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Abstract
Introduction: Retinopathy of prematurity (ROP) is a major but preventable cause of childhood
blindness. Screening in developing countries is challenging due to skilled staff shortages. Recent
advances in artificial intelligence (Al) offer promising result. This study evaluates the diagnostic
performance of Al models for ROP screening.

Methods: This systematic review followed PRISMA guidelines and included studies from Cochrane,
MEDLINE, and ScienceDirect. Eligible studies were cross-sectional or cohort designs that compared
Al diagnostic accuracy for ROP against a gold standard and reported relevant metrics. Studies were
graded using the Oxford CEBM levels of evidence.

Results: Of 608 studies, 12 were included. i-ROP DL showed high sensitivity and specificity (AUC
~0.99), with ResNet-152 and EfficientNet-B0 also performing well. Despite variations in specificity
and PPV, Al shows promise for ROP screening. i-ROP DL and ResNet-152 may need demographic
adaptation. Though cost-effectiveness data are lacking, Al could reduce workload and improve
diagnostic consistency.

Conclusion: Al shows high sensitivity, but variable specificity highlights the need for
refinement. The review also underscores the importance of validation across diverse
populations to ensure generalizability. Al integration in clinical practice can enhance early
detection, standardize diagnoses, and alleviate the burden on healthcare professionals,
particularly in low-resource settings.
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Retinopathy of
prematurity (ROP) is a
vaso-proliferative
disease of the retina
associated with

prematurity and the
leading cause of childhood blindness worldwide.” A
multicenter analysis of Early Treatment for
Retinopathy of Prematurity (ET-ROP) showed that
68% of premature infants with less than 1250 gram
of bodyweight will develop at least mild ROP. A
multicenter study in Indonesia, the incidence of all-
stage ROP was 18% and in Cipto Mangunkusumo
Hospital was 4.8% in 2014 It is estimated that more
than 10% of premature infants with ROP will develop
severe visual impairment and blindness.* Global
burden of disease analysis showed that in 2010,
there were estimated around 257,000 years lived
with disability due to visual impairment associated
with ROP.®> The underlying link between prematurity
and development of this disease is because the nasal
and temporal portions of the retina form late in
pregnancy, 32 and 40 weeks respectively causing
preterm birth infants had less developed retina.’
Birth body weight is also known to strongly
associated with ROP.

Guidelines from the American Association for
Pediatric Ophthalmology and Strabismus, American
Academy of Pediatrics, and American Academy of
Ophthalmology state that infants born <30 weeks
gestational age or <1500 gram of body weight is a
candidate for screening.® Screening for ROP requires
bedside or telemedicine examination of fundus
image. Screening for ROP in Indonesia is also done
in some hospitals, especially those in big cities. The
screening criteria in Indonesia refer to the
recommendations from the 2014 RoP national Pokja
and Premature Infant Working Group workshop.
These criteria also use references from the United
States. Screening is carried out on babies with a birth

weight of <1500 grams or a gestational age of <34

weeks, or babies with risk factors. In India, the
screening criteria for Retinopathy of Prematurity also
refer to the same criteria as in Indonesia. Several ROP
screening programs are conducted like a multicenter
study conducted at Harapan Kita Women and
Children’s Health Centre and Cipto Mangunkusumo
Hospital.® Jakarta-ROP (JakROP) is one of Cipto
Mangunkusumo Hospital's flagship mobile ROP
screening program in several selected vertical
hospital in Jakara. In a general population, only 5-
10% of babies

impairment secondary to ROP. However, there are a

screened will develop visual
number of challenges for this screening. Regular and
wide population screening is difficult especially in
low- and middle-income countries usually
associated with inadequate training, remote area,
and skilled staff shortages.® This lacked of skilled
staff, especially physician that able to recognized
and diagnosed ROP from fundus image is the core
problem tackled by many in rural developing
Another to ROP

screening is that clinical diagnosis in ROP is

regions/countries. challenge
subjective with high rates of interobserver variability,
and there is inconsistency to real-world treatment
differences. The increasing use of fundus
photography for recording ROP and in telemedicine
initiatives has paved the way for the adoption of
artificial intelligence in ROP management.

Artificial intelligence (Al) is a machine algorithm
designed to mimick human problem-solving skill.
The foundation of artificial intelligence dates back in
1950 when Alan Turing in his paper “Computing
machinery and intelligence”.® Currently, Al is widely
used in medicine especially in aiding identification,
classification, and diagnosis of various diseases. Al is
already developed to aid early diagnosis for diabetic
retinopathy,”® highlighting the potential an Al for
retinopathy of prematurity. Increase used of fundus
photography in telemedicine ROP screening
programs has facilitated the implementation an Al
model for diagnosis. Al model has an advantage over

human in ROP screening program especially because

124 Published by: INAVRS https://www.inavrs.org/ | International Journal of Retina https://ijretina.com 2025; 8; 2;



] ARTICLE REVIEW

computers are not susceptible to fatigue and bias
that may affect assessment result, it is a low risk
examination.”’ In healthcare economics, Al has
shown to reduced overall diagnosis burden of a
healthcare by improving diagnostic accuracy,
enables early detection with minimal device, and
preventing overdiagnosis and overtreatment.'
Integrating wide-field imaging and automated
diagnosis within a teleophthalmology system offers
a potential solution to these problems. This
approach could facilitate quick screening and
prioritization of infants, even in areas with limited
resources. Given the prevalence of ROP and the
increasing demand for efficient screening solutions,
this systematic review aims to update the current
development of Al technologies for ROP diagnosis
and screening, considering the appropriate Al types
that align with the specific needs and workloads of

ROP screening programs.

