

Jurnal Riset HOTS Pendidikan Matematika Volume- 2 No- 1 Halaman 41 – 52 ISSN 2776-9704 P-ISSN 2776-9984

https://doi.org/10.51574/kognitif.v2i1.440

Profil Miskonsepsi Mahasiswa dalam Memahami Konsep Pecahan dengan menggunakan *Certainty of Response Index*

Alfiah Nurfadhilah AM. Hindi, Iwan Setiawan HR

How to cite: Nurfadhilah AM. Hindi, A., & Setiawan HR, I. (2022). Profil Miskonsepsi Mahasiswa dalam Memahami Konsep Pecahan dengan menggunakan Certainty of Response Index. *Kognitif: Jurnal Riset HOTS Pendidikan Matematika*, 2(1), 41 - 52. https://doi.org/10.51574/kognitif.v2i1.440

To link to this article: https://doi.org/10.51574/kognitif.v2i1.440

Opened Access Article

Published Online on 20 Juni 2022

Submit your paper to this journal

Profil Miskonsepsi Mahasiswa dalam Memahami Konsep Pecahan dengan menggunakan Certainty of Response Index

Alfiah Nurfadhilah AM. Hindi^{1*}, Iwan Setiawan HR¹

¹Program Studi Pendidikan Matematika, Sekolah Tinggi Ilmu Pendidikan (STKIP) Pembangunan Indonesia, Sulawesi Selatan, Indonesia

Article Info

Article history:

Received May 28, 2022 Accepted Jun 15, 2022 Published Online Jun 20, 2022

Keywords:

Miskonsepsi Konsep Pecahan Certainty of Response Index (CRI)

ABSTRACT

Tujuan penelitian ini adalah untuk menggambarkan bagaimana miskonsepsi mahasiswa dalam memahami konsep pecahan. Penelitian ini melibatkan dua puluh satu (21) orang mahasiswa STKIP Pembangunan Indonesia. Instrumen yang kami gunakan berupa soal isian (8 nomor). Dalam menjawab soal para mahasiswa juga diminta untuk memberikan alasan dari jawabannya serta memberikan penilaian CRI (0-5) sesuai dengan derajat kepercayaannya saat menyelesaikan soal. Hasil penelitian menunjukkan bahwa CRI mampu mengungkap miskonsepsi di lakukan mahasiswa saat menyelesaikan masalah pecahan dengan kategori rendah dengan persentase 44,6%. Profil miskonsepsi mahasiswa pendidikan matematika angkatan pertama yakni angkatan 2019 sebesar 31,8%. Berdasarkan hal tersebut, dapat disimpulkan bahwa angkatan pertama tersebut memliki miskonsepsi tergolong tinggi berdasarkan hasil identifikasi menggunakan teknik CRI, jadi pemahaman konsep pecahan yang dimiliki oleh mahasiswa tersebut masih butuh perbaikan. Mungkin hal ini dalam pembalajaran pada tingkat sebelumnya (SMA atau sederajat) kurang mempertajam konsep tersebut.

This is an open access under the **CC-BY-SA** licence

All rights reserved

Corresponding Author:

Alfiah Nurfadhilah AM. Hindi Program Studi Pendidikan Matematika Sekolah Tinggi Ilmu Pendidikan (STKIP) Pembangunan Indonesia Jl. Inspeksi Kanal, Kassi-Kassi, Kec. Rappocini, Kota Makassar, Sulawesi Selatan 90233 Email: alfiahnurfadhilah2@gmail.com

Pendahuluan

Matematika adalah disiplin ilmu yang berdiri sendiri, dimana individu melibatkan aktivitas mental (<u>Adu-Gyamfi & Bossé, 2014</u>). Penerapan matematika mengakibatkan ilmu sains lebih fleksibel dan sederhana. Dalam artian, matematika mampu mendorong individu untuk melibatkan aktivitas pemecahan masalah di berbagai bidang. Oleh karena itu, peran matematika dipandang sebagai sesuatu yang krusial dan perlu dikembangkan oleh siswa di setiap tingkatan. Penguasaan matematika direpresentasikan pada bagaimana siswa memahami konsep dari materi yang dipelajari di kelas. Dimana mereka dituntut untuk melibatkan pemikiran kritis, kreatif, dan reflektif. Dalam artian, siswa harus menyadari pentingnya belajar

matematika di kelas yang nantinya akan menstimulus tindakan mentalnya yang akan berkembang dengan seiring berjalannya waktu. Pemikiran kritis siswa dapat dianalisis dengan menggunakan metode kualitatif (Erdogan, 2019).

