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Abstract

Traffic accidents caused by drowsiness remain a serious threat to driving safety. Many of these accidents can actually be prevented

with an early warning system that detects the early signs of driver drowsiness. This study proposes a non-invasive system to detect drowsiness

based on visual features extracted from videos recorded by a dashboard camera. The system uses facial landmarks generated by a facial network

detector to identify key areas such as eyes, mouth, and head. The eye aspect ratio (EAR), mouth aspect ratio (MAR), and head rotation angle

were calculated as the main features. These features were fed into three classification models: 1D-CNN, LSTM, and BiLSTM. Evaluation

was conducted using 87 videos from the YawDD dataset for training and 20 videos from custom data for testing. During training, the 5-fold

cross-validation was used to ensure model generalization and reduce the risk of overfitting. In addition to accuracy, other metrics such as

precision, recall, and F1-score were used to provide a more comprehensive overview of the system performance. The results showed that the

combination of the three facial features (EAR, MAR, and head rotation) provided a better performance than did the use of a single feature or

a combination of two features, with an accuracy improvement of 5–8%. The BiLSTM model showed the best performance, with a training

accuracy of 99% on the YawDD dataset and a testing accuracy of 98% on the custom data.
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1. Introduction

Driver drowsiness detection (DDD) is an important research

area with a major impact on public safety, particularly in trans-

port and healthcare sectors [1]. Real-time DDD systems are

capable of providing early warning to drivers, helping to reduce

the potential for accidents. Transportation plays a crucial role in

human life, and a significant portion of a country’s economy is

based on this industry. Despite its contribution to safe and effi-

cient travel, driver inattention, fatigue, and drowsiness can cause

personal injury [2]. Driver fatigue is a leading cause of many

accidents worldwide. Various studies indicated that 20-50% of

accidents are caused by fatigue and drowsiness of drivers on cer-

tain roads [3]. Drowsiness occurs when a person feels dizzy or

falls asleep involuntarily, frequently due to the lack of sleep or

mental and physical exhaustion. This is particularly dangerous

in situations that require high alertness, such as industrial work,

mining, and driving, to avoid potentially life-threatening events
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[4].

Various methods for DDD have been developed, including

physiological, behavioral, and visual approaches. Physiological

approaches involve monitoring changes in heart rate (ECG) [5],

brain activity (EEG) [6], as well as skin conductance (EMG)

[7]. However, these methods require the use of equipment

with direct physical contact. The trends of recent research

have increasingly focused on developing more reliable and non-

invasive DDD techniques.

Behavior-based approaches focus mainly on the analysis of

driving patterns, such as lane deviation [8] and steering wheel

movements. Meanwhile, visual methods that use facial land-

mark analysis have emerged as a promising solution due to their

effectiveness and convenience. This approach uses the moni-

toring of eye movements and facial expressions to identify the

signs of driver drowsiness.

In recent years, facial landmark-based DDD is an active re-

search area in computer vision and has attracted much atten-

tion due to its effective and non-invasive nature. It involves the

identification of facial landmarks and the analysis of their move-
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ments to recog- nize the signs of fatigue in drivers. Researchers

in the field of visual feature analysis have conducted various in-

depth studies related to this method.

Panda et al,[9], discussed a method for detecting drowsiness

in drivers using facial features and hand gestures. The system is

based on cameras installed in the car to analyze the driver’s eyes,

mouth, and hand movements. This paper proposed a method

integrating the Eye Aspect Ratio (EAR), the distance between

the upper and lower lips to detect yawning, and the detection

of hands covering the mouth when yawning. When detectings

drowsiness or yawning, the system will gives a voice alert to

the driver. Nevertheless, the weakness of this paper is that the

dataset used to detect yawning with hands covering the mouth is

self-generated and consists of only 2300 images for the yawning

class and 2500 images for the normal condition.

Meenatchi et al, [10], in their, paper discussed a drowsiness

de- tection system for drivers based on eye blink rate monitoring

using computer vision technology. The system uses a webcam

installed on the vehicle dashboard to detect eyes and monitor fa-

cial expressions. If the driver’s eyes remain closed for a certain

period, the system will activate a warning alarm to wake up the

driver. The drawback of this paper is that it only relies on eye

blink (EAR) without other factors., In addition, the paper did not

compare the results of this system with other approaches, such

as more sophisticated deep learning methods (CNN, LSTM).

Moa et al, [11], discussed the development of a driver

drowsiness detection system using a convolutional neural net-

work (CNN). The system works by analyzing eyes and mouth

conditions as the main indicators of sleepiness. The developed

CNN model was tested with a dataset containing the images of

opened eyes, closed eyes, yawning mouth, and normal mouth,

and managed to achieve 97.23% accuracy. The drawback of this

research is related to the relatively minimal dataset used.

Osmani and Wawage [12], discussed a realtime driver

drowsiness detection system using Vision Trans- former (ViT).

The system focuses on the analysis of eyes’ condition

(open/closed) as a key indicator of drowsiness. The Vision

Transformer model was trained with a large dataset of 84,900

eye images, achieving 98.8% accuracy, higher than previous

CNN-based methods. However, the system is still limited to

eye detection only.