Artificial Intelligence (Al) has emerged as a
promising tool in addressing challenges of timely
and accurate diagnosis of retinopathy of prematurity
(ROP), particularly in resource-limited settings where
access to trained specialists may be limited. Its ability
to process large volumes of retinal images rapidly
and consistently offers potential to improve
screening coverage and reduce missed diagnoses.
However, despite growing interest, current Al
models vary significantly in design, dataset diversity,
and validation methods. This systematic review aims
to critically evaluate the latest Al models developed
for ROP

performance, and identify existing limitations in their

screening, highlight their diagnostic

clinical validation and generalizability.

The primary outcome of this review is the
diagnostic performance of artificial intelligence (Al)

models in screening for retinopathy of prematurity
(ROP). Key performance indicators include the area
under the receiver operating characteristic curve
(AUC), sensitivity, and specificity. These metrics are
critical for evaluating how well Al models can
distinguish between diseased and non-diseased
cases. High sensitivity is particularly important in the
context of ROP screening to minimize the risk of
while  high
specificity reduces false positives that may lead to

missing  sight-threatening cases,

unnecessary referrals or anxiety. Secondary
outcomes include additional diagnostic metrics such
as inter-rater agreement (to assess consistency
between Al and human graders), negative predictive
value (NPV), positive predictive value (PPV), and
overall diagnostic accuracy. These outcomes reflect
how Al tools might perform in real-world clinical
settings, particularly in varying disease prevalence
and image quality conditions, and help determine
the reliability and applicability of Al-assisted

screening in different healthcare contexts.

This study is a systematic review study conducted
by systematically searching relevant studies through
several online database which includes Cochrane,
MEDLINE, and ScienceDirect. The search was
conducted in 20" April 2024. The PICO of this study
is defined as follows: premature infants (Patients)
diagnosed by artificial intelligence (Al) models
standardized

(Intervention)  compared  with

diagnostic methods performed by humans
(Comparison), with the outcome being diagnostic
performance measured by AUC, sensitivity, and
specificity (Outcome). The keywords used in each

database is presented in table 1.
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Table 1. Search terms in each database

Entries
Database Keywords
found

Cochrane ID
#1 ("artificial intelligence"):ti,abkw OR ("deep learning"):ti,abkw OR ("machine
learning"):ti,ab,kw
#2 ("retinopathy of prematurity"):ti,ab,kw OR (ROP):ti,ab,kw 3
#3 ("diagnosis"):ti,ab,kw OR (prediction):ti,abkw OR ("sensitivity analysis"):ti,ab,kw OR
("specificity"):ti,ab,kw OR ("area under the curve"):ti,ab,kw
#4 #1 AND #2 AND #3

MEDLINE ((((("artificial intelligence"[All Fields]) OR ("machine learning"[All Fields])) OR ("ai"[All
Fields])) OR ("convolutional neural network"[All Fields])) AND ((((("diagnosis"[All Fields])
OR ("prediction"[All Fields])) OR ("sensitivity"[All Fields])) OR ("area under the curve"[All 64
Fields])) OR ("screening"[All Fields])) OR ("specificity"[All Fields]))) AND (("retinopathy of
prematurity"[All Fields]) OR ("rop"[All Fields]))

ScienceDirect ("Artificial intelligence" OR "Machine learning" OR "Deep learning") AND ("Retinopathy of s18
prematurity") AND (Diagnosis OR prediction OR sensitivity OR area under the curve)

This study was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and
Meta-Analysis (PRISMA) guidelines. This systematic review will include studies assessing the capabilities of an
Al model to predict and diagnosing retinopathy of prematurity using several relevant clinical parameters. The
study must include validation test using the prespecified golden standard and presented the relative capability
of the algorithm in detecting retinopathy of prematurity relative to the golden standard. The inclusion criteria
for this study were cross-sectional analytical diagnostic or cohort studies that compared the diagnostic
capabilities of an Al model for retinopathy of prematurity against a gold standard examination, provided a
clear description of both the gold standard and Al model used, and reported the primary outcomes of interest,
while exclusion criteria comprised studies without full-text availability, non-English studies, studies limited to
Al model generation, and publications in the form of case reports, case series, case-control studies, reviews,
editorials, or commentaries.

Risk of bias was assessed using the QUADAS-2 tool, which is designed to evaluate the quality of primary
diagnostic accuracy studies. Each study was independently assessed across four domains: (1) patient
selection, (2) index test, (3) reference standard, and (4) flow and timing. For each domain, we evaluated the
risk of bias and applicability concerns using the signaling questions provided in the QUADAS-2 framework.
Discrepancies between reviewers were resolved through discussion and consensus.