Untuk mendalami suatu materi, tentunya seseorang harus terlebih dahulu mencari informasi tentang pokok bahasan atau ciri-ciri khusus dari mata pelajaran tersebut. Demikian pula, matematika memiliki karakteristik unik yang membuatnya berbeda dari disiplin ilmu lain. Dalam hal ini, matematika menuntu seseorang untuk melakukan pemikiran deduktif, dimana hubungan antara suatu konsep atau pernyataan matematika adalah konsisten, karena kebenaran suatu konsep atau pernyataan merupakan perkembangan logis dari kebenaran sebelumnya. Belajar matematika adalah aktivitas berkelanjutan untuk memahami suatu gagasan, ide, dan informasi baru yang didasarkan pada hasil pengalaman sebelumnya.

Bruner (Fauzi et al., 2020; Nehls et al., 2020) melalui teorinya menyatakan bahwa mempelajari bidang matematika menuntut individu untuk mengidentifikasi struktur dan hubungan konseptual yang terlibat di dalamnya. Memahami konsep dan struktur suatu materi akan memudahkan untuk memahami materi secara lebih komprehensif. Selain itu, jika itu adalah pola tekstur yang Anda pelajari, akan lebih mudah bagi siswa untuk mengingat materi. Dalam artian, ketika individu memahami konsep maka ia harus mampu mentransformasikan situasi permasalahan secara bermakna. Kesalahan dalam konsep matematika mengakibatkan perolehan materi yang tidak memadai secara keseluruhan. Secara khusus, kesalahan dalam konsep dasar membuat sulit untuk mempelajari konsep-konsep berikut. yang lebih tinggi (Laili et al., 2021). Hal ini karena urutan materi matematika diatur secara hierarkis, dan satu konsep membentuk dasar untuk memahami konsep lainnya.

Materi yang banyak menjadi problematika bagi siswa adalah ketika mereka berhadapan dengan masalah pecahan. Pecahan dipelajari sejak di level dasar hingga di lever perguruan tinggi. Memahami materi ini, tentunya menghasilkan kekompleksitasan bagi siswa karena membutuhkan pemahaman konsep, prosedur, dan daya komputasi yang nyata. Jika ditinjau darp proses belajar, Stephen & Clements (McKevett et al., 2020) menyatakan bahwa mempelajari pecahan cenderung difokuskan pada aspek prosedural dibandingkan memberikan pemahaman mendalam pada siswa. Kompleksitas pecahan menjadi bagian yang tak dapat diabaikan dalam proses pembelajaran (Eriksson & Sumpter, 2021; Lee & Hackenberg, 2014; McKevett et al., 2020), bahwa tidak ada bidang matematika di sekolah yang kaya, kompleks, dan sulit untuk diajarkan seperti pecahan.

Kompleknya materi pecahan dan kesalahan yang dilakukan siswa tidak terbatas pada tingkat dasar tetapi itu terjadi pada setiap level. Secara khusus, di perguruan tinggi itu sendiri khususnya pada mata pelajaran matematika, masih ditemukan mahasiswa yang mengalami ketidakpahaman terhadap konsep pecahan.. Hal ini dibuktikan berdasarkan pengambilan data awal dengan memberikan pernyataan sebagai berikut:

"Sebuah gelas kaca jatuh ke lantai sehingga pecah menjadi 7 kepingan. Apakah setiap kepingan merupakan pecahan?"

Beberapa siswa menjawab "tidak" karena pecahan tidak harus sama besar, tetapi pecahan harus berukuran sama. Asalan tersebut tentunya sejalan dengan konsep pecahan, yaitu bagian yang benar-benar kongruen (bagian dari permukaan, bagian yang kongruen), tetapi jawaban yang benar untuk pertanyaan di atas adalah "Keripik dapat dinyatakan sebagai pecahan". Ini didasarkan pada konsep fraksi ketidaksepakatan total (bagian permukaan sebagian, bagian tidak cocok). Artinya siswa tersebut memiliki kesalahan konseptual atau kesalahpahaman.

