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Abstract

Collision avoidance of Arm Robot is designed for the robot to collide
objects, collide the environment, and collide its body. Self-collision
avoidance was successfully trained using Generative Adversarial
Networks (GANs) and Particle Swarm Optimization (PSO). The
Inverse Kinematics (IK) with 96K motion data was extracted as the
dataset to train data distribution of D(x) 3.6K samples and 7.2K
samples. The proposed method GANs-PSO can solve the common
GAN problem such as Mode Collapse or Helvetica Scenario that
occurs when the generator G always gets the same output point
which mapped to different input z values. The discriminator D
produces the random samples' data distribution, presenting the real
data distribution (generated by Inverse Kinematic analysis). The
PSO was successfully reduced the number of training epochs of the
generator G only with 5000 iterations. The result of our proposed
method (GANs-PSO) with 50 particles was 5000 training epochs
executed in 0.028ms per single prediction and 0.027474% Generator
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INTRODUCTION

Collision risk assessment and collision
avoidance of manipulator robot has been an
interesting topic in autonomous robotics [1]. The
manipulator robot is designed to simply human
task, to reduce human error (e.g., remote
teleoperation robot NASA's Robonaut), to carry
out tasks that humans cannot handle it, and to
perform in dangerous tasks [2][3]. Manipulator
robots must work in a crowded or cluttered
workspace, and have the ability to colliding the
workspace, colliding its body, and colliding with
each other [4][5].

Several studies to solve collision used
Oriented Bounding Boxes (OBBs), Extended
Oriented Bounding Boxes (EOBBs), Artificial
Potential Field (APF) [6], Virtual Link, Path
Planning combine with Kinematic Analysis [5][7],
Neural Network [8], etc.

Kinematic Analysis commonly used to
analyze the motion of a manipulator robot. It

converts the robot manipulator's position and
orientation from cartesian space to joint space
defined as Inverse Kinematics (IK). A redundant
robot has an infinite number of IK solutions. The
evolutionary methods have been used to solve
the IK problem. Some way of evolutionary are
using a feed-forward Neural Network (NN) and
its Back Propagation (BP), Genetic Algorithm
(GA) [9], Particle Swarm Optimization (PSO)
[10], Firefly Algorithm (FA) [11], Quantum PSO
(QPSO0) [12], Path Planning with PSO [13], etc.

Srisuk et al. explain the IK solution using
Neural Network for a robotic arm in three
dimensions. The IK-NN is defined by the
network's optimal weight with an error rate of 5%
[14]. Improves the network architecture utilizes a
cycle of consistency to learn and solve the IK
problem with a supervised or unsupervised
manner. The motion's quantitative evaluation
has a Mean Square Error (MSE) of 7.10% and
8.51% using a Cycle Consistency Objective
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approach by adversarial. This MSE value
prevents regressing to the end-effector positions
of the input motion [15]. IK-ANN [16], IK-ANN-
PSO [8], IK-RNN [17] was simulated for solving
the IK problem. Still, this technique requires a lot
of data to perform the training process and
approximation, especially inverse kinematics
and a robot manipulator's dynamics. To
mapping, this problem as a serious dimensional
problem can be processed efficiently within the
data distribution.

Recent research used analytical models
embedded inside a physics-based simulation,
instead of using the real world's data set. The
Reinforcement learning approach has been used
to learn a closed-loop predictive controller for a
real robot as IK solver [18]. This approach
requires a huge dataset as an important role in
training neural networks to approximate the
result. To collect real-world data, consume a lot
of time [19]. Generative Adversarial Networks
(GANS) introduced by lan Good Fellow in 2014
[20], describes how to generate additional 'fake'
data similar to real-world data, and thereby
enlarge the total dataset available for training
target neural network [21, 22, 23]. Closely, Halilin
Ren and Pinhas Ben-Tzvi [26] implements IK
solver for 4-DOF MICO Robotic Manipulator
using four types of GANs, namely Conditional
GAN (CGAN), Least Square GAN (LSGAN),
Bidirectional GAN (BiGAN) and DualGAN [27].
The Approaches proposed to solve IK and ID
problems with the desired degree of accuracy
and achieve a lower loss in the Performance and
avoid overfitting. The training process of the
proposed method takes 23 mins to train whole
60.000 datasets. The generator neural network's
execution time takes 0.17ms in a single
prediction with the best of loss 0.91 by GANs.