Modi et al, [13], proposed a CNN-LSTM hybrid model for

a real-time driver drowsiness detection. The model combines

facial (EAR, MAR) and behavioral (head movement, eye blink,

and yawn) feature analysis to improve the accuracy of drowsi-

ness detection. This method is superior to CNN-based models

alone, as CNN captures the spatial features of the face, while

LSTM analyses the temporal patterns of changes in facial ex-

pressions and head movements. The accuracy of the model

reached 98.89%. However, the model still needs to be tested in

real-world conditions and can be improved with the integration

of additional sensors or optimization for devices with limited

computing power.

Image-based approaches are preferred for not interferinge

with the driver’s activities. Previous studies have focused on

image-based methods, including yawning frequency [14], eye

closure frequency [15], head bobbing [16], eyelid closure per-

centage [17], eye aspect ratio (EAR) [18], and head movement

analysis [19]. Feature fusion combinations have also been ex-

plored [20].

Driver actions play a critical role in maintaining road safety,

for both driver and other road users. Given its importance in sav-

ing lives, the detection of driver drowsiness has recently gained

an increasing attention. Various studies in the literature have

explored methods for detecting driver alertness using facial fea-

tures such as head pose, eyes movements, and other facial ex-

pressions [21], [22]. Though these studies showed promising

progress, the key challenges such as ensuring accurate and real-

time detection of drowsiness remain unsolved still. Drowsy

driving leads to millions of accidents, injuries, and fatalities

each year, underscoring a need for systems with the high levels

of accuracy and precision. The effective detection of drowsi-

ness is deemed essential for preventing road accidents. This

study aims to determine whether using a combination of facial

features eyes movements, mouth movements, and head pose is

more effective for detecting driver drowsiness rather than using

only one or two of these features.

This study aims to analyze the effectiveness of combin-

ing various facial features in improving the accuracy of driver

drowsiness detection. The main contributions of this research

include improving the detection method by considering the lim-

itations of previous studies, which generally only use one facial

feature and face constraints in the availability and diversity of

datasets:

a) This research proposes a new approach by combining three

facial features eyes movement, mouth movement, and head

position to improve the accuracy and effectiveness of driver

drowsiness detection. In addition, this research evaluated

the performance of the combination of three features by

comparing them against the use of one or two facial fea-

tures.

b) The dataset used in training were taken from the YawDD

public dataset, while testing was conducted using a dataset

collected by the authors themselves to overcome the limi-

tations of the available dataset.

c) Feature evaluation was conducted by applying three deep

learning models 1D-CNN, LSTM, and BiLSTM to assess

the effectiveness of the proposed feature combination in

accurately detecting drowsiness.

2. Materials and Method

This research proposes a study of drowsiness detection us-

ing an artificial neural network model to detect specific facial

features from images. Fig. 1 provides an overview of the pro-

posed approach. The study consists of five main processes: data

collection, preprocessing, feature extraction, feature selection,

and classification. It used two data sources: the public YawDD

dataset and the custom dataset. The YawDD dataset consisteds

of videos of drivers displaying various facial expressions while

driving, including when being drowsy. The custom dataset were

collected in a controlled manner involving 20 subjects under

normal lighting conditions inside a stationary vehicle. Each

video was approximately 2 minutes long, recorded at a resolu-

tion of 640×480 pixels at 30 frames per second (fps) with help

of a standard dashboard camera.

Data preprocessing was performed by extracting video
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frames every 7 frames (equivalent to 4.3 fps) to reduce redun-

dancy and computational load. From each frame, facial land-

marks were extracted using a MediaPipe-based facial detection

network. Three main features were calculated: eye aspect ratio

(EAR), mouth aspect ratio (MAR), and head rotation based on

Euler angles (roll, pitch, yaw) derived from the nose landmark

position.

The thresholds for EAR and MAR were adopted from pre-

vious research [23], namely EAR <0.2 to detect closed eyes,

MAR >0.5 to detect yawning, and MAR <0.1 to detect sleep-

ing with the closed mouth. To ensure suitability for the custom

dataset, an analysis of the distribution of EAR and MAR val-

ues was firstly conducted, and these thresholds were retained as

they showed consistency with the sleepy behavior as observed

visually in the custom data.

The training data consisteds of 22,500 samples, comprising

8,200 ‘sleepy’ labels and 14,300 ‘not sleepy’ labels, indicating

the class imbalance. To address this, balancing techniques were

applied under the sampling of the majority class, and additional

experiments were conducted with class weighting during the

training process. No data augmentation was performed as all

features used were numerical extractions, not raw images.

The three features (EAR, MAR, and head rotation) were

incorpo-rated into three different model architectures: 1D-

CNN, LSTM, and BiLSTM. The models were trained using the

5-fold cross- validation to ensure generalization and avoid over-

fitting. Meanwhile, model performance was evaluated using ac-

curacy, precision, recall, and F1-score metrics.