Pada dasarnya setiap siswa berbeda dengan siswa lainnya. Dari perspektif prasangka dan kemampuan memahami informasi. Kesalahpahaman konsep dapat menyebabkan kesalahpahaman. Kesalahpahaman adalah suatu kondisi dimana terjadi pertentangan antara

konsep siswa antara konsep baru dan konsep lama yang saling berhubungan (<u>Mustari et al., 2020</u>). Miskonsepsi terjadi disebabkan skema berpikir siswa tidak mampu mengoneksikan antara konsep dasar yang dibangun dengan konsep yang dipelajari. Meskipun banyak upaya telah dilakukan untuk mengidentifikasi kesalahpahaman, masih sulit untuk membandingkan antara siswa yang mengalami kesalahpahaman dengan siswa yang betul-betul tidak memahami konsep.

Miskonsepsi dalam penelitian ini merujuk pada derajat keyakinan siswa melalui metode Certainty of Response Index (CRI). Metode ini diperkenalkan oleh Hasan et al. (1999) dalam jurnalnya yang berjudul "Misconceptions and The Certainty of Response Index (CRI)". Dalam jurnalnya membedakan antara siswa yang mengalami miskonsepsi dan tidak paham konsep cukup sulit. Oleh karena itu, mereka membuat metode untuk membedakan keduanya (miskonsepsi dan tidak paham konsep). Berdasarkan hasil penelitian tersebut mereka membuktika bahwa metode CRI efektif dalam mendiagnosis siswa yang tidak paham konsep mengalami miskonsepsi. CRI dapat mengidentifikasi keduanya dan siswa yang berdasarkan tingkat keyakinan responden, sehingga dalam penerapan metode tersebut kejujuran responden dalam menjawab CRI merupakan hal yang sangat penting dan harus diperhatikan.

Berdasarkan paparan diatas peneliti merumuskan masalah penelitian ini yakni, "bagaimana profil miskonsepsi mahasiswa mengenai konsep pecahan?". Sehingga, tujuan penelitian ini adalah untuk mendeskripsikan profil miskonsepsi mahasiswa tentang pecahan, dimana hal ini yang memberikan manfaat kepada guru atau tenaga pendidik untuk memperoleh informasi yang dapat digunakan pertimbangan dalam memilih, merancang serta memperkaya strategi pembelajaran yang tepat agar miskonsepsi pada mahasiswa/peserta didik tidak terulang kembali.

Metode

Penelitian ini termasuk dalam jenis deskriptif kualitatif yang maksudnya untuk mendeskripsikan/menggambarkan miskonsepsi mahasiswa dalam memahami konsep pecahan. Dikatakan penelitian deskriptif karena eneliti menganalisis hanya sampai pada tingkat deskriptif. Dengan kata lain, fakta-fakta dianalisis dan disajikan secara sistematis. Penelitian ini dilakukan dengan mengumpulkan ddata yang didasarkan pada informasi dari subjek penelitian. Oleh karena itu, secara kualitatif, kami melibatkan informasi berupa informasi verbal dari mahasiswa

Penelitian ini melibatkan mahasiswa pendidikan matematika STKIP Pembangunan Indonesia angkatan pertama (Angkatan 2019) yang terdiri dari 21 orang mahasiswa. Dari 21 mahasiswa, akan disaring beberapa yang betul-betul mengalami miskonsepsi berdasarkan teknik CRI yang mempengaruhi tingginya tingkat miskonsepsi kelas tersebut. Hasil saringan tersebut dilakukan wawancara untuk mendalami miskonsepsi yang dialami mahasiswa yang tersaring.

Teknik analisis pertama yang digunakan adalah analisis validitas isi, yaitu dengan melihat validitas dan reliabilitas instrumen penelitian. Dalam hal ini peneliti menggunakan Gregory Content Validity. Untuk memutuskan apakah alat penilaian kinerja cukup valid, digunakan model kesepakatan bersama dengan kriteria hasil dari dua validator dengan setidaknya "relevansi kuat". Jika hasil koefisien validitas isi (V > 75%) maka dapat dikatakan hasil tindakan atau intervensi yang dilaksanakan adalah valid atau sahih. Analisis data kedua penelitian ini dilakukan selama pengumpulan data dan setelah pengumpulan data selesai dalam jangka waktu tertentu. Analisis dilakukan pada setiap nomor soal tes yang mereka kerjakan.

