similarly, Tamositinas et al. [21] presented
correlations for Young’s modulus and other moduli in
Lithuania, emphasizing the need for region-specific equations
to ensure accurate results in varying soil conditions. Therefore,
for greater accuracy, the current study sought to establish
localized empirical correlations between the CPT data and the
laboratory-based soil properties for the study area, as
summarized in Table 3.

Table 2. Soil properties from BH1, BH2, and BH3 for slope stability analysis

Properties BH 1 BH 2 BH3

Dept Y
water content (%) 20.89 18.13 17.36
Specific gravity 2.668 2.672 2.68
Unit weight (y) kN/m* 16.81 16.87 17.01
Gravel (%) 3.13 2.41 3.66
Coarse sand (%) 6.28 5.74 6.85
Medium sand (%) 4.72 4.05 4.8
Fine sand (%) 5.39 5.5 5.39
Silt (%) 67.29 68.29 69.39
Clay (%) 13.19 14.01 9.91
Liquid limit (LL) (%) 455 46.63 44.6
Plastic limit (PL) (%) 26.41 27.01 16.18
Plasticity index (PI) (%) 19.47 19.63 18.41
(S[(j)lsl Cclsa)ssiﬁcation ML ML ML
Cohesion (c) kN/m? 44.18 475 51.44
Internal friction angle (@) ©) 18.47 19.38 19.02
Unconfined compressive 1ON/m? 0.7 927 108.88
strength (q,)

Modulus elasticity (£,) kN/m? 1464 1710 2178

Table 3. Empirical Relationship Between Soil Parameters and CPT Results

Used in FEM analysis
Parameter Correlation 2
Unit weight (kN/m?) v=10.0168q, + 16.606 0.99
Cohesion (kN/m?) c=10.364In(q.) + 18.552 0.99
Internal friction angle (°) ¢=24.342 FR18 0.98

Modulus elasticity (kN/m?) E=59.315q. + 755.84 0.99

3.6. Slip surface and slope safety factor analysis

Fig. 10 presents the results of the slope stability analysis
performed using Plaxis by comparing the slopes with three
different GCPs positioned in various configurations, as
previously described. Fig. 10(a), (b), (c), and (d) show the
slopes with three GCPs placed at the top, placed diagonally
along the slope, arranged in a straight line along the slope, and
the GPS geodetic reference, used as the baseline for
comparison. The color gradient in the figures represents the
distribution of shear strain; warmer colors (red to yellow)
indicate the areas of higher strain and potential instability,
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whereas the cooler colors (blue) represent stable regions.

(a)

SF=1.826

(b)

SF=1.269

(©)

SF=1.514

Fig. 10. Slope stability analysis with different GCP configurations:
(a) GPS geodetic baseline, (b) three GCPs at the top, and (c) three
diagonal GCPs. (d) 3 GCPs in a straight line

The safety factor (SF) for each slope configuration was
calculated as follows: 1.269 for the top-only GCPs, 1.514 for
the diagonal GCPs, 1.72 for the straight-line GCPs, and 1.826
for the GPS geodetic reference. A comparison of the three
analyzed slope models with the GPS Geodetic reference (SF =
1.826) revealed differences in slope stability and strain
distribution based on GCP placement. The first slope with three
GCPs concentrated at the top achieved an SF of 1.269,
indicating a moderate stability with limited safety margins. The
strain was concentrated near the crest and upper sections of the
slope, suggesting a higher risk of localized instability. This
configuration was the least stable among the models and
significantly underperformed the GPS Geodetic reference.

The second slope with the GCPs placed diagonally from top
to bottom had a higher SF of 1.514. This configuration
provided a more balanced strain distribution, resulting in
improved stability. Although this was better than the top-only
GCP model, it still differed from the GPS Geodetic reference,
indicating room for further optimization. The third slope with
the GCPs aligned vertically along the center of the slope
achieved the highest SF of 1.72; it indicated that the strain
distribution became more evenly spread. As the SF approached
the GPS Geodetic reference of 1.826, the characteristics of the
slope behavior became more similar, indicating that this model
yielded results closer to the geodetic data.