Fig. 1. An overview of the driver drowsiness detection process

2.1. Data Collection

Two data sets were used for the experiments: (i) YawDD

dataset [24]: A publicly available dataset containing videos of

drivers showing various indicators of drowsiness, such as yawn-

ing, eyes closure, and head movements. (ii) Customized data

set: Additional datasets collected specifically for testing and

validation. The data included various driver behaviors, includ-

ing yawning, eye closure, and head bowing. The thresholds

were then set to classify the driver’s status on the basis of these

observed behaviors. For data preparation, we split the data set

into training and testing sets. The model was trained on 80% of

the combined dataset, with features extracted from each frame

(EAR, MAR, head pose) used as input. Standard data augmen-

tation techniques were applied to reduce overfitting. The re-

maining 20% of the data set was used for testing. The custom

dataset served as an additional validation set to ensure the model

generalized well to unseen data.

2.2. Preprocessing

In preprocessing stage, videos were extracted into images.

This extraction process generated individual frames from the

video footage, allowing for the separatione analysis of each

frame. By isolating these frames, specific details, such as

changes in facial expressions or head movements, could be iden-

tified and processed, which are crucial for detecting and classi-

fying the driver’s condition.

This process useds facial landmark points to recognize the

driver’s face. Fig. 2a shows the facial geometry solution used

to estimate 468 landmark points in three dimensions as the, in-

strument in detecting the eyes, mouth, and nose. This solution

determined the location of 68 key points on the face, forming a

map representing the main structure of the face. Fig. 2b shows

the analysis of the eye structure, while Fig. 2c illustrates the

analysis of the mouth structure. This method wasis applied to

detect and extract the areas of eyes and mouth.

In the estimation of head pose, a MediaPipe face mesh solu-

tion [25] was used, which also predicteds 468 facial landmark

points in three dimensions. The X and Y coordinates of the face

mesh solution were normalized based on the frame size, while

the Z coordinate representeds the depth of the face mesh, re-

flecting the distance of the head from the camera. To determine

the pose of the head in the video, the initial coordinates of the

nose were firstly extracted and used as a reference to determine

the position and movement of the head in subsequent frames.

Fig. 2. Driver drowsiness detection analysis (a) mean face, (b) eyes analysis,

and (c) mouth analysis

2.3. Feature Extraction

Various human and vehicle features have been used to model

different drowsiness detection systems. However, this study fo-

cused on modeling drowsiness detection using EAR and MAR
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metrics, along with the estimation of head pose.

2.3.1. Eye Aspect Ratio (EAR)

Rosebrock [15] stated that eye blink detection using EAR fea-

tures has a number of significant advantages over traditional im-

age processing-based detection methods. In traditional meth-

ods, the process begins with the eye localization, followed by

applying a threshold to identify the white part of the eye in the

image. An eye blink is then detected based on the loss of that

white area. In contrast, the use of the Eye Aspect Ratio (EAR)

metric require no complex image processing, thereby reducing

memory usage and speeding up computation time. EAR is cal-

culated based on the ratio of the distance between facial land-

marks around the eye area; this then makes, it a simple yet ef-

ficient method for visual analysis. Commonly, the EAR metric

calculates the horizontal and vertical distance ratios of six co-

ordinate points of the eye markers, as shown in Fig. 3. These

coordinates are numbered, started from the left eye corner at p1

and rotating clockwise to p6. The six coordinate points from

p1 to p6 are two-dimensional. When the eyes are open, the Eye

Aspect Ratio (EAR) value tends to be stable. However, when

the eyes are closed, the difference in position between points p3

and p5, as well as p2 and p6, becomes insignificant, causing the

EAR value to drop dramatically to near zero.

To extract the Eye Aspect Ratio (EAR) feature, Equation (1)

was used. In this equation, the numerator calculates the Eu-

clidean distance between the vertical eye landmark points, while

the denominator calculates the distance between the horizontal

landmarks, ] then multiplied by two to maintain the ratio bal-

ance. The EAR value was calculated for each frame in the video

and then stored in a list for further analysis.

EAR =
|p2 − p6|+ |p3 − p5|

2×|p1 − p4|
(1)

Fig. 3. Variation of the EAR value over time

2.3.2. Mouth Aspect Ratio (MAR)

Similar to EAR, the MAR is used to measure the degree of open-

ness of the mouth. The mouth is represented by 20 coordinates

on the facial markers (points 49 to 68). However, in this study,

we focused on points 61 to 68, as shown in Fig. 4, to determine

the degree of mouth openness. Using these coordinates, the dis-

tance between the upper and lower lips is calculated using For-

mula (2) to assess whether the mouth is open [26]. In Formula

(2), the numerator represents the calculation of the vertical dis-

tance between specific coordinates, while the denominator cal-

culates the horizontal distance. As in Formula (1), the value in

the denominator is multiplied by two to maintain proportional

balance in the ratio calculation.