Jika jawaban yang ditanyakan setelah dianalisis ternyata tidak memuaskan, peneliti akan melanjutkan pertanyaan itu lagi sampai titik waktu tertentu untuk mendapatkan data yang dianggap jenuh. Data yang diperoleh dianalisis secara deskriptif.

Menurut Miles et al. (2014) bahwa data akan jenuh karena kegiatan analisis data kualitatif dilakukan secara interaktif dan berkesinambungan hingga tuntas. Prosedur analisis data adalah sebagai berikut: (1) kondensasi data, (2) Penyajian data (display data), dan (3) Menarik Kesimpulan. Selanjutnya, evaluasi dan pengelompokan data uji objektif yang dilengkapi dengan CRI dan wawancara dianalisis dan dibagi menjadi dua kategori: data kuantitatif dan kualitatif. Suharsimi (2010) menyatakan bahwa dalam penelitian deskriptif, data kuantitatif berupa angka-angka dan data kualitatif berupa kata-kata atau simbol.

Penilaian

Penilaian tes objektif sebagai berikut:

Tabel 1. Skor Perbutir Soal

Bentuk Soal	Nilai	Keterangan				
Soal Isian	1	Jawaban benar				
	0	Jawaban salah				

Pada CRI, untuk mengetahui tingkat keyakinan mahasiswa terhadap jawaban yang dipilih, dapat menggunakan nilai skala pada tabel 2:

Tabel 2. Skala Respon CRI

CRI	Kriteria		Kategori		
	Enteria	В	S		
0	(Totally guessed answer): jika menjawab soal 100% ditebak	TP	TP		
1	(Almost guess) jika menjawab soal presentase unsur tebakan antara 75%-99%	TP	TP		
2	(Not sure) jika menjawab soal presentase unsur tebakan antara 50%-74%	TP	TP		
3	(Sure) jika menjawab soal presentase unsur tebakan antara 25%-49%	P	M		
4	(Almost certain) jika menjawab soal presentase unsur tebakan antara 1%-24%	P	М		
5	(Certain) jika menjawab soal tidak ada unsur tebakan sama sekali (0%)	P	M		

Pengelompokan Data

Berdasarkan data yang diperoleh dari setiap siswa, analisis data dengan mengacu pada kombinasi jawaban yang diberikan (benar atau salah) dan skor CRI (rendah atau tinggi). Dengan cara ini, Anda dapat melihat persentase siswa yang memahami, salah paham, dan tidak memahami konsep. Pada tabel 3 merupakan ketentuan untuk menentukan kriteria tersebut.

Tabel 3. Kombinasi Jawaban yang Diberikan Berdasarkan Nilai CRI

Kriteria jawaban	CRI Rendah (CRI < 2,5)	CRI Tinggi (CRI > 2,5)			
Jawaban	Jawaban benar tapi CRI rendah	Jawaban benar dan CRI tinggi			
benar	tidak paham konsep (lucky guess)	menguasai konsep dengan baik			
Jawaban	Jawaban salah dan CRI rendah	Jawaban salah tapi CRI tinggi			
salah	tidak paham konsep	terjadi miskonsepsi			

Hasil Penelitian

Pemahaman Konsep Mahasiswa pada Konsep Pecahan

Berdasarkan hasil penelitian didapatkan dari 10 nomor soal, terdapat beberapa nomor yang masih sulit dipahami oleh mahasiswa, karena berdasarkan data ada beberapa presntase kemampuan pemahaman mahasiswa tentang konsep pecahan sangat rendah. Bisa dilihat pada tabel 4 berikut:

Tabel 4. Data Kemampuan Pemahaman Mahasiswa tentang Konsep Pecahan

Nomor Soal	Pendidikan Matematika STKIP-PI Angkatan Pertama
1A	20%
1B	10%
1C	90%
1D	90%
2	60%
3	60%
4	40%
5	20%
6	30%
7	10%
8	60%
Rata-Rata	44,6%

Berdasarkan tabel 4 di atas, pemahaman konsep paling tinggi pada soal nomor 1C dan 1D yaitu soal yang membahas tentang menggambarkan pecahan biasa, sedangkan pemahaman konsep paling rendah soal nomor 1B dan 7 yang membahas salah satu konsep pecahan yaitu, part whole noncongruent part (bagian suatu daerah, bagian-bagiannya tidak kongruen). Hal ini dimungkinkan karena materi soal nomor 1C dan 1D adalah yang paling sering ditemukan saat mempelajari pecahan yaitu bagian-bagian yang sama besar diarsir dari keseluruhan bagian, sedangkan materi pada soal nomor 1B dan 7 membahas bagian-bagian yang diarsir tidak sama besar dari keseluruhan bagian.