In addition to risk of bias assessment, the Oxford Centre for Evidence-Based Medicine (CEBM) 2011 Levels
of Evidence were used to classify the overall strength of the included studies (Table 2)."* A critical appraisal of
diagnostic accuracy was also performed using the CEBM checklist to support our interpretation of each study’s
methodological rigor.

126 Published by: INAVRS https://www.inavrs.org/ | International Journal of Retina https://ijretina.com 2025; 8; 2;



N ARTICLE REVIEW

Table 2. Oxford Center of Evidence-Based Medicine 2011 Levels of Evidence.

LOE Studies
I Systematic reviews (with homogeneity) of RCT
I RCT or observational studies with dramatic effect
I Non-randomized controlled cohort / follow-up studies
v Case series, case control, or historically controlled studies
v Mechanism-based reasoning

LOE: level of evidence

We extracted the information from each study that fulfilled the inclusion and exclusion criteria. Data
regarding the author’'s name, year of publication, study design, type of artificial intelligence used, the training
data used, and the outcomes
RESULTS

Figure 1 in this systematic review represents a PRISMA (Preferred Reporting Items for Systematic Reviews
and Meta-Analyses) flowchart, which details the study selection process. The flowchart begins with the
identification phase, where a total of 608 studies were found across several databases including Cochrane,
PubMed, and ScienceDirect. A total of 560 studies were excluded during the screening phase. In the eligibility
phase, the full texts of these 16 studies were examined in detail. During this process, 4 studies were excluded
with two studies excluded because of its literature review design and two studies because it lacks Al model
validation test. Critical Appraisal for each included studies is presented in table 4 below.

[ Identification of studies via databases and registers ]

Sy
; Records Identified form: Records removed before
Cochrane (n=4) screening:
E 3 Medline (n = 159) ' o Duplicate records
‘_3, ScienceDirect (n = 445) removed (n=45 )
~__/ T
Records screened | » Records excluded (n =
(n = 580) 560)
v
pepons S.OUBM fox. Records not retrieved
retrieval ¢ _— (n=4)
(n=20) -
L]
Reports assessed for Records excluded:
eligibility + Literature review (n = 2)
J (n = 16) No validation test (n= 2)
—_—— s
rm—
v
Studies Included In review
(n=12)
—J

Figure 1. PRISMA Flowchart
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Table 4. Critical appraisal of included studies

Validity Applicability

Was the diagnostic test evaluated in a Was the reference standard Was there an independent, blind comparison between the index test Were the methods for performing

Study ID

Representative spectrum of patients (like those  applied regardless of the index test and an appropriate reference (‘gold’) standard of diagnosis? the test described in sufficient detail

in whom it would be used in practice) result? Answer Details

to permit replication?

Brown (2018).17

Consensus of image-based

Yes Yes Yes ) Yes
grading by three experts
Greenwald Graded by an
Yes ) ) Yes
(2020).13 Yes Yes ophthalmologist using
ICROP
Campbell (2021).2° Three clinicians using
Yes Yes Yes . Yes
telemedicine
Chen (2021).2! Consensus diagnosis by three
Yes Yes Yes Yes
expert graders
Campbell (2022).2 Determined by 34 ROP
Yes Yes Yes Yes
experts.
Cole (2022).23 Manual diagnosis using
Yes Yes Yes Yes
ICROP
Coyner (2022).24 Manual diagnosis using
Yes Yes Yes Yes
ICROP
Li (2022).% Consensus diagnosis from
Yes Yes Yes Yes
three ROP experts.
Bai (2023).2 five expert pediatric
Yes Yes Yes ) Yes
ophthalmologists
Liu (2023).%7 Yes Yes Yes Determined by senior v
es
ophthalmologists
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Validity Applicability
Study ID Was the diagnostic test evaluated in a Was the reference standard Was there an independent, blind comparison between the index test Were the methods for performing
Representative spectrum of patients (like those applied regardless of the index test and an appropriate reference (‘gold’) standard of diagnosis? the test described in sufficient detail
in whom it would be used in practice) result? Answer Details to permit replication?

Rao (2023).28 Yes Yes Yes Grading by trained ROP

Yes
graders

Siegfried (2023).2°  Yes Yes Yes majority vote of three senior

Yes

pediatric ophthalmologists.

The study characteristics table (Table 5) provides a detailed summary of the studies included in this systematic review on the use of artificial intelligence (Al)
for diagnosing retinopathy of prematurity (ROP). It encompasses a wide range of study designs, geographical locations, and Al models, offering a comprehensive
overview of the current state of research in this area. Overall, these studies illustrate the global effort in utilizing Al for ROP diagnosis, employing various Al
models and training datasets to improve diagnostic accuracy and early detection in premature infants. The diversity in study designs, populations, and Al
technologies highlights the extensive research dedicated to enhancing the screening and management of ROP through artificial intelligence.