MAR =
|p64 − p68|+ |p63 − p67|+ |p62 − p66|

3×|p61 − p65|
(2)

Fig. 4. Variation of the MAR value over time

2.3.3. Determination of EAR and MAR threshold values

The determination of the threshold values for the eye and mouth

boundaries is based on the literature in [23]. To evaluate the ef-

fectiveness of the approach proposed in that study, experiments

were conducted on three different scenarios with various diffi-

culty levels, from the easiest to the most challenging. In this

analysis, the MAR and EAR metrics were used as defined in

Equations (1) and (2) to assess the level of driver drowsiness.

The first experiment was conducted using short videos

recording various individuals showing the signs of drowsiness

in a controlled laboratory environment. As shown in Fig. 5,

an eye closure event was represented by the EAR curve, where

the EAR value droppeds below the threshold of 0.2. Similarly,

yawning events were seen in the MAR curve when the value ex-

ceededs the threshold of 0.5. In addition, MAR values below

the threshold of -0.1 indicated an asleep state. Interestingly, two

troughs were observed in the curve corresponding to the mo-

ment when a person falls asleep with their head down. This in-

dicates that the MAR design effectively considers extreme head

postures, including the asleep state.

Fig. 5. EAR and MAR threshold values [23]

2.3.4. Head Pose

In this study, the head rotation angle was used to estimate the

orientation or position of the head in each frame. The rotation

angle refers to the amount of rotation of an object relative to a

fixed point, known as the rotation point. To calculate the head

rotation angle, the center of the nose landmark from MediaPipe

was used as a reference for the head position, as explained in the

preprocessing stage. Subsequently, the X and Y coordinates of

the nose landmark were normalized by multiplying each value

by the width and height of the frame. Based on these coordi-

nates, the rotation angles along the X and Y axes were calcu-

lated to detect head movements up or down, using a series of

thresholds defined in this study [26] :
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1. Head pose up: if X of angle 7 degree

2. Head pose up: if X of angle -7 degree

2.4. Data Labeling

Blinking is a rapid movement in which the eyes close and

reopen, normally lasting about 100 to 400 milliseconds. Yawn-

ing, on the other hand, is a quick action of opening and clos-

ing the mouth, usually lasting about 4 to 6 seconds. A drowsy

head pose is characterized by random head movements caused

by severe drowsiness, often accompanied by eye closure, and it

can last for several seconds. The patterns of blinking, yawning,

and head pose vary among individuals, dependent upon factors

such as duration, degree of opening or closing, angle of head

tilt, and speed of movement. Additionally, a single data capture

of EAR, MAR, and the X and Y coordinates of the nose per

frame is insufficient to fully capture events like blinking, yawn-

ing, or head movements associated with drowsiness. Therefore,

to detect various action patterns indicating drowsiness, we then

added a time range in the drowsiness classification.

In this study, labels ‘1’ and ‘0’ were used to differentiate be-

tween facial features that indicated drowsiness and those that

appeared normal. Label ‘1’ markeds facial features indicating

drowsiness, while label ‘0’ marked features considered normal.

Table 1 provides a description of the facial features of each

driver, and Table 2 presents the labeling results for the training

and testing data.

Table 1. Dataset Description

Driver’s Behaviors Description

Sleepy-eyes When eyes slowly close due to drowsiness

Yawning When mouth open wide due to drowsiness

Nodding When head falls forward when drowsy

Stillness When normally driving

If the image showed signs such as eyelid closing, mouth

yawning, or head nodding, it was then labeled “1”. A sleepy

eye condition was defined as an eye threshold value of less than

0.2, while a mouth threshold value of more than 0.5, indicating

the sleepy driver. In contrast, if the image did not show these

signs, it was labeled “0”, where the eyes were considered non-

drowsy if the threshold value of the eye was greater 0.2 and the

threshold value of the mouth was less than 0.5, indicating that

the awake driver.

Table 2. Result of labelling training and testing datasets

Status Type
Num Face

Training Testing

Drowsy Images 8,200 1,320

Non-drowsy Images 14,300 4,000

Both Videos 87 20

Each driver video was extracted into 280 images, with la-

belling performed on each frame. The resulting data included

various features such as EAR (Eye Aspect Ratio), MAR (Mouth

Aspect Ratio), head pose, as well as corresponding labels, which

were then saved in CSV format for further analysis. Table 2

presents the image extraction results for the training and testing

datasets.

2.5. Classification

After labeling the extracted values, it was continued with

data classification. This research employed three deep neural

network architectures to evaluate behavioral features, including.

1D-CNN architecture, LSTM architecture, and BiLSTM archi-

tecture.

2.5.1. 1D-CNN Architecture

The 1D-CNN architecture was used to automatically learn and

ex- tract temporal patterns from the sequence of behavioral fea-

tures, such as the movement of the eyes, mouth, and head pose,

for the detection of drowsiness. It efficiently processeds sequen-

tial data by applying convolutional filters across one dimension,

making it suitable for tasks involving time-series data. Table 3

presents the details of the proposed 1D-CNN architecture. The

proposed model consisted of several layers. The first layer was

Conv1D with 16 filters and an output size of (None, 1, 16), re-

sulting in a total of 80 parameters trained. The second Conv1D

layer had 32 filters with an output size of (None, 1, 32), which

added 544 parameters. Following this, Batch Normalization was

applied to the layer with an output size of (None, 1, 32), which

resulted in 128 additional parameters. Then, dropout was used

with a fixed output size (None, 1, 32) to prevent overfitting, al-

though this layer did not add any parameters. Next, the flatten

layer changed the output dimension to a one-dimensional vec-

tor of size 32. The next Dense layer had 64 units, resulting

in 2112 parameters, and ended with the last Dense layer with

2 output units, adding 130 additional parameters. Overall, the

model consisted of several convolution, normalization, dropout,

and fully connected layers used to generate the final prediction.