3.7. Contribution to disaster risk management

This study contributes to disaster risk management by
improving the efficiency and accuracy of landslide mapping
and slope-stability analyses. It aims to reduce the number of
Ground Control Points (GCPs) required for accurate mapping,
thereby minimizing the time spent in hazardous environments.
Despite fewer GCPs, the results showed that the mapping
accuracy remained close to that of geodetic reference data,
making the method effective for real-world applications in
landslide-prone areas.

The study found that placing GCPs vertically or diagonally
along the slope more significantly improved the accuracy
compared to top-only GCP placement. The straight vertical
GCP configuration yielded the best results in terms of
minimizing errors and aligning closely with the geodetic data.
Additionally, a slope stability analysis using the Finite Element
Method (FEM) showed that the straight-line GCP configuration
resulted in the most stable slope model with a safety factor
close to that of the GPS geodetic reference, indicating
improved landslide prediction.

This research will enable faster, safer, and more cost-
effective landslide monitoring, particularly in remote and high-
risk areas. Using UAVs with optimized GCP configurations
enables the disaster response teams to quickly assess landslide
hazards, improve early warning systems, and implement
targeted risk mitigation strategies. This study enhances
landslide risk management by offering practical and efficient
solutions for monitoring and predicting slope instability. To
facilitate the understanding of the multi-step procedures
conducted in this study, Fig.11 presents a summary diagram of
the full workflow. This visual overview integrates all key stages
from data acquisition to geotechnical analysis.

r - ;
GCP Configuration J UAV Data Acquisition J

h e =
o .

DEMs and Orthophotos Photogrammetric Processing
y ;

il Geotechnical Modeling }

L &

Fig. 11. Summary of the UAV-based slope mapping and geotechnical
modeling workflow implemented in this study

3.8. Limitation and future directions

The accuracy of UAV-derived Digital Elevation Models
(DEMs) in view of obstructions in photogrammetric capture
can be significantly reduced in vegetated areas. Vegetation type
and density, such as marram grass or forest undergrowth, have
been shown to increase elevation uncertainty [22,23]. UAV
models also exhibit lower accuracy compared to Airborne
Laser Scanning (ALS) in dense vegetation with omission and
commission errors affecting overall model reliability [24].
However, in this study, vegetation interference could be
disregarded as the observed slope was a critical, landslide-
prone area with minimal to no vegetation cover, allowing
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clearer terrain capture and more reliable photogrammetric
modeling.

Scalability remains another challenge, particularly in large
or topographically complex regions. While UAVs enable rapid
data collection, coverage limitations and processing demand
increase with site size [25,26]. To address these, future work
should explore automation strategies such as adaptive UAV
altitude control [27] and Al-based terrain correction
frameworks [28,29]. Integration with technologies such as
GPR or drone swarms can also enhance mapping reliability in
inaccessible or hazard-prone areas. Additionally, although this
study focuses on a single bare slope, the findings may inform
GCP configuration strategies in other steep or hazard-prone
terrains, particularly in a sparse vegetation or limited
accessibility.

4. Conclusion

This study evaluated the impact of GCP configuration on the
accuracy of UAV-based slope modeling and stability analysis.
Quantitative analysis revealed that the vertical GCP
configuration achieved the lowest total RMSE (5.50 mm),
compared to 52.93 mm in the top-only setup and 61.26 mm in
the diagonal arrangement. Despite the diagonal layout offering
a broader spatial coverage, it introduced slightly higher error.
The FEM-based slope stability analysis also confirmed this
result with the vertical configuration achieving a Safety Factor
(SF) of 1.72, which closely approximated the GPS geodetic
reference value of 1.826. In contrast, the top-only GCP setup
yielded the lowest SF of 1.269, indicating the least stability,
while the diagonal configuration resulted in a moderate SF of
1.514 with improved but still suboptimal strain distribution.
The vertical GCP configuration not only enhanced spatial
accuracy but also yielded slope stability predictions closest to
geodetic references. Future research should evaluate GCP
configurations in vegetated and complex terrains where UAV
accuracy tends to decline. The optimization of GCP density,
integration with real-time geodetic systems, and use of Al-
based terrain correction or UAV—GPR platforms may enhance
scalability and precision. Improved FEM models based on
refined UAV data can further support slope stability analysis
and disaster risk mitigation.
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