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Abstract 

Although enumeration problems are fundamental in combinatorics, little is known about how 

students intuitively approach such enumeration problems before receiving formal instruction. 

This exploratory qualitative study investigated the initial strategies employed by twelve-grade 

students in solving enumeration problems prior to formal instruction on enumeration rules. 

Fifteen students from a public senior high school in Kerinci, Indonesia, who had not yet learned 

combinatorics in the curriculum, participated in this study. Data were collected through 

students’ written responses to three combinatorial problems presented in different real-life 

contexts and further explored through semi-structured interviews. Only responses 

demonstrating coherent and interpretable strategy were analyzed. The findings reveal three 

dominant strategies: listing all possible arrangements, generalizing patterns, and applying the 

multiplication principle. These findings indicate that students possess intuitive approaches that 

can serve as a foundation for formal combinatorial reasoning. The study aligns with the 

Realistic Mathematics Education (RME) perspective, emphasizing the importance of guided 

reinvention and contextual mathematization, and proposes implications for designing learning 

trajectories that build on students’ informal reasoning in secondary mathematics education. 
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Introduction 

The ability to solve problems involving selection and arrangement is increasingly vital in 

today’s complex and data-driven world. Whether consciously or not, individuals are often 

required to make choices from a set of possibilities—such as planning travel routes, organizing 

schedules, or selecting items within constraints—which inherently involve combinatorial 

reasoning and numeracy. Globally, such skills are recognized as core components of 

mathematical literacy (OECD, 2019, 2023), yet reports indicate that many students struggle 

with tasks requiring these forms of thinking (Mullis et al., 2020). In Indonesia, the 2022 PISA 

results revealed that the majority of 15-year-old students perform below minimum proficiency 

in mathematics, particularly in tasks that require creative problem solving and application of 

combinatorial reasoning in everyday contexts (Kusmaryono & Kusumaningsih, 2023). These 

findings raise serious concerns about the preparedness of students to role effectively in 

quantitative environments, both in academic and real-world settings. 

Researchers and educators worldwide have responded to this issue by emphasizing the 

need to develop both combinatorial thinking and numeracy as integral parts of mathematics 

education (Geiger et al., 2015; Lockwood, 2013). Combinatorial thinking refers to the ability 

to systematically explore and quantify possibilities in a given problem context, such as through 

enumeration, arrangement, and selection (English, 1991; Lockwood, 2013; Salavatinejad et al., 

2021). Numeracy, by contrast, entails the capacity to interpret, evaluate, and act on quantitative 

information to make reasoned decisions (Geiger et al., 2015; OECD, 2023). Both are essential 

not only for academic success but also for informed participation in everyday life, such as 

budgeting, planning, and risk assessment. 

However, previous research has largely focused students’ post-instructional performance, 

often evaluating how well students apply permutation or combination formulas after formal 

teaching. As Matitaputty et al. (2022) that focus on identifying student mistakes conceptually 

and procedurally in permutations and combinations. While such studies offer insights into 

procedural knowledge and conceptual errors, they overlook how students initially make sense 

of counting problems using their informal mathematical understanding. The study has 

compared the strategies of students with and without instruction combinatorics instruction. For 

example, Lamanna et al. (2022), but this study did not identify in detail the strategies of students 

who had not received combinatorics instruction. These studies leaving a research gap in how 

students approach enumeration problems intuitively prior to instruction. 

Addressing this gap is crucial for two reasons. First, identifying students’ initial strategies 
provides a window into their intuitive and informal thinking, revealing the cognitive resources 

they bring to bear when confronting unfamiliar problems. Understanding students’ initial 
strategies in solving enumeration problems is essential for supporting the development of 

relational rather than merely instrumental understanding of combinatorial reasoning (Skemp, 

1978). Second, it offers a powerful basis for designing instructional trajectories that begin with 

students’ existing knowledge, consistent with the principles of Realistic Mathematics Education 
(RME). RME, developed in the Netherlands and adapted in Indonesia (van den Heuvel-

Panhuizen & Drijvers, 2014; Zulkardi et al., 2020), emphasizes learning mathematics is seen 
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as a process of guided reinvention, where students reconstruct formal mathematical concepts 

from their informal experiences through mathematization—the progressive organization and 

formalization of problem situations (Solomon et al., 2021).  