Table 3. Architecture of proposed 1D-CNN model

Layer (type) Output Shape Parameter

conv1d 4 (Conv1D) (None, 1, 16) 64

conv1d 5 (Conv1D) (None, 1, 32) 544

batch normalization 2 (None, 1, 32) 128

dropout 2 (Dropout) (None, 1, 32) 0

flatten 2 (Flatten) (None, 32) 0

dense 4 (Dense) (None, 64) 2,112

dense 5 (Dense) (None, 2) 130

2.5.2. LSTM Architecture

The LSTM architecture was designed to capture long-term de-

pendencies in sequential data [27], making it suitable for de-

tecting temporal patterns associated with driver drowsiness. By

using memory cells, the LSTM model can efficiently process

the sequences of EAR, MAR, and head pose features over time.

The details of the proposed LSTM architecture are presented in

Table 4.

The model started with an LSTM layer that had 100 output

units with an output shape of (1, 100), resulting in 41,600 train-

able parameters. Afterwards, a dropout layer was applied with

the same output shape (1, 100) to help to reduce overfitting,

without increasing the number of parameters. A flatten layer

was then used to convert the output into a one-dimensional vec-

tor of size 100. Following this, the model was fitted with the first

Dense layer, containing 128 units, which added 12,928 param-
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eters. The second Dense layer had 64 units, contributing 8,256

additional parameters. Finally, the model ended with a dense

layer with 3 output units, adding 195 parameters. This layer

was responsible for making the final prediction with 3 output

classes.

Table 4. Architecture of proposed LSTM model

Layer (type) Output Shape Parameter

LSTM (None, 1, 100) 41,600

dropout 2 (Dropout) (None, 1, 100) 0

flatten 2 (Flatten) (None, 100) 0

dense 4 (Dense) (None, 128) 12,928

dense 5 (Dense) (None, 64) 8,256

dense 6 (Dense) (None, 2) 195

2.5.3. BiLSTM Architecture

The BiLSTM (Bidirectional LSTM) architecture was designed

to capture both past and future context in a sequence, making it

more effective for tasks where the full context is important, such

as detecting drowsiness patterns over time. By processing data

in both forward and backward directions, BiLSTM provided a

more comprehensive understanding of sequential features. Ta-

ble 5 presents the details of the proposed BiLSTM architecture.

The model began with a bidirectional LSTM layer, combining

two directions of LSTM, resulting in an output of size (1, 200)

and a parameter count of 84,000. This layer processed sequen-

tial information from both directions (forward and backward)

to better understand the context of the data. After this layer, a

Dropout layer was applied with the same output size (1, 200)

to prevent overfitting without increasing the number of param-

eters. Next, a Flatten layer was used to convert the output into

a one-dimensional vector of size 200. Then, a Dense layer with

128 units is applied, adding 25,728 parameters, followed by an-

other Dense layer with 64 units, contributing an additional 8,256

parameters. Finally, a dense layer with 2 output units is used to

make the final prediction, adding 130 parameters.

Table 5. Architecture of proposed BiLSTM model

Layer (type) Output Shape Parameter

bidirectional 1 (None, 1, 200) 84,000

dropout 2 (Dropout) (None, 1, 200) 0

flatten 2 (Flatten) (None, 200) 0

dense 1 (Dense) (None, 128) 25,728

dense 2 (Dense) (None, 64) 8,256

dense 3 (Dense) (None, 2) 130

2.5.4. Justification for Selecting a Deep Learning Model

The selection of deep learning models in this study was based on

efficiency, capability to capture temporal patterns, and balance

between precision and computational requirements. The 1D-

CNN model was chosen for its ability to extract features from

sequential data with less care than 2D or 3D CNNs, mak- ing it

more processing efficient and resource efficient. Mean- while,

LSTM was used for its ability to handle time-based data by re-

taining information from previous frames, crucial in detecting

gradual drowsiness patterns. BiLSTM was chosen to improve

accuracy by processing information from both directions, al-

lowing the model to capture changes in facial expressions with

a broader time context.

Compared to other models, standard CNNs such as 2D-CNN

or 3D-CNN are more suitable for the spatial analysis of static

images, whereas the drowsiness detection task relies more on

analyzing changes in facial features within a video sequence.

In addition, 3D-CNN has higher computational requirements,

making it less efficient than the combination of 1D-CNN and

LSTM/BiLSTM. Meanwhile, Transformer-based models such

as Vision Transformer (ViT) or TimeSformer, while having

potential in sequential data processing, require much larger

datasets and high computational power to perform optimally.