The main contributions of this paper are as
follows:

e Use of GANs toward learning as the IK
solver's self-organized motion where the real-
world data generated itself in which the data
is high dimensional inputs and distributed.

e Experiment to compare GANs performance
with/without PSO to test the efficiency of the
proposed GANs-PSO that evaluated using
different sizes of the partial dataset and
different deviations for the generator in the
GANSs.

e Collision avoidance dataset created with an
IK generator function.

e The proposed method GANs and PSO capable
to solve the common GAN problem such as
Mode Collapse or Helvetica Scenario that
occurs when the generator G always get the
same output point though mapped to different

input z values. The role of PSO optimizes the
generator G Cost and Loss to solve the Mode
Collapse Problem.

METHOD

System Design

The neural network structured of the
common GANs contains two artificial neural
networks of the generator G and the discriminator
D [20][{21] shown in Figure 1.

The generator G learns to create fake data
by incorporating optimized feedback from the
Discriminator [26]. The training process of the
generator requires tighter integration than the
discriminator training process.

In our method shows the portion of the
GANs that trains the generator to include [20][21]:
e Random input (the end-effector position

coordinated in x,y,z) distributed to the
generator networks.

e Sample data collected from the generator by
exponentially increased 10" (where chosen n =
1,2, 3,and 4)

e Generated data will be classified by the
discriminator network (labelled real/fake)

e Generator loss, which penalizes the generator
for failing to fool the Discriminator.

o Backpropagate through both the Discriminator
and generator to obtain gradients and change
only the generator weights.

e PSO used to optimize the backpropagation
process.

The generator transforms the random input
noise into a meaningful output to produce a wide
variety of data, sampling from different places in
the target distribution. The generator also a neural
network needs to be trained. The neural network
weights perform to reduce the error or loss of its
output. The generator feeds into the discriminator
network, and it produces the output to affect the
next training process. Generator loss penalizes
the generator for producing a sample that the
discriminator network classifies as fake data
distribution. So, this network must be included in a
backpropagation process.

Backpropagation adjusts each layer
(contains weight and biases) to impact the next
cost function. In GANs, the impact of a generator
weight depends on the impact of the discriminator
weights it feeds into. So, backpropagation starts at
the output and flows back through the
Discriminator into the generator [28].

The Discriminator D is simply a classifier
tries to distinguish real data from the data created
by the generator [26][27]. The discriminator
training data contains;
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¢ Real data instances, in our system generated
by inverse kinematic equation (to produce joint
angular given by joint space/joint cartesian),
the Discriminator labelled as a positive sample
during the training process.

o Fake data instances created by the generator
network labeled as a negative sample during
the training process.

As shown in Figure 1, the Discriminator
obtains two loss functions (loss function of D and
loss function of G). During the Discriminator is
training, the Discriminator ignores the loss of the
generator and uses the discriminator loss. The
procedure during discriminator training [31]:

o Classifies both real and fake data from the
generator

o The Discriminator updates its weights through
backpropagation from the discriminator loss
through the discriminator network.

The objective of the Optimizer shown in
Figure 1 to optimize both of GANs neural
networks. Adam Optimizer used as an optimizer
architecture for advanced gradient algorithms
[18][26].
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Figure 1. Network Structure of Generative Adversarial Networks

Kinematics Analysis

A manipulator robot's design is an important
part of designing equations to assist in the
feasibility of the manipulator robot. It is defined as
transforming the geometrical equation to connect
between joint spatial geometry concept and end-
effector coordinates. The forward kinematics is
described as transforming the joint space/joint
angle to the cartesian space/joint variable (end-
effector). Vice versa, inverse kinematics transform
cartesian space / joint variable to joint space / joint
angle [24] [25] as shown in Figure 2.

—- —-
= - - -
—p| Forward kinematics > | g
Joint  — —» Cartesian
space ™ ™ space
- Inverse kinematics | -
—- -

Figure 2. The Schematic of a Forward Kinematics
and Inverse Kinematics [24]

Qinsheng explained Denavit-Hartenberg
Convention is parameters related to a particular
convention for enclosing the reference frames to
the links of a kinematic chain/manipulator [24].
The DH has four parameters contain:

e Join offset (d;): Offset distance among the
common normal of the axis of joini—1 to

join i. Figure 3 shows that d; is the offset in a
direction X, to X; over Z; on the other ways
represented as X;_, to X; over Z;.

e Join angle (6;): An angle measured among the
common normal of the axis of joini—1 to
joini. Figure 3 shown that 6; is an angle
rotated over Z; on the other ways represented
as an angle measured among the common
normal of the axis X;_; to X; over Z,.

e Link length (7;): The length of the link is a
common normal length between the axis of
join i — 1 and join i. Figure 3 shows that r; is a
link length measured from Z, to Z, over X, or
might be represented as the link length of
Z;_q to Z; over X;.

o Twist angle (a;): Twist of the link is an angle
measured between the axis of joini—1 and
joini. Figure 3 shown that «; is an angle
measured between Z, and Z; over X,
(Z;—1 and Z; over X;).