Table 5. Study Characteristics

Mean PMA/GA Age Training data
Study ID Study Design Country ROP type Number of samples Model name
(weeks) source
Brown Cross-sectional ~ USA N/A No plus, pre-plus, and 5511 images Retinal image i-ROP DL
(2018)."7 plus disease ROP
Greenwald Cross-sectional ~ USA 292421 Type 1 & Type 2 79 without ROP Retinal images  i-ROP DL
(2020).'3 2 with ROP
Campbell Cross-sectional  India 31.6+4 No plus, pre-plus, and 4175 images from 1253 eyes Retinal images  i-ROP DL
(2021).20 plus disease ROP
Chen Cross-sectional ~ North America North America: 26.6 + 2.2 Stage 1-3 ROP 10894 images Retinal images  ResNet-152
(2021).% and Nepal Nepal: 32.6 +2.8
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Mean PMA/GA Age Training data
Study ID Study Design Country ROP type Number of samples Model name
(weeks) source
Campbell Cross-sectional ~ USA Unspecified Stage 1-5 Unspecified Retinal images  i-ROP DL
(2022).%2 No plus, pre-plus, and
plus ROP
Cole Cross-sectional ~ Nepal and Nepal: 33.3£2.5 No plus, pre-plus, and Nepal: 391 eyes Retinal images  i-ROP DL
(2022).3 Mongolia Mongolia: 30.4 = 2.1 plus ROP Mongolia: 467 eyes
Coyner Cross-sectional  India, Nepal, Not treated: 33.5 £ 2.8 Unspecified Not treated: 3633 patients Retinal images ~ No name
(2022).% Mongolia Treated: 29.7 £2.2 Treated: 127 patients
Li (2022).% Cross-sectional ~ China 31.31+542 Stage 1-3 ROP Training set: 14,626 images Retinal images  Dense Net
Test set: 3680 images
Comparison set: 521 images

Bai (2023).2°  Retrospective Australia 2774 +£2.82 ROP 8052 images Retinal images ~ ROP.AI

Cohort
Liu (2023).27  Retrospective China N/A Treatment indicated 24,495 images from 1075 eyes Retinal image ResNet-18 and

Cohort ROP DenseNet-

121

Rao (2023).2%  Cross-sectional ~ India N/A ROP 7,489 images Retinal image EfficientNet-B0
Siegfried Retrospective UK Less than 32 weeks old or No plus, pre-plus, and  Training set: 6141 images Retinal image Bespoke and
(2023).% Cohort birthweight less than 1501 plus ROP Test set: 200 images CFDL model

gram

UK: United Kingdom; PMA: post-menstrual age; GA: gestational age; ROP: retinopathy of prematurity
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The risk of bias assessment for the diagnostic studies included in this systematic review was conducted
using the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) (Table 6). QUADAS-2 is designed
with four main domains, each evaluated for risk of bias and relevance to the research question. There are four

points evaluated for risk of bias are patients selection, index test, references standard, and flow timing. To aid

in assessing these aspects, each domain includes a set of signalling questions. There remained a potential risk

of bias due to the following factors: (1)inappropriate exclusions during patient selection; (2) not all subjects

were included in the analysis; (3) qualifications of the examiners were not specified

Table 6. Risk of bias assessment of cohort studies using QUADAS-2

Proportion of studies with low, high, or
unclear
Risk of bias

Flow and timing

Index test

Reference standard

Patient selection

0% 50% 100% 150%

HlLow MHigh Unclear

Brown (2018), Greenwald (2020), Campbell
(2021 and 2022), and Cole (2022) used i-ROP Deep
Learning (DL) model for ROP diagnosis (Table 7). The
earliest study that uses this model was a study by
Brown (2018). The model utilized two primary neural
network architectures: a vessel segmentation
network and a classification network. The vessel
segmentation network was designed using the U-
Net architecture, which is highly specialized for
biomedical image segmentation."” The study by
Chen (2021) aimed to develop a deep learning
model for diagnosing ROP, specifically focusing on
identifying stages 1-3 in retinal images of preterm
infants.?’ Coyner (2022) study focused on developing
and validating a deep learning-based model to
screen for ROP in infants from low- and middle-
income countries (LMICs).** Li (2022) developed an
automatic deep convolutional neural network
(DCNN)-based system for early diagnosis and

quantitative analysis of ROP. Using 18,827 retinal

Reference standard

Patient selection

Proportion of studies with low, high, or unclear

Concerns regarding applicability

Index test

0% 50% 100% 150%

HlLow HHigh Unclear

images from preterm infants, two modified Retina U-
Nets were employed to segment blood vessels and
demarcation lines.?® Bai (2023) aimed to test the
ROP.Al model in Australian population. ROP.Al was
developed using retinal images collected from a
single center in New Zealand. The algorithm employs
convolutional neural networks (CNNs) to analyze
retinal images and detect features indicative of plus
disease.?® Liu (2023) study aimed to develop an Al
status and
recommending treatment modalities for retinopathy

system for identifying disease
of prematurity (ROP). The Al system's tasks included
ROP identification, severe ROP identification, and
treatment modality identification (retinal laser
photocoagulation or intravitreal injections).”’ Rao
(2023) study aimed to develop and validate an Al-
based screening tool for detecting ROP in South
Indian infants. They employed convolutional neural
networks (CNNs), specifically the EfficientNet-BO

architecture, to train a deep learning algorithm
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capable of binary classification (ROP present vs. ROP absent).?®

Siegfried (2023) aimed to develop and validate deep learning models for detecting plus disease
in ROP. Two types of models were developed: bespoke and code-free deep learning (CFDL) models. Lastly, the CFDL model was developed using Google Cloud

AutoML Vision API, which does not require advanced coding skills, making it accessible for use in low-resource settings.’