By understanding students’ spontaneous approaches to enumeration problems, educators 
can design tasks that bridge informal reasoning with formal counting principles in a cognitively 

authentic procedure. Exploring such intuitive yet sometimes incomplete strategies aligns with 

the notion of productive failure (Kapur, 2016), where students’ initial struggles to make sense 
of problems can serve as a valuable foundation for subsequent conceptual learning. In 

combinatorics, this means that students can move from intuitive enumeration (e.g., listing all 

possibilities) toward systematic organization (e.g., tree diagrams) and eventually toward 

abstract symbolic reasoning, such as the multiplication principle (English, 1991; Lockwood, 

2013). 

This study investigates how Indonesian twelfth-grade students solve enumeration 

problems before receiving any formal instruction in counting principles. The problems were 

embedded in everyday-related contexts that allowed for multiple solution strategies. The aim is 

to identify and categorize the initial strategies students use and to discuss their implications for 

designing RME-based instructional sequences. By doing so, the study contributes to a deeper 

understanding of students’ informal reasoning in enumeration rules, and supports the 

development of mathematics learning that is both contextually relevant and cognitively 

meaningful. 

Methods 

This study employed a qualitative exploratory design to investigate students’ initial strategies 
in solving enumeration problems before receiving any formal instruction. Qualitative research 

is particularly suited for uncovering the meaning behind students' responses and exploring their 

thought processes (Creswell & Poth, 2018). The study focused on identifying and classifying 

of naturally occurring strategies as a foundation for future instructional design based on 

Realistic Mathematics Education (RME) principles. 

The research was conducted before participants—twelfth-grade students—received any 

formal instruction in counting principles (permutations, combinations, or the multiplication 

principles) in their mathematics curriculum. This timing was crucial to ensure that students 

relied solely on their prior mathematical knowledge and informal reasoning. Participants 

consisted of 15 students (aged 18–19 years, 7 males and 8 females) from a public senior high 

school Jambi, Indonesia, who voluntarily agreed to take part in the study. The selection was 

based on purposive sampling, a common practice in qualitative research when the goal is to 

explore specific cognitive phenomena in depth (Patton, 2015). Data saturation was achieved 

when no new strategies emerged after analyzing all participant’s response, indicating that the 
diversity of strategies had stabilized across students. 

To elicit students' initial strategies, the researcher administered a pretest consisting of 

three enumeration problems presented in different real-life contexts but requiring equivalent 

mathematical reasoning. Each student was asked to choose and solve one problem to reduce 
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cognitive load and allow deeper reasoning within a single context. However, this approach also 

limited cross-problem comparisons, which is acknowledged as a methodological limitation of 

the study. The problems are as follows: 

Problem 1. In an exam, the teacher gives 4 questions. To ensure that students do 

not cheat on each other, students are not allowed to answer the questions in the 

same order as other students. How many different orders are there for answering 

the 4 questions? 

Problem 2. During Eid al-Fitr, you plan to visit the homes of Mr. Beni, Mrs. Dalius, 

Mrs. Emi, and Mrs. Fitri. How many different routes are there to visit the 4 

teachers' homes? 

Problem 3. Suppose you want to create a PIN for your cellphone screen lock 

consisting of 4 digits consisting of the numbers 0, 1, 2, and 3. How many different 

PINs can you create? 

Problems 1 and 2 represent permutation tasks without repetition (4! = 24), whereas 

Problem 3 is intentionally open to dual interpretation—students may treat it as either with or 

without repetition. This ambiguity was deliberately retained as a methodological feature to 

reveal how students’ reason about combinatorial conditions when the context does not 

explicitly specify constraints. 

Data analysis was conducted using content analysis, students’ written responses were 
collected and reviewed, focusing on identifying distinct and meaningful solution strategies. 

Only responses that reflected distinct strategies—whether correct or partially correct—were 

analyzed in depth, while responses exhibited misconceptions or relied on external aids were 

excluded from the classification. Following the test, semi-structured interviews were conducted 

with selected students to clarify their reasoning, confirm their thinking process, and avoid 

misinterpretation of their written work. Interviews are a well-established method for capturing 

students' cognitive strategies in mathematics education (Goldin, 2000).  

Triangulation between written responses and interview data ensured credibility and 

internal validity of the findings so that research results were more valid, accurate, and reduced 

potential bias. Ethical procedures were followed throughout the study: informed consent was 

obtained from all participants and initials were used to ensure anonymity. 