After determining the coordinates shown in

Figure 3, the DH parameters can be represented

in Table 1 [24].

Table 1. The Denavit-Hartenberg Parameters

Link-n 7] d a r
(radian) (mm) (radian) (mm)

1 0, d, a, 0

2 0, 0 0 ™

3 04 0 0 )
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Table 1 used to define the DH matrix convention
such as

c8) —cla).s@®) s(a).s(6;) 1.c(6;)
i-1p = |80 c(a).c(0)  —s(a;).c(6;) 11.5(6)) )
‘ 0 s(ay) c(ay) d;
0 0 0 1

The join offset measured d; = 30mm, twist
angle measured a; = 90°. The link length of joint-
1 equal to zero (0), the link length of joint-2 is
defined as r, measured r; = 60mm, and the link
length of joint-3 is defined as r, measured r, =
90mm. c(6;) denotes as cos(8;), s(6;) denotes as

sin(6;), c(a;) denotes as cos(a;), and s(a;)
denotes as sin(a;).

Transformation of among the links from 0 to
n mathematically defined:

97 = 911121 (2)

Equation (2) shows the connection of joint
and links from the base frame to frame i, so the
translation for each join can be defined by
replacing the variables from (1) and Table 1, then
[24]:

aY;3

¥ X3

Z3

Figure 3. Local Reference Coordinate of 3 DoF Manipulator in Arm Robot [24]

c(61) 0 s(6;) O
op _ [s(81) 0 —c(6) O
T=1"0" 1 0 d; @)
0 0 0 1
c(6;) —s(6) 0 re(8,)
i = s(82) c(6) 0 ms(6;)
2 0 0 1 0 (4)
0 0 0 1
c(63) —s(83) 0 m5¢(03)
T = 5(093) 5(33) (1) 7”25%93) (5)
0 0 0 1

The Forward Kinematic solution can be solved by
multiplying (3), (4), and (5).

A representation of learning IK is a system
would be to generate samples of (q, £), where, é €
R™, is a vector containing the coordinates of the
end-effector given by

§=f(@ (6)

where f(.) is a nonlinear direct kinematic function
of the manipulator robot, and q € R", is the vector
containing the joint space configuration vector,
and to learn the mapping ¢ — q. Refer to (2), f(q)
denotes as a Forward Kinematic solution of the
manipulator robot in which calculating the joint
space parameters (p,, py, p;) based on its input q.
The end-effector linear velocity and angular
velocity can be realized as formulized (7) [8]

§=Jq ()
Where J is the geometric Jacobian Matrix of the

manipulator robot. The Jacobian J(q) of a forward
kinematics is matrix 6x3 can be expressed as:

0x8 (64,65, 65) 02§ (64,65, 63)
a6, a6,

j- @®)

dwxg (61,60,,65) dwzg (61,6, 63)
693 " 693

The £ is the velocity of end-effector in the
base frame defined as

. 0
N

v is a linear velocity from the base frame
(x3,52,29) to end-effector (x2,v72,27) and can be
derived as an angular velocity from the base

frame (w2, w9y, W) to frame-i (w3, wy,, wd),

=.

No <o ?SO -6 ~o ~o
|

€ £ N e

=

S

q in the (7) is an angular parameter for each joint
formulized as,

144

Z. [klima et al., Self-Collision Avoidance of Arm Robot using Generative Adversarial ...



p-ISSN: 0-0 e-ISSN: 0-0

6,
q=|6, (11)
05
These ¢ in (10) the angular joint from the
base frame to frame-n to formalized revolute joint
of 6;, meanwhile for prismatic joint defined as
d.