Miskonsepsi Mahasiswa pada Konsep Pecahan

Menganalisis miskonsepsi untuk setiap item yang diselesaikan siswa. Untuk menganalisis miskonsepsi konsep pecahan, peneliti mengalami masalah. Dengan kata lain, beberapa siswa tidak menuliskan CRI atas soal-soal yang mereka selesaikan. Peneliti hanya

menganalisis miskonsepsi dalam pemecahan masalah, dengan catatan tingkat kepercayaan. Di bawah ini adalah hasil analisis miskonsepsi pecahan.

Mahasiswa	Nomor Soal									Rata-		
	la	1b	1c	1d	2	3	4	5	6	7	8	rata
Pendidikan Matematika STKIP-PI Angkatan	42%	62%	5%	7%	23%	22%	50%	28%	25%	64%	22%	31,8%

Tabel 5. Data Miskonsepsi Mahasiswa pada konsep Pecahan

Berdasarkan hasil analisis seperti pada tabel 5, persentase miskonsepsi mahasiswa STKIP-PI paling tinggi dialami pada soal nomor nomor 7 dengan persentase sebesar 64%. Tertinggi kedua yakni terdapat pada soal nomor 1b dengan persentase sebesar 62%. Dan sedangkan persentase miskonsepsi mahasiswa STKIP-PI paling rendah dialami pada soal nomro 1c dan 1d, mungkin hal ini berpengaruh pada tingginya pemahaman mahasiswa pada kosep pecahan pada soal tersebut. Jika dirata-rata hasil analisis CRI untuk mahasiswa miskonsepsi didapatkan sebesar 31.8%.

Analisis CRI Mahasiswa berdasarkan Kriteria Jawaban pada Konsep Pecahan

Setelah dilakukan analisis CRI dan jawaban mahasiswa berdasarkan pemahaman (kategori paham). Selanjutnya yang akan dianalisis adalah CRI dan jawaban seluruh mahasiswa yang akan dikategorikan menjadi 3, paparan datanya dapat dilihat pada table berikut:

Nomor Soal	P	M	TP	
1A	20%	42%	38%	
1B	10%	62%	28%	
1C	90%	5%	5%	
1D	90%	7%	3%	
2	60%	23%	17%	
3	60%	22%	18%	
4	40%	50%	10%	
5	20%	28%	52%	
6	30%	25%	45%	
7	10%	64%	26%	
8	60%	22%	18%	
Rata-rata	44,6%	31,8%	23,6%	

Tabel 6. Hasil Analisis CRI Mahasiswa berdasarkan Kriteria Jawaban

Berdasarkan tabel 6, persentase jawaban benar >50% dengan CRI tinggi (CRI > 2,5) terdapat pada soal nomor 1C dan 1D yang berisi tentang menunjukkan pecahan biasa dari gambar. Persentase kebenaran untuk jawaban salah \leq 50%) tetapi CRI tinggi (CRI < 2,5) paling tinggi pada soal nomor 7 dan 1B yang membahas salah satu konsep pecahan yaitu, *part whole noncongruent part* (bagian suatu daerah, bagian-bagiannya tidak kongruen. Persentase kebenaran jawaban benar > 50% atau persentase kebenaran jawaban salah \leq 50% tetapi CRI rendah (CRI < 2,5) paling tinggi pada soal nomor 5 yang membahas tentang salah satu konsep pecahan yaitu *part whole-congruent part* (bagian suatu daerah, bagian-bagiannya sama besar), sedangkan paling rendah pada soal nomor 1C dan 1D yang membahas tentang gambar dari pecahan.