Results 

The written test was administered under a specific rule: students seated next to each other were 

not allowed to solve the same problem. This rule aimed to minimize academic dishonesty and 

encourage individual reasoning. Figure 1 presents an illustration of the students' seating 

arrangement and their respective problem choices (e.g., RD (3) indicates that student RD 

attempted problem number 3).  
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Figure 1. Ilustration of students’ seating arrangement and their problem choices  

Problem 1: Question order arrangement 

Only two students, AL and FZ, attempted Problem 1. AL manually attempted to list all possible 

orders of answering four questions using trial-and-error. AL managed to produce only six 

sequences, such as 1234, 4312, 2413, 1324, 2134, and 3142. However, the responses lacked 

structure and did not suggest a systematic method of enumeration. 

“My answer is still lacking but I hesitate to make all the arrangements because it is too 

much.” – AL  

FZ, in other hand, proposed a distinctive strategy by starting with six unique arrangements 

starting with Question 1. Then generalizing the number of possible arrangements that would 

result if the sequence began with other questions.  

“I suspect that if the sequence (of working on the questions) starts with another number 
(question) it will produce 6 sequences as well.” – FZ  

Although FZ could not fully justify why each starting point would lead to exactly six 

arrangements (see Figure 2), their strategy demonstrated an emerging awareness of recursive 

or multiplicative reasoning, which could serve as an intuitive basis for introducing tree diagrams 

or the multiplication principle in future instruction. 

 

Figure 2. FZ’s attempt to generalize the total number of orders from different starting 
questions 

Translation: 

(Arrangements) 

Because it consists of 4 digits and every first 

digit like 1 can make 6 arrangements. 

So, the number of different arrangement that 

can be made are 6 x 4 = 24. 
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Problem 2: Visiting teacher’s houses 

Five students—RT, NZ, IQ, DZ, and AD—attempted this problem. RT and IQ independently 

applied the multiplication principle by noting the decreasing number of choices at each stage 

of the trip. IQ, for instance, reasoned that the first house could be chosen in 4 ways, the second 

in 3, and so on (see Figure 3). However, during interviews, neither RT nor IQ could justify why 

multiplication was the appropriate operation to combine these choices, indicating partial 

understanding of the principle. 

“If you add 4, 3, 2, and 1, the result is only 10. So I tried using multiplication.” – IQ 

 

Figure 3. IQ’s use of logical step-by-step reasoning before multiplication 

AD used a listing strategy similar to that of FZ in Problem 1. AD started by assuming the 

trip began at Mr. Beni’s house, enumerated six different routes from that point, and then inferred 
a total of 24 routes by multiplying by 4 potential starting points (see Figure 4). Interviews 

revealed that AD had already listed all the possibilities on a separate sheet before making the 

generalization. 

“After I tried starting from Mrs. Dalius, the result was also 6. I guess this applies to 

others too.” – AD  

 

Figure 4. AD’s strategy: listing from one starting point, then multiplying by the number of 
starting points 

Translation: 

1. (Given) 4 options, chosen 1, left 3 options 

2. (Left) 3 options, chosen 1, left 2 options 

3. (Left) 2 options, chosen 1, left 1 options 

4. (Left) 1 

   4    x   3  x  2  x 1 = 24 routes or 4! 

ABCD  BCD  CD  D 

Translation: 

24 routes 

Because each route that begin from one teacher 

house have 6 (routes). For example, here the 

routes that begin from Mr. Beni’s house. 
(Arrangements) 

It means 6 x 4 = 24 (routes) 

NB: 

6 = the number of routes from each teacher 

house that visited first 

4 = the number of teachers (house) that will be 

visited 
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NZ presented only four routes, mistakenly assuming that different starting points alone 

constituted different routes. This reflects a misconception, failing to recognize that multiple 

permutations can originate from the same starting point (see Figure 5). 

“I think there are only 4 routes because I started from Mr. Beni, Mrs. Dalius, Mrs. Emi, 

and Mrs. Fitri.” – NZ  

 

Figure 5. NZ’s misinterpretation of route variation based solely on starting points 

DZ showed a more fundamental misunderstanding by interpreting “route” as a single 
segment of travel between two houses rather than a full sequence. For example, DZ considered 

traveling from Mr. Beni’s to Mrs. Dalius’s house as a complete route. This error indicates a 

failure to grasp the problem’s structure. 