Equation (7) and (10) ¢ can be replaced as
— ,0 —
Xi
-0
Vi ;
2|
c1=7-16: (12)
Wy [
0 03
_a)o

Zi-

Thus J has two parameters, as explained above,
represented as:

-1

w

where J,, denotes as the Jacobian matrices
calculated by the partial derivative of the forward
kinematic solution shown in (6) for the angular

velocity of the manipulator robot that formulized
as,

(13)

Jo = [R3.-k RY.k RI.K] (14)

The rotational in the base frame noticed as
R, the rotational the base frame to frame 1
noticed as R?, and the rotational the base frame to
frame 2 noticed as RY. k represents that the
rotation always occurs in the z-axis then,

k =

0
Ol (15)
1

By looking (3), (4), and (5), the matrices R
calculated as,

0
RY = H (16)
1
[ 5(61) |
R = |~c(61) (17)
0
[ 5(61) |
R = |~c(61) (18)
0

Therefore J, formulized as [24]

0 s(61) s(61)
Jo = [0 —c(6;) _5(92)] (19)
1 0 0

Jv = [Rok x (03— 05) Rk x (03 — 07)

(20)
R3k x (03— 03)

Furthermore, J, denoted as the Jacobian
matrices of the forward kinematic solution f(.)
shown in (6) to the linear velocity of the
manipulator robot that formulized as, can be
formalized as (24) where 0 is the origin from the
base frame until end-effector, by looking (3) until
(5), matrix O can be calculated as,

[110(62) + 12¢(63))]
115(6;) + 1,5(65)
dy

09 -08 = (21)

[71¢(62) + 1,0(63)]
115(63) + 1,5(65)
0

72¢(63)
TzS(Gs)l
0

09 -0 = (22)

03 —-039 = (23)

Equation (24) shows the initial value of J,, defined.
Furthermore, (25) is the Jacobian Matrix of |
contains J,, and J,,.

Corresponding to (7), the linearity of the
configuration Jacobian Matrix that allows solving
the differential kinematics with an inversion of the
following equations [8]

q=J7" (24)
Equation (24) is valid only for the manipulators
with the same dimension of the operational space
and the join space (m = n). When the manipulator
is redundant (m > n), the Jacobian Matrix has

more columns than rows, and infinite number
solutions exist for (7).

Generative Adversarial Network (GAN)

GANs can be utilized to produce new data
in a limited situation. These data, sometimes be
difficult and expensive and time-consuming to
generate. The new data has to be realistic enough
that whatever insights obtained from the
generated data still applies to real data.

GANs was introduced in 2014 by
Goodfellow et al. [30, 31, 32]. The original GANs
can learn a generator to capture the distribution of
real data by introducing an adversarial
discriminator that evolves to discriminate between
the actual data and the fake. GANs series widely
proposed for a wide variety of problems. Figure 1
shows the original network structure of GANs.
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Figure 4. The Flowchart of Generative Adversarial Networks Modules

In the original formulation, GANs includes a
generator G and a discriminator D [21]. Figure 4
shows the Self-Collision Avoidance System of
Arm Robot's flowchart using GANs and PSO
[26][34].

The adversarial framework is
straightforward to implement when the models are
both multilayers perceptron (MLP) but in this paper
use the more than two layers of hidden layer called
Artificial Neural Networks (ANNSs).

—(r15(62) + 1r25(63)) 0 0
Jo = |—(ric(82) + r,¢(03)) 0 0
0 ric(6y — 65) + 15c(6, + 63) 1¢c(6; — 03)
—(115(82) + r25(63)) 0 0 (29)
—(r1c(8) + 12¢(83)) 0 0
J= 0 ric(0; —6;) +1pc(0, + 03 1c(6; — 63)
0 5(61) s(8y)
0 —c(6, —c(6,
1 0 0

The generator G learn the data distribution
py over real data x, the data distribution of G
defined as input noise variables p,(Z), where z €
Z is independent and identically distributed
samples from a known prior p,, to points in the
space of real data X. In this system variable z
notice three parameters required as an input of the
inverse kinematic equation (p,,p,,p;). This G
represents a mapping data space as G(z;6,),
where G is a differentiable function represented by
an ANNs with parameters 6,,.

This G(z; 6,) is ANNs calculated consists of
Feed-Forward step and Backpropagation step,
formulized as [34, 35, 36];

yj = f(net) then net = Z?=1 WiiX; — 6}' (26)

where y; does weight give the network values w;;
and threshold unit 6;. This f(.) is the activation
function used to transform the incoming values
from the previous layer to the successive layer. y;
represent the values from the input layer to the
hidden layer y;, hidden layer to next hidden layer
Vi, and last hidden layer to output layer y, [35][36].