Table 7 provides an in-depth analysis of the diagnostic performance of various Al models used in detecting retinopathy of prematurity (ROP) across

multiple studies. This detailed examination

Table 7. Diagnostic performace of Al model

Study ID Al model Detection (f/:) Sp (%) | AUC Additional metrics Comments
Brown i-ROP DL Plus disease 93.0 | 94.0 0.94 Inter-rater agreement 0.92 i-ROP DL shows high diagnostic accuracy with higher
(2018).77 Pre-plus disease 100 94.0 0.98 agreement than 6 out of 8 experts
Greenwald i-ROP DL Referral-requiring ROP 100 90.0 0.99 - Severity score above 3 is highly predictive for ROP early
(2020).' (Type 1 and 2 ROP) detection
Campbell i-ROP DL Treatment-requiring ROP | 100 78.0 0.98 PPV 12% Al can be effectively integrated into telemedicine programs
(2021).20 (with plus disease) to enhance screening efficiency and monitor disease
Chen ResNet-152 Stage 1-3 ROP 98.0 | 96.0 0.98 The study highlights the domain shift, significant drops of
(2021).% Nepal data set Al model performance when tested in different
ResNet-152 82.0 | 99.0 0.99 population/different camera
North America data
set
Campbell i-ROP DL ROP - - - inter-rater agreement 0.67 The deep learning-derived vascular severity score showed
(2022).22 Correlation coefficient 0.88 | strong consistency with expert classifications
for disease severity
Cole i-ROP DL Plus ROP 75.0 | 64.5 0.99 This study demonstrated that the i-ROP DL algorithm
(2022).3 Nepal data set performed well across different camera systems and
i-ROP DL Plus ROP 89.3 | 543 0.97 populations
Mongolia data set
Coyner No name ROP 100 63.3 - Varying specificity indicates room for improvement to
(2022).24 India data set reduce false positives
No name 100 77.8 -
Nepal data set
No name 100 45.8 -
Mongolia data set
Li(2022).» Dense Net Normal images 959 | 964 0.96 Inter-rater agreement 0.94 The system's ability to quantitatively analyze features such
Stage I ROP 90.2 | 97.7 0.93 as the width of demarcation lines and vascular bifurcation
Stage I1 ROP 92.8 | 98.7 0.99 ratios provides an objective basis for diagnosis
Stage 111 ROP 91.8 |99.3 0.99
Bai (2023).2° | ROP.AI Plus ROP 84.0 | 43.0 0.75 NPV 96% The relatively low specificity indicates a higher rate of
false positives. Misclassifications often occurred in images
with darker fundus or slight blurring.
Liu (2023).2” | ResNet-18 and ROP 85.9 | 91.7 95.3 Accuracy 88.5% The Al system outperformed experienced ophthalmologists
DenseNet- Severe ROP 98.0 | 524 91.3 Accuracy 84.7% in accuracy, especially in determining the need for
121 Treatment modality 70.6 | 94.1 93.6 Accuracy 86.3% treatment and selecting the appropriate treatment modality
identification for ROP
Rao (2023).28 | EfficientNet-B0 ROP 915 | 91.2 0.97 PPV 81.7% The false negatives in the test set were mainly from Stage 1
NPV 96.14 and Stage 2 ROP, which are harder to detect due to subtle
features. Ensuring high-quality images is crucial for the
model's performance.
Siegfried Bespoke Healthy - - 0.98 Inter-rater agreement 0.77 The study found high inter-observer variability, especially
(2023).%° Pre-plus ROP - - 0.93 among less experienced clinicians. This variability
Plus ROP - - 0.97 underscores the challenge in establishing a consistent
CFDL Healthy - - 0.99 Inter-rater agreement 0.53 reference standard for training and validating AI models
Pre-plus ROP - - 0.93
Plus ROP - - 0.98
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DISCUSSION

This systematic review aimed to evaluate the
diagnostic performance of various Al models in
detecting ROP. Across multiple studies, Al models
consistently ~ demonstrated  high  sensitivity,
highlighting their strong potential for early detection
of ROP. Prioritizing sensitivity and comparing results
to the accuracy of the reference standard within the
same population aligns with the standard approach
in diagnostic studies. Sensitivity values of 100%
reported in Brown (2018)"” and Greenwald (2020)"®
confirm the highest sensitivity potential of Al
models, consistent with earlier findings on Al use in
ophthalmology. In the broader field of eye disease,
Al is mainly used for diagnosis, including in

glaucoma and diabetic retinopathy.

Performance, however, varied across studies.
While the i-ROP DL model showed excellent
sensitivity in several reports, specificity ranged
considerably. The ResNet-152 model demonstrated
a marked drop in sensitivity when applied to a
different population, as seen in Chen (2021)*'. Such
variability indicates that although Al models are
effective at identifying true positives, calibration is
needed to reduce false positives. High AUC values
reported in Li (2022)*° and Siegfried (2023)* indicate
generally good discriminatory ability, with accuracy
categories ranging from excellent (90-100%) to very
poor (50-60%). Nonetheless, lower PPV in some
studies, such as Campbell (2021)%, suggests that
remain a

high false-positive rates concern,

particularly in screening contexts where low
specificity could lead to unnecessary diagnostic

procedures.