Berdasarkan analisis CRI berdasarkan kriteria jawaban mahasiswa, jawaban benar dengan CRI tinggi menunjukkan mahasiswa menguasai konsep dengan baik. Jawaban salah tetapi CRI tinggi menunjukkan mahasiswa mengalami miskonsepsi. Jawaban benar atau jawaban salah dengan CRI rendah menunjukkan mahasiswa tidak paham konsep. Rata-rata berdasarkan analisis CRI tersebut, maka diperoleh diagram berikut ini:

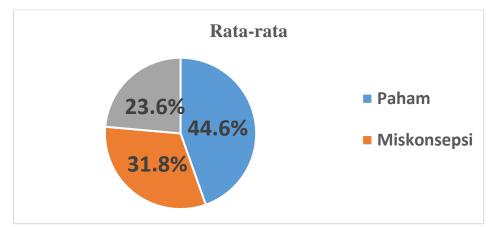


Diagram 1. Diagram Hasil Analisis CRI MAhasiswa berdasarkan Kriteria Jawaban

Berdasarkan Diagram 1 di atas, terdapat 44,6% mahasiswa yang menguasai konsep dengan baik; 31,8 % mahasiswa yang mengalami miskonsepsi; dan 23,6% mahasiswa tidak paham konsep.

Diskusi

Miskonsepsi dalam matematika membuat sulit untuk menguasai konsep berikutnya yang lebih tinggi, terutama karena perolehan materi yang tidak memadai secara keseluruhan, terutama kesalahan konseptual dasar. Ini karena urutan materi matematika diatur secara hierarkis, dan satu konsep membentuk dasar untuk memahami konsep lainnya. Pecahan merupakan materi yang sejak di level dasar sudah dipelajari dan hingga di level perguruan tinggi (Adu-Gyamfi et al., 2019; Tunç-Pekkan, 2015). Materi ini tentunya dipandang kompleks bagi sebagian besar siswa harus harus melibatkan serangkaian prosedur-prosedur hingga pada konseptualisasinya. Stephen & Clements (McKevett et al., 2020) menyatakan bahwa konsep pecahan cemderung terfokus pada aspek proseduralnya dibandingkan pada konseptualnya. Hal ini berdampak pada kerumitan bagi guru untuk mengajarkan konsep tersebut (McKevett et al., 2020), bahwa tak satupun bidang dalam matematika sekolah sekaya, sekompleks, dan sesulit untuk mengajarkannya seperti pecahan.

Hasil yang didapatkan melalui CRI mampu mengukur kepastian responden atas jawaban mereka (<u>Hasan et al., 1999</u>; <u>Liampa et al., 2019</u>). Dalam artian, miskonsepsi yang dihadapi siswa dapat membedakan ketidakpahaman siswa. CRI mampu mengukur kderajat keyakinan individu dalam menjawab permasalahan, CRI dikembangkan dengan skala enam (0-5). Dimana dalam penelitian ini di dapatkan 44,6% mahasiswa yang menguasai konsep dengan baik; 31,8 % mahasiswa yang mengalami miskonsepsi; dan 23,6% mahasiswa tidak paham konsep.

Simpulan

Berdasarkan pemaparan hasil penelitian yang telah diperoleh berdasarkan data dilapangan bahwa pemahaman mahasiswa pada konsep pecahan tergolong tinggi dengan persentase 44,6%. Rata-rata mahasiswa yang mengalami miskonsepsi pada konsep pecahan adalah 31,8%. Profil miskonsepsi mahasiswa pendidikan matematika angkatan pertama yakni angkatan 2019 sebesar 31,8%. Berdasarkan hal tersebut, dapat disimpulkan bahwa angkatan pertama tersebut memliki miskonsepsi tergolong tinggi berdasarkan hasil identifikasi menggunakan teknik CRI, jadi pemahaman konsep pecahan yang dimiliki oleh mahasiswa tersebut masih butuh perbaikan. Mungkin hal ini dalam pembalajaran pada tingkat sebelumnya (SMA atau sederajat) kurang mempertajam konsep tersebut.

Berdasarkan hasil penelitian, peneliti memberikan saran: Siswa harus memotivasi mereka untuk memahami konsep secara keseluruhan. Sebagai seorang guru, di awal pembelajaran, Anda dapat melakukan apersepsi terkait dengan konsep pembelajaran. Beri siswa gambaran tentang konsep awal yang benar untuk mempelajari lebih banyak konsep. Jika kesalahpahaman ditemukan di antara siswa, guru harus memperbaiki kesalahpahaman ini dengan menjelaskan konsep yang benar kepada siswa. Bagi peneliti lain, hasil penelitian ini dapat dijadikan dasar penelitian restorasi untuk mengatasi kesalahpahaman. Bagi pembaca, metode CRI (semoga bisa menjadi bahan pertimbangan untuk kajian analisis yang salah paham.