The gradient descent required to calculated
and minimize the error between observed data

v, and the desired data t;.. A measure of the error
between both observed data y, and the desired

data t; is
m
1 2
E=5) (=)
k=1

Equation (27) represents the first step of
backpropagation step, which the weights of the
network changed each iteration of the training
process [35][36]. The weights need to be updated
each iteration by finding the values of the
derivative of E in (27), which were given by

o0E

(27)

Awj ==y — =Yy, (28)
J awji J
where the error §; is given as:
85 = ' Fo) (tr = ¥o) (29)

f' is the derivative of the activation function f(.)
and y is called learning rate. So, the weights
updated when the input-hidden error calculated by
[34]:

5 =G @) (30)
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The second ANNs D(x;6,) in which D(x)
represents the probability that x came from the
data rather than p,. By training the discriminator D
to maximize the probability of assigning the correct
label to training examples and samples from the
generator G.

That could be determined if a sample x € X
is from the real dataset x~p,,:,(x) Or generated
from the generator G, x~G;z~p,. The training
criterion of the discriminator D, given any
generator G expressed as,

V(D,G) = X~Paata () [logD (x)]
+ Ezp,(»[log (1 = D(G(2)))]

Thus, the training process is to optimize the
discriminator D to assign correct labels to both the
real dataset and the noise sample from the

(31)

generator G, and simultaneously train the
generator G to minimize,
minimize(log (1 — D(G(2)))) (32)

When the generator G was unable to assign a
label data as data distribution of z~p,, in this case,
log (1 — D(G(z))) saturates. Rather than training
the generator G to minimize shown in (30), the
generator G can be maximized to provides the
stronger gradients early in learning, formulized as:

maximize(log (D(G(32)))) (33)

Furthermore, minimax objective for both
generator G and the discriminator D is formulated
as fo”ows [18, 20, 21, 26, 30, 32],

in max
me D V(D,6) = Eropyy,i0llogD ()]

+ Ezop,(»[log (1 = D(G(2)))]

where, D(.) denotes the discriminator D network’s
output, G(.) denotes the generator G network's
output, and E|.] denotes the network expectation.

The generator G implicitly defines a
probability distribution p, as the distribution of the
samples G(z) obtained when z~p,. A minibatch
stochastic gradient descent training of GAN. A
hyperparameter of k is the composer variables
used to compute the generator loss and the
discriminator loss D [31].

Algorithm 1
for number of training iterations do
for k step do
o Sample minibatch of m noise sample {z@,...,z™)}
from noise prior p,(z). z is noticed as the joint space
in the end-effector provided by random values. So, z
defines as an input (py, py, p,)-
¢ Sample minibatch of m examples {x™, ..., x(™} from
data generating distribution pgq.q(x). x is noticed as
the joint space in end-effector provided by inverse

kinematic equations. So, x defines as an input

(x> Dy, P2)-
o Update the Discriminator by ascending its stochastic
gradient [20]:
Vadé Z [lOgD (:r“‘) + log (1 - D ((; (zm)))]
end for !

« Sample minibatch of m noise samples {z@, ..., z™}
from noise p,(2). z denotes as an input (py, py, p,)-

e Update the generator D by descending its stochastic
gradient 2

Vu,,;%ilog(l — b (G (ZU))))

end for

The gradient-based updates can use any standard
gradient-based learning rule.

Particle Swarm Optimization (PSO)

The global optimum solution of the swarm
particle defines as initial fitness value denotes by
x. The swarm consists of n-particles travelling into
n-dimensional search space with the epoch t.
During each epoch, p particle produces a unique
position vector x. The const function also
calculated by each particle p which consider as
the local best fitness (p2¢t) to find the best fitness
called global best fitness (g2°*) of the swarm. The
vectors and velocities both formulated:

Vier = Vi + Cp (plgeSt - x,ﬁ) (35)
+ Cg(gllgest _ x}i)

Xier1 = X + Vi (36)
xt and v are the position vector and velocity
vector of epoch t. ¢, and ¢, in (27) shows the
coefficient factor that adjusts the particles' weights
[33][34]. v, is velocity vector formulized the fitness
of backpropagation process in Atrtificial Neural
Networks (ANNs). PSO was successfully
integrated with ANNSs training process to optimize
the architecture of the network. This Algorithm (2)
shows that PSO determines the optimized values
of the ANNSs learning rate y and the number of
nodes j in ANNSs hidden layer architecture [35][36].