While Al holds promise for ROP screening,
several barriers remain. Image quality is a critical
factor influencing diagnostic accuracy, especially in
low-resource settings where imaging equipment
may be suboptimal. Training personnel to produce
high-quality

images before implementation is

strongly recommended. Variability in model
performance across clinical environments reflects
differences in patient populations, imaging systems,
standardized

and disease prevalence, making

performance difficult to achieve.

Furthermore, many included studies were

retrospective, which  may limit real-world
applicability. The lack of standardized performance
reporting across studies also complicates direct
model comparisons. Although Al is often assumed to
be cost-efficient for large-scale screening,
particularly in developing countries, none of the
studies assessed  cost-

included explicitly

effectiveness.

This review identified clear evidence of
domain shift, where models trained on one dataset
or population perform less accurately when applied
to another. The drop in sensitivity for the ResNet-152
model in Chen (2021)*' exemplifies this problem.
Domain shift occurs when external samples differ in
features from the original training dataset, leading to
reduced performance. Such findings underscore the
need for domain adaptation, which may involve fine-
tuning models with local data or training on large,
diverse, multi-center datasets. Differences in
demographic composition, disease spectrum, and
hardware studies limit

imaging across

generalizability, reinforcing the importance of
validating Al models in the specific populations and

clinical settings where they will be used.

When effectively deployed, Al-assisted ROP
screening offers substantial clinical benefits. High
sensitivity ensures most true cases are detected,
enabling timely interventions such as anti-VEGF
injection, cryotherapy, or surgery. Al applications in
telemedicine, demonstrated by Campbell (2021)*
and Greenwald (2020)"®, can improve accessibility in
remote and low-resource areas. Al can also
standardize grading, particularly in differentiating

plus from non-plus disease, reducing inter-observer
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variability and ensuring consistent diagnostic
thresholds. Automating initial screenings can reduce
ophthalmologists’ workload, allowing specialists to
focus on complex cases. However, these benefits
depend on maintaining high image quality, ensuring
robust validation in

target populations, and

achieving acceptable specificity to prevent

unnecessary follow-up procedures.

Future research should aim to improve Al
specificity without compromising sensitivity, thereby
reducing false positives. Large, prospective, multi-
center trials involving diverse demographics and
multiple imaging systems will be essential for
validating performance and improving robustness.
Advancing domain adaptation techniques will help
mitigate population and equipment differences.
Integrating Al outputs with other diagnostic tools
and clinical data may enable comprehensive ROP
assessments, prediction of infants at highest risk for
severe disease, and personalized treatment
planning. Further research should also explicitly
evaluate cost-effectiveness, particularly in low- and
countries.

middle-income Standardizing

performance metrics, maintaining high image
quality, and providing healthcare worker training in
Al-assisted workflows will be crucial to maximize
clinical impact. By addressing these factors, Al can
evolve from a promising diagnostic tool to an
integral component of ROP management.highlights
the effectiveness of these Al models in identifying
different stages and severities of ROP, emphasizing
their sensitivity, specificity, area under the curve

(AUC), and additional diagnostic metrics.

Brown (2018) and Greenwald (2020) utilized the i-
ROP Deep Learning (DL) model, achieving high
sensitivity and specificity for plus and pre-plus
disease ROP. Greenwald reported perfect sensitivity
(100%) and high specificity (90%) with an AUC of
0.99 for referral-requiring ROP, underscoring the
model's potential for early detection. Campbell
(2021) also employed the i-ROP DL model, focusing

on treatment-requiring ROP, with 100% sensitivity
and 78% specificity (AUC 0.98). This
highlighted the  model's
telemedicine, despite a lower PPV of 12%. Chen
(2021) used the ResNet-152 model on datasets from
Nepal and North America. For Nepal, the model
achieved 98% sensitivity and 96% specificity (AUC
0.98). Campbell (2022), continuing with i-ROP DL,
reported

study
effectiveness  in

strong  consistency  with  expert
classifications but did not provide specific metrics,
emphasizing high inter-rater agreement. Cole (2022)
evaluated i-ROP DL in Nepal and Mongolia. Coyner
(2022) developed a model tested in India, Nepal, and
Mongolia, achieving 100% sensitivity but varying
specificity (63.3% for India, 77.8% for Nepal, and
45.8% for Mongolia), suggesting high sensitivity but
the need for improved specificity. Rao (2023) used
EfficientNet-BO, achieving 91.5% sensitivity and

91.2% specificity (AUC 0.97).