Problem 3: Creating a 4-digit PIN 

This problem was chosen by most students: OK, RZ, AG, BG, IT, RD, HS, and PR. OK, RZ, 

AG, IT, and PR used enumeration by listing possible PINs. Among them, only RZ successfully 

listed 24 unique combinations by fixing the starting digit and varying subsequent digits 

systematically (see Figure 6). 

 

Figure 6. RZ’s systematic enumeration of unique pins based on starting digit 

Interestingly, RZ used repeated addition rather than multiplication, suggesting a 

completely manual enumeration process. On the other hand, OK and AG produced repeated 

combinations due to a lack of systematic listing, as shown in Figure 7. 

“I didn't check the same order. What matters is the total is 6 × 4. – OK  

Translation: 

There are 4 differnet routes. 

• Mr. Beni - Mrs. Dalius - Mrs. Emi - Mrs. Fitri 

• Mrs. Dalius - Mrs. Emi - Mrs. Fitri - Mr. Beni 

• Mrs. Emi - Mrs. Fitri - Mr. Beni - Mrs. Dalius 

• Mrs. Fitri - Mr. Beni - Mrs. Dalius - Mrs. Emi 
 

Translation: 

Each digit have 6 

different 

arrangements, so 

6 + 6 + 6 + 6 = 24. 

(Arrangements) 

So, I can make 24 

different PIN, by 

different digits. 
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“I believe it is true because sequences starting from different numbers have the same 
total.” – AG  

 

Figure 7. Overlapping PINs in OK’s (left) and AG’s enumerations (right) 

In interviews, OK revealed that the listing assumed no repeated digits, indicating partial 

awareness of repetition rules. However, both IT and PR failed to list all possible combinations, 

producing only 22 and 6 combinations, respectively, some of which involved repeated digits 

(e.g., 1122, 0000). 

RD applied the multiplication principle by multiplying 4 × 4 × 4 × 4 = 256, assuming 

each digit could be filled with any of the four available numbers (0–3). While RD was confident 

in this approach, interviews revealed that RD could not justify the use of multiplication (see 

Figure 8). 

“These numbers can be repeated, so the number of choices remains the same (at each 

step). ... Just multiply them to get the largest number.” – RD  

 

Figure 8. RD’s use of the multiplication rule without supporting explanation 

HS used the strategy of listing combinations starting with one digit (0), similar to FZ and 

AD, then multiplied by 4 to arrive at 24 PINs. Lastly, BG gave two answers: 256 (with repetition 

allowed) and 24 (no repetition), but admitted during interviews that the answers were generated 

using ChatGPT, and not through personal reasoning. Consequently, BG’s response was 
excluded from strategy classification for reasons of methodological integrity. 

Translation: 

That is I can make. 

That consist of 4 PIN. 

So, 4 x 4 x 4 x 4 = 256 

So, the number of PINs 

that can be made are 

256. 
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Variation of students’ strategies 

Apart from DZ and BG, students' solutions were classified into three general strategies: (1) 

listing all unique arrangements, (2) generalizing patterns of arrangement, and (3) using the 

multiplication principle. The distribution of these strategies is summarized in Table 1. 

Table 1. Summary of students’ strategies in solving enumeration problems 

Strategy Students 
Frequency 

(n = 15) 
Percentage Description 

Listing Unique 

Arrangements 

OK, RZ, 

AG, IT, NZ, 

AL, PR 

7 47% Manually listing all 

possible outcomes 

Generalizing 

Patterns 

FZ, AD, HS 3 20% Identifying structure or 

pattern before 

generalizing result 

Using 

Multiplication 

Principle 

RT, IQ, RD 3 20% Directly applying 

multiplication without 

full justification 

No Clear 

Strategy or 

Misguided 

DZ, BG 2 13% Misunderstanding or 

relying on external 

tools 

As summarized in Table 1, seven students (47%) relied on listing unique arrangements, 

three (20%) generalized structural patterns, and three (20%) directly applied the multiplication 

principle. The remaining two students (13%) either misunderstood the problem (DZ) or relied 

on external tools (BG). These results indicate that while most students were able to engage in 

combinatorial reasoning at an intuitive level, their strategies reflected varying degrees of 

formalization—from exhaustive manual listing to emerging multiplicative reasoning. 