Algorithm 2
Initialize x{ swarms, velocity vector (vi), local (p2®st) and global
(gPest) best positions.
for number of iterations t do
for number of swarms x{ do
calculate G (z; 6,) (26) until (30)
evaluate fitness in (29)
update ppest
end for
update gkest
update v,
update x{,,
end for
find best solution of g2est
validation rRMSE in (30)
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Proposed Method

Referring to (31), W(G(z)) denotes as an
Objective Function that optimized by PSO
(explained in Algorithm 2).

V(D,G) = Ex~Pdam(x) [logD(x)] +
Esop,»llog (1 =DW(G(2))]  (37)

The training objective of the generator G
and the discriminator D expressed as a loss
function obtained:

Gloss = Ez~Pz [lOg H?:l G(Z)i- D(W(G(Z))] (38)
Dipss = _Ex~Pdam(x) [logD (x)] —
Eyp,llog (1 = D(W(G(2)))] (39)

where n denotes the number of the trajectory
points generated by the generator G, G(z);
denotes the probability occur of the i-th trajectory
point, and []i-, G (z); denotes the probability occur
of the generator output.

Table 2. Hyperparameter for neural networks and

PSO [26]
Parameters Choices ng?:;fg,s
Number of
Layers [3,4,5,6,7,8] 3
Number of n _
Neurons in 2 ;v;herelg B 26
Hidden Layers T
o ['ReLU',
?Sﬁ\éigzg 'Sigmoid', 'TanH', 'Leaky RelLu'
'Leaky Relu']
Activation
Functions Rate [0.1.0.2, .... 1.0] 0.1
Acceleration
Coefficients [1.0,1.001, ..., 2] (0.5;0.9)
(cps c4)

Table 2 shows the hyperparameter selected in this
approach. The number of layers denotes that the
architecture of the generator G and the
discriminator D both are ANNs.

RESULTS AND DISCUSSION

The proposed approach was applied to
avoiding collision of Arm Robot three degree of
freedom (3 DoF). The datasets generated by
inverse kinematic equation explained in (16). It is
generated 7200 motion points to produce the joint
space (px, vy, p,) and joint angular (q;, g, g3).

Figure 5 shows that the data distribution of
real data D (x) were used 3600 samples and 7200
samples. The batch noise of data distribution G (z)
generated using the same size with the data
distribution of real data D (x).

Real Data Distribution (X)
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Figure 5. Data Distribution of Real Data D(x)

Training

The training process was performed using
Intel(R) Core® i5-6300HQ CPU@2.30GHz, 12GB
RAM and NVIDIA GeForce GTX 960M. The
training process followed the hyperparameter [18]
shown in Table 2. The training performance was
captured in Figure 6, that means of our process
time.

Training Performance

Process Time
— GANs
120 GANs-PS0 50 Particles
- GANs-PS0 100 Particles

140

100

80

Minutes

B0

2500 5000 7500 10000 12500 15000 17500 20000
Epochs

Figure 6. Training Generator G and Discriminator
D Performance

GANs has 15.26 minutes for 20000
iterations. GANs-PSO with 50 particles has 63.17
minutes for 20000 training epochs. And, GANs-
PSO with 100 particles has 149.78 minutes for
20000 training epochs. This Testing represents
that our approach takes a lot of time than common
GANs, because of generates 50 particles of G(x)
and 100 particles of G(x) per data sample.

Figure 7 shows the data distribution of noise
data G(z) to match the data distribution of real
data D(x). A centroid distribution data shows the
gap between real data distribution and noise data
distribution in two cases before and after the
generator G(.) performed. Follows by the time
process in Figure 6, the approaches tested in 1000
until 20000 training epochs.
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Figure 7. (a) Centroid of distribution data G (z)
and D(x), (b) Centroid of GANs in 5000 training
epochs, (c) Centroid of GANs-PSO 50 particles in
5000 training epochs, and (d) Centroid of GANs-
PSO 100 particles in 5000 training epochs

The centroid of data distribution G(z) and
D(x) was successfully captured. GANs-PSO with
50 particles trained in 5000 training epochs was
performed G (z) to approximate the real data D (x).
The centroid generated real data G(x) should be
matched the centroid real data D(x) shown in
Figure 7.