the Al
sensitivity across various studies, indicating their

Overall, models demonstrate high
strong potential for early detection of ROP. However,
variability in specificity and other metrics such as PPV
and NPV suggests that while these models are
effective in identifying true positives, there is a need
for further refinement to reduce false positives. This
is particularly important in clinical settings to avoid
unnecessary treatments and interventions. The
consistent high performance of models like i-ROP DL
and ResNet across different studies and populations
underscores their reliability. The integration of Al
models in telemedicine and clinical workflows, as
suggested by studies like Campbell (2021) and
Greenwald (2020), can enhance screening efficiency
and improve the management of ROP. The use of Al
in low-resource settings, as explored by Coyner
(2022) and Rao (2023), demonstrates its potential to

bridge gaps in healthcare access and quality
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CONCLUSION
This systematic review, conducted to evaluate the
diagnostic performance of Al models for ROP
found that
consistently  high

achieve
their
potential as effective early screening tools. However,

detection, most models

sensitivity, supporting
marked variability in specificity and positive
predictive value across studies highlights the need to
refine algorithms to reduce false positives and
improve clinical applicability. Evidence of domain
shift underscores that Al models must be validated
and, where necessary, adapted to the target
population and imaging systems before
deployment. Clinically, these findings suggest that Al
could expand screening coverage, standardize
grading, and facilitate telemedicine-based ROP
programs, particularly in low-resource settings,
provided image quality standards and workflow
integration are ensured. For research, the results
point to the need for prospective, multi-center
studies that

standardized performance

include diverse demographics,

metrics, and cost-
effectiveness analyses to confirm generalizability
and guide large-scale implementation.

REFERENCES

1. Brown AC, Nwanyanwu K. Retinopathy of

Prematurity. In Treasure Island (FL); 2024.

2. Good W V. Final results of the Early Treatment
for Retinopathy of Prematurity (ETROP)
randomized trial. Trans Am Ophthalmol Soc.
2004;102:233-50.

3. Siswanto JE, Bos AF, Dijk PH, Rohsiswatmo R,
[rawan G, Sulistijono E, et al. Multicentre
survey of retinopathy of prematurity in

Indonesia. BMJ Paediatr Open.
2021;5:e000761.

4. Blencowe H, Lawn JE, Vazquez T, Fielder A,
Gilbert C. Preterm-associated visual

impairment and estimates of retinopathy of

10.

11.

12.

prematurity at regional and global levels for
2010. Pediatr Res. 2013 Dec;74 Suppl 1(Suppl
1):35-49.

Vos T, Flaxman AD, Naghavi M, Lozano R,
Michaud C, Ezzati M, et al. Years lived with
disability (YLDs) for 1160 sequelae of 289
diseases and injuries 1990-2010: a systematic
analysis for the Global Burden of Disease
Study 2010. Lancet (London, England). 2012
Dec;380(9859):2163-96.

Fierson WM. Screening Examination of
Premature Infants for Retinopathy of
Prematurity. Pediatrics. 2018 Dec;142(6).

Dewi R, Tuhusula R, Rohsiswatmo R. Skrining
Retinopathy of Prematuritydi Rumah Sakit
Pediatr.

dengan Fasilitas Terbatas. Sari

2016;14(3):185.

Scruggs BA, Chan RVP, Kalpathy-Cramer J,
Chiang MF, Campbell JP. Artificial Intelligence
in Retinopathy of Prematurity Diagnosis.
Transl Vis Sci Technol. 2020 Feb;9(2):5.

Rockwell A. The History of Artificial
Intelligence [Internet]. Harvard University.
2017. Available from:

https://sitn.hnms.harvard.edu/flash/2017/histo
ry-artificial-intelligence/

Padhy SK, Takkar B, Chawla R, Kumar A.
Artificial intelligence in diabetic retinopathy: A
natural step to the future. Indian J

Ophthalmol. 2019 Jul;67(7):1004-9.

Gensure RH, Chiang MF, Campbell JP. Artificial
intelligence for retinopathy of prematurity.
Curr Opin Ophthalmol. 2020 Sep;31(5):312-7.

Khanna NN, Maindarkar MA, Viswanathan V,
Fernandes JFE, Paul S, Bhagawati M, et al.
Artificial
Healthcare: Diagnosis vs. Treatment. Healthc
(Basel, Switzerland). 2022 Dec;10(12).

Economics  of Intelligence in

Published by: INAVRS https://www.inavrs.org/ | International Journal of Retina https://ijretina.com 2025; 8; 2; 135



ARTICLE REVIEW ,

13.

14.

15.

16.

17.

18.

19.

20.

Oxford Centre for Evidence-Based Medicine:
Levels of Evidence (March 2009) [Internet].
University of Oxford. 2021 [cited 2021 Sep 20].
Available

https://www.cebm.ox.ac.uk/resources/levels-

from:

of-evidence/oxford-centre-for-evidence-
based-medicine-levels-of-evidence-march-
2009

ExploreAl. Artificial Intelligence (Al) [Internet].

2023. Available from:
https://exploreai.org/p/ai-definition

IBM. What is deep learning [Internet].
Available from:

https://www.ibm.com/topics/deep-learning

Trevethan R. Sensitivity, Specificity, and
Predictive Values: Foundations, Pliabilities,
and Pitfalls in Research and Practice. Front

Public Heal. 2017;5(November):1-7.

Brown JM, Campbell JP, Beers A, Chang K,
Ostmo S, Chan RVP, et al. Automated
diagnosis of plus disease in retinopathy of
prematurity using deep convolutional neural
networks. JAMA Ophthalmol.
2018;136(7):803-10.