Therefore, the selection of a combination of 1D-CNN, LSTM,

and BiLSTM in this study provided a more balanced solution

in terms of accuracy, computational efficiency, and temporal

pattern capture capability, making it suitable for video-based

drowsiness detection in real-time driver monitoring systems.

2.6. Evaluation Metrics

To evaluate model performance, the following metrics were

used: (i) Accuracy: to measures the overall accuracy of the pre-

dictions. (ii) Precision and recall: Precision evaluates how many

the predicted drowsy states are correct, while recall measures

refers to how many actual drowsy states are identified and. (iii)

F1 score: combining precision and recall to provide a balanced

performance metric. The hyperparameters used in this study are

described in Table 6.

Table 6. Hyperparameters Models

Hyperparameter Nilai

Learning Rate 0.001

Batch Size 32

Epochs 100

Optimizer Adam

Loss Function Categorical Crossentropy

K-fold Validation 5

3. Results and Discussion

This research proposes a more effective and accurate method

for detecting driver drowsiness by combining three facial fea-

tures, then compared with the use of one or two facial features

alone. To evaluate the performance of the proposed feature com-

bination, we used three deep learning models to ensure its accu-

racy and efficiency. Seven experiments were conducted on the

complete dataset. The results of each experiment are discussed

in this section. These experiments aimed to achieve the highest

classification accuracy and optimal performance in other quan-

titative measures to detect drowsiness in drivers. To measure the

impact and performance of the deep learning architecture in pre-

dicting driver yawning, performance was assessed using stan-

dard metrics such as accuracy, precision, recall, and F1 score.

These measures were used to compare our solution with any ex-

isting relevant literature
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3.1. Experiment Focused on a Single Facial Feature

In the first experiment, we focused on detecting driver

drowsiness by utilizing a single facial feature. The YawDD

public dataset was used for both training and validation. Three

sepa- rated experiments were conducted: (i) detecting driver

drowsiness using eye features, (ii) detecting driver drowsiness

using mouth features, and (iii) detecting driver drowsiness us-

ing head posi- tion features. These experiments were evaluated

using three deep learning models 1D-CNN, LSTM, and BiLST

to assess the effectiveness of each model in detecting drowsi-

ness. The evaluation aimed to compare the performance of these

models in terms of detection accuracy.

The accuracy of the models in the first experiment is shown

in Fig. 6 for the eye feature. The training accuracy using the

1D-CNN model is presented in Fig. 6(a), the LSTM model in

Fig. 6(b), and the BiLSTM model in Fig. 6(c). Furthermore,

Fig. 7 presents the accuracy graph for the mouth feature. Fig.

7(a) shows the accuracy of the 1D-CNN model, Fig. 7(b) dis-

plays the accuracy of the LSTM model, and Fig. 7(c) shows the

accuracy of the BiLSTM model. Finally, Fig. 8 presents the ac-

curacy graph for the head feature. Fig. 8(a), Fig. 8(b) and Fig.8

(c) respectively show the accuracy of the 1D-CNN model, the

LSTM model, and the BiLSTM model.

Table 7 shows the training and testing comparison results of

three deep learning models applied to detect driver drowsiness

based on one facial feature. All three models achieved 0.99 ac-

curacy during training. However, in the test data, the eye feature

provided the best results with 0.96 accuracy in the LSTM model,

followed by BiLSTM and 1DCNN with 0.95 accuracy. Mean-

while, the testing accuracy for the mouth feature only reached

0.71, and the head pose feature obtained an accuracy of 0.69.

This analysis indicated that eye features were more domi-

nant and sensitive in detecting the signs of sleepiness compared

to mouth and head pose features. The lower performance of the

mouth and head pose features could be due to the greater vari-

ability in facial expressions and head movements, which may

be inconsistent or less directly reflective of sleepiness levels. In

contrast, the eyes tended to be more stable as an indicator of

sleepiness, especially through metrics such as EAR which indi-

cated prolonged eye closure. This supports the use of eye fea-

tures as a key focus in the development of more accurate and

reliable sleepiness detection models. In addition, these results

showed the importance of using a combination of features to

improve detection performance in real applications.

3.2. Experiment Focusing on a Two-Facial Feature

In the second experiment, we focused on detecting driver

drowsiness by utilizing a two-facial feature. The YawDD pub-

lic dataset was used for both training and validation. Three

sepa- ratinge experiments were conducted: (i) detecting driver

drowsiness using eye and mouth features, (ii) detecting driver

drowsiness using mouth and head pose features, and (iii) detect-

ing driver drowsiness using head pose and eye features. These

experiments were evaluated using three deep learning models

1D-CNN, LSTM, and BiLSTM to assess the effectiveness of

each model in detecting drowsiness. The evaluation aimed to

compare the performance of these models in terms of detection

accuracy.