The training process of GANs-PSO with 50
particles trained in 5000 training epochs was
estimated 19 minutes. Figure 6 was transformed
in 2D, representing the motion path of the
generator result in Figure 8. The motion path was
obtained by inputting various random numbers to
G network as G(z). The Arm Robot moved to a
predefined position to caption the motion path, as
shown in Figure 8.

The PSO has optimized the generator loss
Goss Dy minimizing the cost function formulized in
(38) and shown in Figure 9.

The Initial G Loss is calculated
1.215757084 after the end of the process (the num
of the epoch multiplying with the num of the
particles) G ,ss optimized is 1.32417093. Figure 9
also shows the minimax term GANs maximize
generator G and minimize discriminator D (see
(34)).

Figure 8. The Extraction of Figure 7, GANs-PSO
50 particles in 5000 training epochs

Figure 9. The Optimization of G,

Figure 10 represents the generation of the
data distribution of the generator G to reach the
minimax expectation of x~G; z~p,. It represents
the four motions of the robot, and it takes 5000
iterations and 50 particles.

Figure 11 represents the generation of the
data distribution of the generator G to reach the
minimax expectation of x~G; z~p,. Figure 11 also
represents joint values in which contains the join
value of theta 1, theta 2, and theta 3 and
represents join velocities which contains J,1, /.2,
and /3.

Testing Generator Network

Figure 12 shows the testing performance of
our approach. The prediction of the proposed path
tested in 1000 until 20000 training epochs.
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Figure 10. Minimax Expectation of x~G; z~p;
(a) Motion-1, (b) Motion-2, (c) Motion-3, and
(d) Motion-4

The generator G predict with the minimum

value reached 0.0270 milliseconds, and the
maximum value reached 0.0284 milliseconds. The
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processing load decreased if compared to the
training load.

Each training process includes 1000 until
20000 training epochs, and each training epoch
covers all the training dataset. At the end of each
training epoch, the validation dataset is used to
evaluate the well-trained neural network's
Performance on the unseen dataset selected for
training, which is relatively smaller than the test
dataset. To test the overall Performance and the
generalization of the well-trained neural network
using the limited dataset, the test dataset was
used to estimate its overall Performance over the
whole actuation space.

Figure 13 show the Performance of GANs-
PSO in predicting the proposed position and the
predictive position. To see the comparison
between the proposed method (GANs-PSO) and
the conventional method (GANs) shown in Table
3. Our satisfied iterations selected in 5000 epochs
comparing GANs and GANs-PSO the time
estimation of the training process was counted in
Table 3. Our proposed method GANs-PSO
calculated the Ggysp Was tested 0.027475%.

Table 3. Performance of the proposed method

Training
Method Time Epoch
GANs 6.43 minutes 5000
GANs-PSO 19.17 minutes 5000
Testing
Method Gruse
GANs 6.402591%
GANs-PSO 0.027475%
Joint Value 2 (Rad) Jomt Value 3 (Rad)
_ o ® ResiData e
Y Generated Da
P 02 {/
00 eyt ‘/
rn?h)a o ! o n::T\mPkIU o ’
(b) (c)

joint Velocity 3 (Rad)

e)

Figure 11. Joint Values: (a) Joint-1, (b) Joint-2, and (c) Joint-3,
Joint Velocity: (d) Joint-1, (e) Joint-2, and (f) Joint-3,
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Testing Performance
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Figure 12. Testing Generator Performance
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CONCLUSION

This paper presented a hybrid method of
Generative Adversarial Networks (GANs) and
Particle Swarm Optimization (PSO) for Arm Robot
three degree of freedom (3 DoF). The real data
distribution D(x) was generated by Inverse
Kinematic equation to produce the joint space
(px, Py, P2) @nd joint angular (g, g, q5). The noise
data distribution G(z) was presented as the joint
space G(py,py,p;)- The PSO optimized the
Performance of the generator G, in the case to
avoid the occurrence of the mode collapse. Mode
collapse occurs when the generator is unable to
generate output as data distribution x~G; z~p,.
Therefore, PSO reduced the number of iterations
differentially from conventional. The selected
approach was GANs-PSO with 50 particles in
5000 training epochs, the training process of each
proposed method takes around 19.17 minutes to
train the whole 7200 datasets. The neural
generator network's execution time takes around
0.028ms to perform a single prediction with the
GMSE revealed 0.027475%.
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