Greenwald MF, Danford ID, Shahrawat M,
Ostmo S, Brown J, Kalpathy-Cramer J, et al.
Evaluation of artificial intelligence-based
telemedicine screening for retinopathy of

prematurity. J AAPOS. 2020;24(3):160-2.

Lepore D, Ji MH, Pagliara MM, Lenkowicz J,
Capocchiano ND, Tagliaferri L, et al.
network based on

Convolutional neural

fluorescein  angiography  images  for
retinopathy of prematurity management.

Transl! Vis Sci Technol. 2020;9(2):1-8.

Campbell JP, Singh P, Redd TK, Brown JM,
Shah PK, Subramanian P, et al. Applications of
artificial

intelligence for retinopathy of

21.

22.

23.

24.

25.

26.

prematurity screening. Pediatrics. 2021;147(3).

Chen JS, Coyner AS, Ostmo S, Sonmez K,
Bajimaya S, Pradhan E, et al. Deep Learning for
the Diagnosis of Stage in Retinopathy of
Prematurity: Accuracy and Generalizability
across Populations and Cameras. Ophthalmol

Retin. 2021 Oct;5(10):1027-35.

Campbell JP, Chiang MF, Chen JS, Moshfeghi
DM, Nudleman E, Ruambivoonsuk P, et al.
Artificial
Prematurity: Validation of a Vascular Severity

Intelligence for Retinopathy of
Scale against International Expert Diagnosis.
Ophthalmology. 2022 Jul;129(7):e69-76.

Cole E, Valikodath NG, Al-Khaled T, Bajimaya
S, KC S, Chuluunbat T, et al. Evaluation of an
Artificial Intelligence System for Retinopathy
of Prematurity Screening in Nepal and
Mongolia.  Ophthalmol  Sci
2022:2(4):100165. Available from:
https://doi.org/10.1016/j.x0ps.2022.100165

[Internet].

Coyner AS, Oh MA, Shah PK, Singh P, Ostmo
S, Valikodath NG, et al. External Validation of
a Retinopathy of Prematurity Screening
Model Using Artificial Intelligence in 3 Low-
and Middle-Income Populations. JAMA

Ophthalmol. 2022;140(8):791-8.

Li P, Liu J. Early Diagnosis and Quantitative

Analysis of Stages in Retinopathy of
Prematurity Based on Deep Convolutional
Neural Networks. Transl Vis Sci Technol.

2022;11(5):1-12.

Bai A, Dai S, Hung J, Kirpalani A, Russell H,
Elder J, et al. Multicenter Validation of Deep
Learning Algorithm ROP.Al for the Automated
Diagnosis of Plus Disease in ROP. Transl Vis
Sci Technol. 2023;12(8):1-9.

136 Published by: INAVRS https://www.inavrs.org/ | International Journal of Retina https://ijretina.com 2025; 8; 2;



27.

28.

29.

] ARTICLE REVIEW

LiuY, DuY, Wang X, Zhao X, Zhang S, Yu Z, et
al. An Artificial
Screening and Recommending the Treatment

Intelligence System for

Modalities for Retinopathy of Prematurity.
Asia-Pacific  J  Ophthalmol
2023;12(5):468-76. Available from:
http://dx.doi.org/10.1097/AP0O.00000000000
00638

[Internet].

Rao DP, Savoy FM, Tan JZE, Fung BPE, Bopitiya
CM, Sivaraman A, et al. Development and
validation of an artificial intelligence based
screening tool for detection of retinopathy of
prematurity in a South Indian population.
Front Pediatr
2023;11(September):1-11.  Available from:
https://doi.org/10.3389/fped.2023.1197237

[Internet].

Wagner SK, Liefers B, Radia M, Zhang G,
Struyven R, Faes L, et al. Development and
international validation of custom-engineered
and code-free deep-learning models for
detection of plus disease in retinopathy of
prematurity: a retrospective study. Lancet
Digit Heal 2023;5(6):e340-9.
Available from:
http://dx.doi.org/10.1016/52589-
7500(23)00050-X

[Internet].

30.

31

32.

Kiran Yenice E, Kara C, Yenice M, Erdas CB.
Retinopathy of Prematurity in Late Preterm
Twins with a Birth Weight Discordance: Can it
be Predicted by Atrtificial

Beyoglu Eye J. 2023;8(4):287-92.

Intelligence?

Liu H, Li L, Wormstone IM, Qiao C, Zhang C,
Liu P, et al. Development and Validation of a
Detect
Neuropathy Using
JAMA  Ophthalmol.

Deep Learning  System to
Optic
Fundus Photographs.

2019;137(12):1353-60.

Glaucomatous

Lim JI, Regillo CD, Sadda SR, Ipp E,
Bhaskaranand M, Ramachandra C, et al.
Artificial Intelligence Detection of Diabetic
Retinopathy: Subgroup Comparison of the
EyeArt System with Ophthalmologists’ Dilated
Examinations.  Ophthalmol  Sci. 2023

Mar;3(1):100228..

Qloele

This work licensed under Creative Commons Attribution

Published by: INAVRS https://www.inavrs.org/ | International Journal of Retina https://ijretina.com 2025; 8; 2; 137