Konflik Kepentingan

Penulis menyatakan tidak ada konflik kepentingan

Referensi

- Adu-Gyamfi, K., & Bossé, M. J. (2014). Processes and Reasoning in Representations of Linear Functions. *International Journal of Science and Mathematics Education*, *12*(1), 167–192. https://doi.org/10.1007/s10763-013-9416-x
- Adu-Gyamfi, K., Schwartz, C. S., Sinicrope, R., & Bossé, M. J. (2019). Making sense of fraction division: domain and representation knowledge of preservice elementary teachers on a fraction division task. *Mathematics Education Research Journal*, *31*(4), 507–528. https://doi.org/10.1007/s13394-019-00265-2
- Erdogan, F. (2019). Effect of cooperative learning supported by reflective thinking activities on students' critical thinking skills. *Eurasian Journal of Educational Research*, 2019(80). https://doi.org/10.14689/ejer.2019.80.5
- Eriksson, H., & Sumpter, L. (2021). Algebraic and fractional thinking in collective mathematical reasoning. *Educational Studies in Mathematics*, 473–491. https://doi.org/10.1007/s10649-021-10044-1
- Fauzi, A., Rahmatih, A. N., Sobri, M., Radiusman, R., & Widodo, A. (2020). Etnomatematika: Eksplorasi Budaya Sasak sebagai Sumber Belajar Matematika Sekolah Dasar. *Jurnal Review Pembelajaran Matematika*, 5(1). https://doi.org/10.15642/jrpm.2020.5.1.1-13
- Hasan, S., Bagayoko, D., & Kelley, E. L. (1999). Misconceptions and the certainty of response index (CRI). *Physics Education*, *34*(5). https://doi.org/10.1088/0031-9120/34/5/304
- Laili, R. N., Utami, A. D., & Rohman, N. (2021). Pelevelan Model Mental Siswa Dalam Memahami Konsep Persamaan Garis Lurus Di Era Pandemi COVID-19. *Kognitif: Jurnal Riset HOTS Pendidikan Matematika*, 1(2). https://doi.org/10.51574/kognitif.v1i2.86
- Lee, M. Y., & Hackenberg, A. J. (2014). Relationships Between Fractional Knowledge and Algebraic Reasoning: the Case of Willa. *International Journal of Science and*

- Mathematics Education, 12(4), 975–1000. https://doi.org/10.1007/s10763-013-9442-8
- Liampa, V., Malandrakis, G. N., Papadopoulou, P., & Pnevmatikos, D. (2019). Development and Evaluation of a Three-Tier Diagnostic Test to Assess Undergraduate Primary Teachers' Understanding of Ecological Footprint. *Research in Science Education*, 49(3). https://doi.org/10.1007/s11165-017-9643-1
- McKevett, N. M., Kromminga, K. R., Ruedy, A., Roesslein, R., Running, K., & Codding, R. S. (2020). The Effects of Motion Math: Bounce on Students' Fraction Knowledge. *Learning Disabilities Research and Practice*, 35(1). https://doi.org/10.1111/ldrp.12211
- Miles, M. B., Huberman, A. M., & Saldana, J. (2014). Qualitative Data Analysis. Sage.
- Mustari, M., Anggereni, S., Sodikin, Fitria, & Yusandika, A. D. (2020). Identification of students' misconceptions using the Certainty of Response Index (CRI) from work and energy material. *Journal of Physics: Conference Series*, 1572(1). https://doi.org/10.1088/1742-6596/1572/1/012038
- Nehls, C., König, J., Kaiser, G., & Blömeke, S. (2020). Profiles of teachers' general pedagogical knowledge: nature, causes and effects on beliefs and instructional quality. *ZDM Mathematics Education*, 52(2), 343–357. https://doi.org/10.1007/s11858-019-01102-3
- Suharsimi, A. (2010). Prosedur Penelitian: Suatu Pendekatan Praktik (Edisi Revisi). *Rineka Cipta*.
- Tunç-Pekkan, Z. (2015). An analysis of elementary school children's fractional knowledge depicted with circle, rectangle, and number line representations. *Educational Studies in Mathematics*, 89(3), 419–441. https://doi.org/10.1007/s10649-015-9606-2