Fig. 9 illustrates an accuracy graph on the eye and mouth

features. Figs. 9(a), 9(b) and 9(c) show the 1D-CNN accuracy

model, the LSTM accuracy model, and the BiLSTM model ac-

curacy model, respectively. Furthermore, Fig. 10 depicts an

accuracy graph on the eye and head pose features. Fig. 10(a),

10(b) and 10(c) respectively show the 1D-CNN accuracy model,

the LSTM accuracy model, and the BiLSTM model accuracy

model. Finally, Fig. 11 illustrates an accuracy graph on the

mouth and head pose features. Fig. 11(a), 11(b) and 11(c) shows

the 1D-CNN accuracy model, the LSTM accuracy model, and

the BiLSTM model accuracy model, respectively.

Table 8 shows the training and testing results of the three

deep learning models used to detect driver drowsiness based on

a combination of two facial features. Each model achieved 0.99

accuracy on training data with different combinations of two

features. The combination of eye and mouth features proved to

be superior to the combination of head-mouth pose and head-

eye pose. Detection accuracy with the combination of eye and

mouth features reached 0.98 on the test data, followed by the

combination of eye and head pose features with 0.97 accuracy,

while the combination of mouth and head pose features only

achieved 0.73 accuracy.

These results indicated that the features of the eyes and

mouth were more relevant and effective in detecting drowsiness

compared to the features of the head pose. The combination

of eye and mouth provided richer information on the signs of

sleepiness, such as eye closure (through eye aspect ratio, EAR)

and mouth movements that may indicate yawning. In contrast,

the characteristics of the head pose tended to be less sensitive in

capturing sleepiness signals, possibly due to head movements

that can be affected by other factors, such as sitting position or

road conditions.

The lower accuracy in the combination of mouth and head

pose (0.73) suggested that signals from mouth and head pose

alone were not enough to consistently detect sleepiness. Head

pose features, such as rotation or tilt, may be better used as sup-

porting rather than main features in a drowsiness detection sys-

tem. Meanwhile, the high accuracy in the combination of the

eye and mouth confirmed the importance of multifunctional pro-

cessing to improve the reliability of drowsiness detection mod-

els.

3.3. Experiment Focusing on a Three-Facial Feature

In the third experiment, we focused on detecting driver

drowsiness using three facial characteristics. The YawDD pub-

lic dataset was used for training and validation. This experiment

incorporated three facial features:, eyes, mouth, and head pose.

It was evaluated using three deep learning models: 1D-CNN,

LSTM, and BiLSTM to assess the effective- ness of each model

in detecting drowsiness. This evaluation aimed to compare the

performance of these models in terms of detection accuracy.

Fig. 12 displays the accuracy graph based on the features of

the mouth. Fig. 12(a) to Fig.12 (c) respectively show the accu-

racy of the 1D-CNN model, the LSTM model, and the BiLSTM

model. The last test was conducted by combining three facial

characteristics of the driver:, closed eyes, open mouth, and head

pose as an indicator of drowsiness. Table 9 displays the train-

ing and testing accuracy results of the three deep learning mod-

els used. The results showed that the training accuracy reached

0.99, and the same accuracy was also achieved in the test data,
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(a) (b) (c)

Fig. 6. Training and validation accuracy for the eye feature: (a) 1D-CNN results, (b) LSTM results, and (c) BiLSTM results

(a) (b) (c)

Fig. 7. Training and validation accuracy for the mouth feature: (a) 1D-CNN results, (b) LSTM results, and (c) BiLSTM results

(a) (b) (c)

Fig. 8. Training and validation accuracy for the head pose feature: (a) 1D-CNN results, (b) LSTM results, and (c) BiLSTM results

Table 7. Comparison of training and testing accuracy results on a single feature

Model
Eye Feature Mouth Feature Head Pose Feature

Training Testing Training Testing Training Testing

1D-CNN 0.99 0.95 0.99 0.71 0.99 0.67

LSTM 0.99 0.96 1.00 0.71 1.00 0.69

BiLSTM 0.99 0.95 0.99 0.71 0.99 0.69

with a value of 0.99.

The very high accuracy in training and testing (0.99) indi-

cated that the three models 1D-CNN, LSTM, and BiLSTM were

able to generalize very well in detecting drowsiness when using

the combination of closed eyes, open mouth, and head pose fea-

tures. Together, these three characteristics provided a clear and

comprehensive indicator of sleepiness.

Scientifically, the closed-eyes feature is often used in drowsi-

ness detection systems because sustained eye closure is one of

the most significant signs. An open mouth, which can indicate

yawning, is also a common signal of sleepiness. Head pose,

specifically tilt or rotation, can be an additional indicator, as the

head often leans or falls when a person is sleepy. By combining

these three features, the model has access to a variety of comple-



Rahmawati et al. / Communications in Science and Technology 10(1) (2025) 179-189 187

(a) (b) (c)

Fig. 9. Training and validation accuracy for eyes and mouth features:(a) 1D-CNN results, (b) LSTM results, and (c) BiLSTM results

(a) (b) (c)

Fig. 10. Training and validation accuracy for mouth and head features:(a) 1D-CNN results, (b) LSTM results, and (c) BiLSTM results

(a) (b) (c)

Fig. 11. Training and validation accuracy for head and eye features: (a) 1D-CNN results, (b) LSTM results, and (c) BiLSTM results

Table 8. Comparison of training and testing accuracy results on two features

Model
Eye-Mouth Features Mouth-Head Features Head-Eye Features

Training Testing Training Testing Training Testing

1D-CNN 0.99 0.98 0.98 0.73 0.97 0.95

LSTM 0.99 0.98 0.99 0.72 0.98 0.97

BiLSTM 0.99 0.98 0.99 0.73 0.97 0.96

mentary information, which explains why the accuracy results

are so high.