Discussion 

The findings of this study reveal that students employ various initial strategies in solving 

enumeration problems, reflecting diverse levels of understanding related to permutations and 

counting principles. The three main strategies identified were: (1) listing all possible 

arrangements, (2) generalizing patterns of arrangement, and (3) applying the multiplication 

principle. These findings suggest that students’ intuitive approaches reflect early forms of 
relational understanding, as opposed to purely instrumental reasoning (Skemp, 1978). 

Recognizing such informal reasoning is essential for designing learning trajectories that connect 

intuitive thinking with formal combinatorial principles. The development of these strategies 

aligns with the theoretical framework of Realistic Mathematics Education (RME), where 

understanding progresses from contextual to formal reasoning through guided reinvention 

(Solomon et al., 2021). 

This classification was guided by previous research on students’ combinatorial reasoning 
(Lockwood, 2013; Salavatinejad et al., 2021). Lockwood (2013) proposed a model of students’ 
combinatorial thinking that illustrates how learners progress from constructing explicit lists of 



 
Aan Putra, Zulkardi, Ratu Ilma Indra Putri, Laswadi 

 

907 
 

possible outcomes to identifying structural patterns and, eventually, applying formal counting 

principles such as the multiplication rule. This developmental trajectory reflects a gradual shift 

from informal to formal reasoning. Similarly, Salavatinejad et al. (2021) found that students 

initially rely on intuitive strategies such as listing and drawing visual representations to organize 

possibilities, with only a few able to generalize patterns or correctly use the multiplication 

principle. Together, these studies provide a strong theoretical basis for the three strategy 

categories identified in this research—listing unique arrangements, generalizing patterns of 

arrangement, and using the multiplication principle—as they represent distinct yet connected 

stages in students’ evolving understanding of enumeration problems. 
The first strategy, listing all possible arrangements, was employed by the majority of 

students. This strategy is aligned with Lamanna et al. (2022) that unveil that the majority of 

students without combinatorics instruction use listing, mostly systematic, to help the 

enumeration process. The listing strategy corresponds to the situational level of RME, where 

reasoning remains embedded in the problem context (van den Heuvel-Panhuizen, 2003). This 

strategy represents an intuitive and concrete approach to problem-solving and is characteristic 

of the early stage of mathematization in the framework of Realistic Mathematics Education 

(RME) (Freudenthal, 1991). Lockwood et al. (2015) argue that partial lists of the set of 

outcomes which created by students led to significant improvements in solving problems, 

implying that systematic listing worthwhile for students as they learn to count. 

The second strategy—generalizing patterns of arrangement—was demonstrated by 

students who attempted to make a tree diagrams however not complete but they can extrapolate 

them to solve whole problems. This approach marks a transition toward horizontal 

mathematization, where students begin to connect contextual problem situations to more 

structured mathematical representations (van den Heuvel-Panhuizen, 2003). For example, 

students like FZ and AD showed an intuitive grasp of repeated structural patterns, even though 

they were not able to articulate them formally. This indicates that students were beginning to 

construct informal models of mathematical structure, which can serve as a foundation for formal 

instruction on permutations and tree diagrams (Litwiller & Bright, 2002). This symbolic 

representation like tree diagrams enables students to perceive how elements can be combined 

in a systematic manner and help them develop their combinatorial reasoning (Borba et al., 

2015). 

The third strategy, applying the multiplication principle, reflects a shift toward vertical 

mathematization—moving from informal representations to formal mathematical procedures 

(Gravemeijer, 2004). However, it is important to note that most students using this strategy did 

not demonstrate a deep conceptual understanding of why multiplication was appropriate in the 

given context. Although the use of the multiplication principle suggests potential for formal 

reasoning, pedagogical support is needed to guide students toward a full conceptual grasp of 

the method. The research shows that it is not always natural for students to use the 

multiplication rule in solving combinatorics problems because it involves sequential steps that 

tend to be complicated for beginners (Lockwood & Purdy, 2020). 

In the specific case of the PIN problem, students’ understanding became more complex 
due to the involvement of digit repetition. Some students limited their responses to non-
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repetitive arrangements, while others conflated repetition and non-repetition scenarios. This 

finding underscores the need for explicit instruction on the distinction between permutations 

with and without repetition, as recommended by Lockwood (2013) in her study on 

combinatorial representations. 

Two students, DZ and BG, displayed responses that did not align with any of the three 

major strategies. DZ misunderstood the concept of "route" as a complete tour rather than a 

sequence of destinations, while BG provided a correct answer but admitted to relying on AI 

assistance (ChatGPT). The latter case illustrates a growing issue in mathematics education 

related to academic integrity and the responsible use of digital tools. While technology can be 

a valuable tool in fostering mathematical thinking, it can also hinder cognitive engagement if 

used as a substitute for reasoning rather than a support for it (Zbiek et al., 2007). 

A particularly meaningful feature of this study is its cultural context. The enumeration 

problems—especially the Eid al-Fitr visiting scenario—are deeply familiar to Indonesian 

students. Such culturally resonant contexts align with the RME emphasis on realistic 

(experientially meaningful) situations (van den Heuvel-Panhuizen & Drijvers, 2014). The use 

of tourism and holiday activities connects mathematics to students lived experiences, enabling 

authentic engagement and supporting horizontal mathematization. This underscores that 

realistic contexts need not be Western or generic; they can and should be locally and culturally 

grounded to enhance relevance and motivation. 

These findings have significant implications for instructional design informed by RME 

principles. First, students need learning experiences that stimulate natural mathematization 

processes from contexts that are meaningful to them—such as the tourism scenarios used in this 

study. Second, teachers play a crucial role in encouraging open exploration of student strategies 

prior to introducing formal procedures. Third, students’ initial strategies should serve as starting 
points for developing a bottom-up learning trajectory, in accordance with the principle of 

guided reinvention in RME (Eerde, 2013). 

The findings carry several implications for mathematics instruction, particularly in the 

domain of counting and permutations. The problems in this study provided meaningful contexts 

that facilitated student engagement and elicited natural strategies. Teachers should integrate 

culturally relevant and experientially rich contexts that allow students to mathematize real-life 

situations (van den Heuvel-Panhuizen & Drijvers, 2014). Teachers should create space for 

students to share and discuss their own problem-solving strategies before introducing formal 

methods. This aligns with the RME principle of guided reinvention, allowing students to 

construct mathematical understanding from their own thinking. Solomon et al. (2021) 

emphasized that guided reinvention requires environments that encourage exploration before 

formalization. 

Although some students’ strategies appeared incomplete or incorrect, these attempts can 
be seen as instances of productive failure (Kapur, 2016), where the struggle to construct 

solutions independently lays the groundwork for deeper conceptual understanding in 

subsequent instruction. Instruction should focus on developing students’ reasoning about when 
and why multiplicative structures apply, using tools such as tree diagrams and systematic listing 

as transitional models (English, 1991; Lockwood, 2013). Teachers also play a crucial role in 
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orchestrating whole-class discussions, connecting informal and formal strategies, and bridging 

intuitive ideas with canonical mathematical representations (Stein et al., 2008). While digital 

tools like AI can support learning, their integration should aim to enhance—not replace—
student thinking. Educators must carefully monitor how students use such tools to ensure 

productive engagement (Zbiek et al., 2007). 

Conclusion 

This study demonstrates that even without formal instruction, students naturally use a range of 

strategies—listing all possible arrangements, generalizing patterns, and attempting to apply the 

multiplication principle—reflecting varying levels of informal combinatorial reasoning. While 

some students relied heavily on trial-and-error or incomplete listing strategies, others began to 

show signs of structural understanding and pattern generalization. Only a small number 

attempted formal mathematical reasoning. These findings underscore the importance of 

recognizing and leveraging students’ intuitive thinking as a foundation for meaningful learning 
trajectories in combinatorics. Teachers should view students’ informal approaches not as 
misconceptions, but as seeds of mathematical understanding that can be nurtured through 

guided reinvention.  

Future research should extend this work in several directions. First, design experiments 

could be conducted to test learning trajectories that build on students’ initial strategies and 
progressively develop conceptual understanding of counting principles. Second, cross-cultural 

studies could explore whether similar intuitive patterns emerge in different sociocultural 

settings, thereby enriching the global understanding of combinatorial reasoning. Third, the 

integration of digital tools—such as dynamic tree diagram applications or AI-based 

visualization aids—should be examined for their potential to support students’ exploration and 
deepen their relational understanding of combinatorial structures. 
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