3.4. Discussion

On testing a single facial characteristic, as presented in Table

7, all three models 1D-CNN, LSTM, and BiLSTM showed high

scores in predicting training data. However, the prediction per-

formance decreased on the head pose feature test data, with the

accuracy reaching 0.69. However, when the three facial features

were compared, the eye feature showed the best performance

with an accuracy rate of 0.98.

The same is true for tests with two facial features together,

as shown in Table 8. The test prediction for the combination of

mouth and head features is lower, with an accuracy of 0.73. The
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(a) (b) (c)

Fig. 12. Training and validation accuracy for eyes, mouth, and head pose features: (a) 1D-CNN results, (b) LSTM results, and (c) BiLSTM results

Table 9. Comparison of training and testing accuracy results on three features

Model
Eye-Mouth-head pose Features

Training Testing

1D-CNN 0.99 0.98

LSTM 0.99 0.98

BiLSTM 0.99 0.98

best result in accuracy in testing both facial features is obtained

from the combination of eyes and mouth, with prediction accu-

racy reaching 0.98. Finally, in the test combining the three facial

features, as shown in Table 9, all three models showed excellent

performance with accuracy reaching 0.98. Based on the test

results, the eye feature was found able to makes the most signif-

icant contribution in the detection of drowsiness, with very high

accuracy in all models tested. The head feature, although be-

ing useful, showed lower prediction performance than the other

features. The combined features of the eyes and the mouth were

also shown to be very effective, showing that the combination of

information from these two features could improve the accuracy

of the prediction. When all three features were combined, the

results showed that all deep learning models could achieve very

high accuracy, suggesting that multimodal approaches are more

effective in detecting drowsiness comprehensively.

This analysis underscored the importance of selecting rele-

vant features for deep learning models in drowsiness detection

applications, especially in the context of using real-time video

data. In addition, significance tests were performed to determine

whether the EAR and MAR characteristics in the public data set

have significant differences compared to the private data set of

the researcher. A performance test was also applied to evalu-

ate the reliability of the features in detecting drowsiness on both

private and public data. The results of the ANOVA analysis

showed a significant difference in the use of the public dataset

and the private dataset of the researcher.

In addition, the computational efficiency of each model was

evaluated to determine its feasibility in a real-time drowsiness

detection system. The results of the analysis showed that the

1D-CNN model had a faster inference time compared to the

LSTM and BiLSTM, making it more suitable for real-time im-

plementation on devices with limited resources. In contrast, al-

though the LSTM and BiLSTM models were able to capture se-

quential patterns better, the higher processing time can be chal-

lenging in applications that require fast responses. Therefore,

the selection of the model in real-time systems should consider

the balance between accuracy and computational efficiency.

4. Conclusion

This study demonstrated that combining facial features such

as eye closure (EAR), mouth opening (MAR), and head pose

(rotation) is an effective approach for detecting driver drowsi-

ness. The three deep learning models evaluated in this re-

search, namely 1D-CNN, LSTM, and BiLSTM achieved high

performance, with BiLSTM yielding the best results. Specifi-

cally, the model achieved an accuracy of 0.99 and an F1-score

of 0.98 on the YawDD dataset, and an accuracy of 0.98 with an

F1-score of 0.96 on a custom dataset. These results confirmed

that integrating multiple facial cues significantly improves the

performance of visual-based drowsiness detection systems, es-

pecially for real-time applications.

In addition to highlighting the effectiveness of visual anal-

ysis, this study emphasizes the importance of proper feature

selection and fusion in building accurate and reliable drowsi-

ness detection systems. The dynamic changes in the eyes,

mouth, and head position were proven to be reliable indica-

tors of drowsiness. While the high accuracy achieved indicated

strong potential for practical use, it is important to note that the

custom dataset were collected under controlled conditions. As

such, further testing in real-world driving environments is nec-

essary to validate the system’s practical robustness.

For future work, more advanced deep learning architectures

such as Transformers or Vision Transformers (ViT) can be ex-

plored to enhance the model’s resilience to challenges such as

lighting variations, camera angles, and facial occlusions. The

high performance observed in this study suggested a strong

foundation, but Transformer-based models may better capture

complex spatial-temporal dependencies in real-time scenarios.

Additionally, expanding the dataset with more diverse driving
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conditions, and deploying the system on lightweight hardware

(e.g., edge devices or embedded systems), will be essential for

real-time implementation. Integrating visual features with phys-

iological sensors such as heart rate monitors or EEG could also

further improve the reliability and robustness of drowsiness de-

tection.
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